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Abstract: Shallow landslides are often analyzed using infinite slope stability method. In infinite 
slope stability method, the pseudo-static safety factor of the slope is dependent on the inertial 
effects and on the reduction of shear strength induced in the soil mass by the seismic loading. The 
Newmark block model is commonly used to predict slope displacements under seismic loading. In 
using the Newmark model, inertial force is assumed to be either parallel to the slope or horizontal 
which may overestimate the critical seismic coefficient, an important parameter for safety and 
displacement analysis of the slope. An approach is discussed here to determine the minimum 
critical seismic coefficient for infinite slopes. Probabilistic methods are applied to model and 
analyze the relevant sources of uncertainty involved in stability analysis of shallow landslides. Four 
different methods: a first order second moment (FOSM) method, an advanced first order second 
moment (AFOSM, Hasofer Lind) method, a point estimate method (PEM), and a Monte Carlo. 
simulation method (MCSM) are used to quantify the uncertainty in the calculated reliability index. 
An exampie is presented to investigate how the probability of failure or the reliability index may 
vary amo.ng these four metho.ds. Also the effects of variability of the critical seismic co.efficient on 
the permanent deformatio.n o.f the slo.pe are discussed. 

Introduction 

Natural soil properties vary considerably, even 
within uniform soil layers. Most soil parameters within 
the domain of analysis of geotechnical work have some 
sort of variability. Inherent variability, measurement 
error and transformation uncertainty are the three 
primary sources of geotechnical variability (Phoon and 
Kulhawy 1999). Missing geo logical details during the 
explorat ion program, estimation of soil properties that 
are difficult to quantify, i.e., the spatial variability of soil 
properties in the field, fluctuation in pore water pressure 
and testing errors as well as many other relevant factors 
are encountered during slope stability computations 
(Malkawi et al. 2000). In a deterministic analysis, the 
safety of the slope is defined based on a safety factor 
(F), defined as the ratio of resisting to driving forces on a 
potential sliding surface. The slope is considered safe if 
the calculated safety factor is greater than one. Due to . 
the uncertainty in materia l properties as well as model 
error and random processes such as an earthquake 
event, the parameters required to calculate the safety 
factor cannot be defined as deterministic values and 
even a safety factor greater than one does not confirm 
the stability of the concerned siope. In a probabilistic 
approach, the factor of safety is expressed in terms of 
its mean value and its variance. Reliability analysis can 
therefore be used to assess uncertainties in engineering 
variables such as the slope safety factor in terms of 
reliability index Wl (Malkawi et al. 2000). 

Shallow landslides are often analyzed using 
infinite slope stability method (Wang and Lin 2010). In 
infinite slopes analyses, the pseudo-static (dynamic) 
safety factor of the slope is dependent on the inertial 
effects and on the reduction of shear strength induced 
in the soil mass by the seismic loading. In this regard, 
the sliding block model introduced by Newmark (1965) 
can be suitably used for the prediction of permanent 
displacements, with uncertainties that are usually 
associated with the choice of the design seismic motion. 
In infinite slopes, weakening instabilities may occur due 
to excess pore pressure build-up that may lead to 
liquefaction, possibly causing a local or even global 
failure of the slope. Biondi et al. (20QO, 2002) proposed 
a procedure to evaluate the seismic stability and the 
displacement response of slopes accounting for shear 
strength reduction due to excess pore pressure 
developed during seismic events. 

Newmark sliding block analyses have been 
frequently used to calculate the permanent 
displacement of the slope. While calculating the 
permanent displacement of the slope, it involves 
integration of an input motion relative to yield 
acceleration, and thus the manner in which the yield 
acceleration is determined is important (Kramer and 
Lindwall 2004). In using the Newmark model, inertial 
force is generally assumed to be either horizontal or 
parallel to the slope, which may overestimate the critical 
seismic coefficient, an important parameter for 
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displacement analysis of the slope. Original Newmark 
analyses use inertia l force parallel to the failure surface, 
whereas Kramer (1996); Makdisi and Seed (1978); 
Seed and Goodman (1964) among others used a 
horizontal inertial force, and thus the assumption of 
seismic force direction is unclear. An approach is 
presented in this paper to determine the minimum 
critical seismic coefficient for infinite slopes. 

A number of researchers have done probabilistic 
stability analyses of the slope safety factor using 
different approaches. AI -Homoud and Tahtamoni (2000) 
used a first order second moment (FOSM) method to 
study the statistics of earthquake induced 
displacements for 3D slopes. Hassan and Wolff (2000) 
used the FOSM method, the advanced first order second 
moment (AFOSM or Hasofer Lind) method and the point 
estimate method (PEM) for analyzing slope reliability. 
Malkawi et al. (2000), Hata et al. (2008) used Monte 
Carlo simulation method (MCSM) for slope reliability 
analysis. Similar probabilistic stability analyses of slopes 
based on the finite element method have been done, for 
example, by Xu and Low (2006), among others. 

In the analysis of shallow landslides using infinite 
slope approach, besides the uncertainties in soil 
properties (e.g. unit weight, cohesion, friction angle), 
uncertainties in seismic design motion and excess pore 
pressure (for saturated cohesionless soils) developed 
during seismic event may affect the slope reliability. The 
effect of uncertainties in seismic design motion and 
excess pore pressure developed during seismic events 
on reliability index of infinite slopes are investigated in 
this study using four probabilistic methods: FOSM 
method, AFOSM or Hasofer Lind (HL) method, PEM and 
MCSM. An example is presented to investigate how the 
reliability index of infinite slopes may vary among these 
four methods. Also the effect of variability of the critical 
seismic coefficient on the permanent deformation of the 
slope is evaluated . 

Deterministic Analysis of an Infinite 
Slope 

Figure 1 shows an infinite slope with an 
inclination ex , driven by a seismic force directed towards 
an angle e with the slope. The infinite slope is assumed 
to have a phreatic surface between the ground surface 
and the potential sliding surface. The initial total normal 
stress, u 0 and initial driving shear stress, To on the 
sliding surface, corresponding to the static conditions 
prior to the earthquake, can be derived from the normal 
and tangential components of weight, W, of a soil 
column of width b =1 with respect to the direction of slip 
surface as follows: 

2 u 0 = yH cos a (1a) 

To = yfisinacosa (1b) 

where H is the height of the soil mass above the 
sliding surface, and y is the average unit weight of the 
soil with in the sliding mass. The initial pore-water 
pressure, u0 on the slip surface due to a height H w of 
the phreatic surface is: 

U 0 =ywHwcos 2 a = mHyw cos 2 a (2 ) 

where Vw is the unit weight of water (taken here 
as 10 KN/ m3 ) and m = H w/H 

b= l 
~ ..................... > 

Fig. 1 Stress state of an infinite slope 

Using the Mohr-Coulomb failure criterion, the 
infinite slope static safety factor can be expressed in the 
form: 

(3) 

where ¢' is the angle of shearing resistance of 
the soil. 

The seismic components of the total normal 
stress, 6.u , and the driving shear stress, 6.. T d , on the 
sliding surface due to the inertial force imposed by the 
earthquake loading on the slope (Figure 1) can be 
expressed as: 

(4a) 

(4b) 

where ks is the seismic coefficient of 

earthquake acceleration, k
5 

=a,/ g ( a
5 

is the seismic 
acceleration and g is the acceleration due to gravity). 
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For a seismic force driving t he slope downward , 
the dynamic total normal stress a, driving shear stress 

r d , and pore pressure u, on the sliding surface at a 
certain instant du ring an earthquake will be given by 
following Eqs: 

(5a) 

(5b) 

u = u0 +!Su = u 0 + rua-0 ' (5c) 

where r
11 

is the excess pore pressu re rat io 

( !'!.u / a-0'). 

The pseudo-static seismic safety fa ctor ( Fd) of 
the infin ite slope is: 

[o-r;v m)(l - r ll ) cos a - k, sin (} l tan ¢' 
Fd = =--------------=---

(sin a + k, cos (}) 
(6) 

It is apparent that during a seismic event the 
reduction in the pseudo-static safety factor depends on 
the inertial effect as wel l as on the pore pressure 
increment induced by the seismic loading. Figure 2 
shows the variation of the pseudo-static safety factor 
versus the earthquake induced acceleration 

coefficient k, . Curves are given for two different values 

of earthquake induced pore pressure ratio r, . If seismic 
shaking does not induce significant pore pressure or if 
the excess pore pressure generated is ignored ( 1~, = 0 ), 
the pseudo-static safety factor is given by: 

l (1 - Yw m)cos a- k , sin(}] tan ¢' 
L r Fda = -=---'----------==---

(sin a+ k, cos fl) 
(7) 

According to t he sliding block model proposed by 
Newmark, t he potentia l sliding mass is treated as a rigid 
body and permanent disp lacements occur whenever the 
grotJnd acceleration exceeds the critical value. The 
critical seismic coefficient kc refe rs to the seismic 

coefficient corresponding to Fd =I and thus can be 
obtained f rom Eq. 6 as: 

(1 - Yw m)(l- r
11 

)cos a tan ¢'-sin a 
k c = ---~r _________ ___ 

(cos (} + sin(}tan ¢ ' ) 
(8 ) 

This critica l seismic coefficient is not constant 
but varies with time during earthquake shaking 

depending on 1:, (Biond i et al. 2000, 2002). The initial 

value of the seismic coefficient when 1~, = 0 is given by: 

~ 1 Yw ) n.• . 
~ - - m cosa tan'1'-sm a 

r kco = ---'-----------
(cos(}+ sin (} tan ¢' ) 

"0 
u.. 

3 

1.5 

0.5 
0 0.05 

kcl 

0.1 0. 1 
k s 

(9) 

--- ru = O( FdO) 

-+- ru =0.2 

----- Fd = 1 

0.2 0.25 

Fig. 2 Variation of pseudo-static safety factor with 
seismic coefficient 

0.3 

If ground acceleration exceeds the critical 
acceleration , permanent displacements occur in the 
slope and thus determination of critical seismic 
coefficient is considered important. As shown in Eq. 8 , 
for known slope properties, the critical seism ic 
coefficient is dependent on the seismic force inclination 
e. Original Newmark analyses assume k, is parallel to 
the failure surface (i.e., (} = 0 in Figure1) and is given 
by: 

kc = (1-Yw m)(l - r,J cos a tan¢'-sina 
r 

which ultimately simplifies 

(10) 

to: 
kc =cos a tan ¢'-sin a, for a dry infinite slope as 
derived by Newmark. 

Kramer (1996); Makdisi and Seed (1978); Seed 

and Goodman (1964); Hata et al. (2008) used k as s 

horizontal ((} =a in Figure 1) to calculate inertia l forces. 
For dry infinite slopes, this is given by substituting 
(}=a in Eq. 8 and results in kc = tan(¢'-a) . Accord ing 
to Kramer and Lindwall (2004), for a 2 :1 (H: V, a = 
26.6 o) infinite slope with ¢' =35 o, the yield seismic 

coefficient ( k y = kc ) =0.178; when the inertial force 

acts parallel to the slope, k =0.148; when the inertia l y 

force is horizontal , ky =0.146, a minimum value, when 
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the inertial force is at its criti cal angle of 8.5 o inclined 
from horizontal. They also suggested that stability is not 
very sensitive to inertial force inclination, and that the 
assumption of a horizontal inertial force provides a good 
approximation to the critical case. However, a 
considerable difference may occur depending on the 
slope geometry and soil parameters. For example if 
a =10 o and ¢' =35 o: k , = 0 .515 when the inertial force 

acts parallel to the slope, k , =0.466 when the inertial 

force is horizontal , and k,. =0.422 when the inertial 
force is at its critical angle of 35 o inclined from the 
slope (or 25 o with the horizontal). Thus to obtain the 
minimum critical yield acceleration , it is necessa ry to 
determine the inclination of the inertial force . To obtain 
the critical seismic coefficient inclination , Eq. 8 is 
minimized with respect to 8 such that: 

okc - =0 ae (11) 

By solving Eq. 11, it is found that kc will be a 

minimum when() = ¢' . This is also valid for the two 
examples presented earlier and thus it can be 
concluded that neither the horizontal nor parallel to the 
slope assumption of inclination of the inertial force 
produces the minimum critical seismic coefficient. 
Inclination of inertial force at an angle ¢' to the slope or 
at an angle ¢/ -a to the horizontal produces the 
minimum critical seismic coefficient given by: 

kc = (I -Yw m)( l - 1~,) cosasin¢'- sinacos¢' (12) 
y 

If the actual seismic coefficient during an 
earthquake is larger than the critical seismic coefficient, 
a permanent displacement wil l occur and thus the 
minimum value of the critical seismic coefficient 
obtained using Eq. 12 should be used for infinite slope 
stability analysis. A displacement analysis can be carried 
out based on the sliding block model . by double 
integration of the following equation of motion: 

a(t) = [k(t ) - kc(t)] g (13) 

where a(t) is the relative acceleration of the 

slope, k(t) and kc (t) are the current and critical 
seismic coefficients , respectively. The critical seismic 
coefficient depends on slope and soil conditions and 
also on excess pore pressure developed at a certain 
instant. As the excess pore pressure during a seismic 
event increases with time, the critical seismic coefficient 
decreases and an init ially stable slope may fail after an 
increase in excess pore pressure and complete 
liquefaction of the slope may occur after any further 
increases in excess pore pressure. For displacement 

calculation using the Newmark method, the horizontal 
component of critical seismic coefficient is required 
(Ingles et al. 2006), and given by k ch = kc cos(rjl-a) . 
Considering the effect of both the horizontal and vertical 
component of the critical seismic coefficient, Ingles et 
al. (2006) expressed the following equation for 
cohesionless soils for downhill motion: 

~ · Yw ~ cos a tan 'f'-sm a- m - cos a tan 'f' 
y 

k ch = (14} 
k 1 (cos a tan ¢'-sin a) + (sin a tan ¢'+ cos a) 

where k 1 = k" ,j k_,11 = tan(B -a); k,,, and k ,11 

are the horizontal and vertical components of k, . 
Substituting the value of k1, using 
kc = kch/cos(B - a ) and differentiating Eq. 14 with 

respect to B such that ok,./ (} () = 0 , results()=¢' . Thus, 
the inclination of the inertial force should be taken as 
that of the angle of internal shear resistance,¢' of the 

soil with the slope. The variation of kc with inertial 

force inclination for different values of m and r;, is 
shown in Figure 3. 
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Fig. 3 Variation of critical seismic coefficient with 
angle of inclination of seismic force with slope 

The critical seismic coefficient can also be used 
to define the alternative pseudo-static safety factor Fk 
(Baker et al. 2006) as: 

(15) 

where k is the expected magnitude of the 
pseudo-static coefficient at a particular site. 
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The value of k depends on the seismological 
information such as earthquake magnitude, focal 
distance, etc. Baker et al. (2006) proposed an empirical 

relationship to calculate kc for cohesionless dry infinite 

slopes ( m = O,r~ = 0) as: 

¢/-a 
k ""--

c 56.5 
(16) 

where¢' and a are expressed in degrees or if 

expressed in radians, kc ""¢'-a . As stated earlier, 

kc = sin(¢'-a) is obtained for similar conditions using 
Eq. 12. Eq . 16 produces only 0 to 4.7% higher values of 

kc than that computed from Eq. 12 depending on value 

of ¢'-a from 0 to 30° and thus both approaches gives 

a similar value of kc. 

For a given seismic coefficient less than the 
critical value, a pseudo-static safety factor greater than 
one is obtained and if the seismic coefficient is greater 
than the critical value, pseudo-static safety factor is less 
than one. The relationship betweert the pseudo-static 
safety factor and the inertial force inclination angle 8 is 
shown in Figure 4. As shown in Figure 4 , the pseudo-
static safety factor is a non-linear function of 8 and it 
attains a minimum value at a certain 8, which depends 
on slope properties as we ll as excess pore pressure 
developed during the seismic event. 
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Fig. 4 Variation of pseudo-static safety factor with 
seismic force inclination 

Reliability Approach 

The safety factor calculated from the 
deterministic stability analys is cannot be considered as 
a consistent measure of risk. Due to uncertainties 
involved in characterizing the soil properties, and model 

errors associated with the analytical technique adopted, 
slopes with a factor of safety larger than unity still have 
some probability of failure. To account for these 
uncertainties, probabilistic stability analysis is necessary 
where the failure probability, p 1 for the slopes can be 

defined as 

p 1 = P[g(X) ~ 0] = J f(X)dx 

G(X):>O 

(17) 

where g(X) = performance function and can be 
defined as: 

g(X) = F(X) -1 (18) 

where F(X) = function for the factor of safety; 

f(X) = joint probability density function of the basic 
variable vector x. 

The mean and variance of the performance 
function can be reasonably approximated by the first 
order Taylor series expansion about the mean. Once the 
mean and variance of the performance function is 
obtained, the reliability index, {3 can be defined as: 

f3 = Jig = JlF -I (19) 
CJg CJF 

where J.lg, f.iF are the mean values of the 

performance function g(X) and the mean value of 

safety factor, respectively; rr g and rr F are the standard 

deviations of performance function g(X) and safety 
factor, respectively. Assuming that the performance 
function and all the random variables are normally 
distributed, the probability of failure can be evaluated 
by: 

PI= 1-<D(jJ) (20) 

where <D(.) is the standard normal cumulative 
probability. 

Assuming that the safety factor follows a 
lognormal distribution, the reliability index, {3 is 
expressed as (Duncan 2000): 

(21) 

where VF is the coefficient of variation of the 
safety factor. 
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There are several methods to evaluate the 
reliability or probability of failure of a particular slope. It 
should be noted that, in general , the performance 
function is neither a linear function nor normally 
distributed and it is often difficult to define the 
distribution of associated variables. In such situation , 
FOSM and AFOSM methods provide approximate 
results. FOSM, AFOSM and PEM can also consider the 
correlation between the two variables, however, the 
effect of correlation between the variables is not 
considered in this study. To consider the effects of 
empirical distribution of variables, correlation between 
the variables and correlation length , Monte Carlo 
simulation may provide benchmark results. In the 
present study, the comparison of reliabil ity indices 
obtained using different methods is done assuming the 
random variables as normally distributed and 
independent. 

First order second moment (FOSM) method 

According to the first order Taylor series 
approximation with non-correlated random variables, 
the mean value of the pseudo-static safety factor is 
obtained by evaluating the function at the mean values 
of the random variables as: 

[
(l _Yw m)(l-JL,. )cosa-JLk sinJLe]tanJL,~.. 

f1 r • s r 
f1 FJ = =---'------- ------'"----

(sin a + f1ks cos JLe) 

(22) 

where f1r, JL,p·, f1ks , JLe and JL ,;, are the mean 
values of the unit weight of the soil within the sliding 
mass, angle of effective friction angle, seismic 
coefficient, inclination of seismic force with the slope 
and excess pore pressure ratio developed during the 
seismic event at particular instant, respectively. All the 
variables considered here are assumed to be 
uncorrelated. Similarly, the first order approximation of 
the variance of the pseudo-static safety factor evaluated 
at the mean values can be written as: 

Var(Fd) = ( oFd J
2 

Var(y) + ( oFd )
2 

Var( ip') + 
8y Oip 1 

(
oFd )2 Var(ks) +(oFd )2 Var(t9)+ (8Fd )2 Var(ru) 
8ks ae aru 

(23) 

where oFd I oy, oFd I oqJ', oFd I oks , oFd I 88 

and oFd I 8"z, are the partial derivatives of pseudo-
static safety factor (Eq. 6) with respect to unit weight of 
the soil within the sliding mass, angle of effective friction 

angle, seismic coefficient, inclination of seismic force 
with the slope and excess pore pressure ratio, 
respectively evaluated at their mean values. The details 
of the FOSM can be found in literature (e.g. Malkawi et 
al. 2000). 

Advanced first order second moment (Hasofer 
Lind) method 

The second moment reliability index, {3 as defined 
by Hasofer and Lind (1974) considers the effect of both 
the mean values and the covariance of the random 
variables influencing the design. It also includes the 
effect of the type of probability distributions of random 
variables considered . The matrix formulation of the 
Hasofer-Lind reliability index and simplified reliability 
calculation is proposed by Low and Tang (1997) where 
the reliability index is given by: 

where x; is a vector representing the set of 

random variables; JL( is the equivalent normal mean 

value; a( is the equivalent normal standard deviation; 
R is the correlation matrix; and F is the failure domain. 
The details of the calculation procedure of /3 can be 
found in Low and Tang (1997) and Low (2005). 

Point estimate method (PEM) 

The point estimation method (PEM) developed by 
Rosenblueth (:1.975, :1.98:1.) provides the statistical 
moments (mean , variance and skewness) for the 
dependent variable, like the safety factor in case of 
slope stability analysis, when it can be expressed as a 
function of other random variables. The required inputs 
for an infinite slope stability analysis are: a) a defined 
performance function b) estimated value for each input 
attribute if it is assumed to have no or negligible 
variability and c) estimated mean and standard 
deviation of each input random variable . The mean and 
COV of the safety factor are calculated and assuming 
the safety factor follows a normal distribution, the 
reliability index is given by Eq. 19. Details of the 
calculation procedure using PEM can be found in 
Baecher and Christian (2003). 

Monte Carlo simulation method 

In Monte Carlo simulation method, the values of 
the random variables are generated consistent with 
their probability distributions and the safety factor is 
calculated for each generated set of variables. The 
process is repeated numerous times and the expected 
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value and the standard deviation of the function of the 
safety factor are calculated. The shape of the 
corresponding probability distribution functions can also 
be determined. To obtain an approximate shape of the 
safety factor PDF, 106 pairs of data were taken from the 
input variables and the resu lting histogram and the PDF 
of dependent variable was plotted. 

Results and Discussion 

Reliability index using FOSM 

Using the FOSM method explained above, the 
reliability index is computed using Eqs. 19, 20, 22, 23. 
The reliability index for a typical infinite slope with the 
mean and COV of variations shown in Table 1 is 
computed and given in Table 2 as f3rosM. A reliability 

index f3 = 1.01 (probability of failure , P r = 15.6%) is 

obtained for m=0.6 whereas f3 = 2.05 ( p 1 = 2%) is 

obtained for m=0.2. If a minimum COV (V) of variables is 

considered (say, Vr = 0.002 , V!p . = 0.02, 

V,., = 0.025 , V0 = 0.05 and V:;, = 0.03 ), a 

reliability index f3 = 7.4 ( Pr = 6.8E-12%) is obtained for 

m=0.6 whereas f3 = 14.7 ( p 1 = 0%) is obtained for 

m=0.2. For m=0.6, the reliability index f3 reduces to 
1.01 from 7.4 if the COVs of the input variables are 
assumed to be the values shown in Table 1. However, it 
should be noted that the reduction of the reliability index 
is dependent on the variabil ity of input variables. 

Comparison of reliability index using different 
probabilistic methods 

A comparative study among FOSM, AFOSM, PEM 
and MCSM is presented using the soil properties and 
seismic parameters of Case 1. Figure 5 shows the 
histogram plot of the obtained pseudo-static safety 
factor for Case 1 for the mean and COV of variables as 
indicated in Table 1 along with the normal and 
lognorma l probability density functions (PDF) of the 
pseudo-static safety factor using the mean and standard 
deviation obtained from the MCSM. It can be seen that 
the lognormal distribution assumption for the pseudo-
static safety factor is closer to the obtained histogram 
than normal distribution. To obtain the pseudo-static 
safety factor histogram, a random value from variables 
as well as deterministic values of other parameters was 
taken to calculate the pseudo-static safety factor. All the 
variables are assumed to have normal distribution. For 
Case 1, the reliability indices using normal and 
lognormal distribution assumption of pseudo-static 
safety factor (using Eqs. 19 and 21, respectively) are 
1.1J and 1.18, respectively. Similarly, for Case 2, the 

reliability indices using 
distribution assumption 
respectively. 

normal and 
are 2.10 

lognormal 
and 2.71, 

The effect of COV of soil and seismic parameters 
on reliability index using FOSM, AFOSM, PEM, and 
MCSM are shown in Figure 6. For variation in COV of soil 
unit weight, no variations were observed among FOSM , 
PEM and MCSM, however some difference was 
observed for AFOSM . The reliability index using AFOSM 
(Hasofer Lind reliability index) is slightly higher for 
Vr ~ 0.04 and slightly lower for Vr > 0.04. For the case 

of variation in V¢., all the four methods produce similar 

results. For variation in Vk, and V0 , the Hasofer Lind 

reliabili ty index is slightly higher than the other methods. 
Similarly, for variation in~;,, MCSM provides a lower 

reliability index for V,;, > 0.3 and at lower variability, a 

slight difference in reliability index among different 
methods is observed. For Case 1 of typical COV of 
variables considered, as shown in Table 2, reliability 
indices of 1.01, 1.12, 1.13, and 1.11 were obtained 
using FOSM, AFOSM, PEM and MCSM, respectively. For 
Case 2, reliability indices of 2.05, 2.58, 2.14 and 2.10 
were obtained using FOSM, AFOSM , PEM and MCSM, 
respectively. In comparison to MCSM, a difference of -9 
to 2% in the reliability index is obtained for Case 1 and a 
difference of -2 to 23% is obtained for Case 2 using 
other methods. 

Thus the difference in computed reliability index 
using FOSM, AFOSM , PEM and MCSM is dependent on 
the soil variability, seismic parameters variabi lity as well 
as initial slope conditions. The difference in computed 
reliability indices may be attributed to the underlying 
assumption and methodology in computing reliability 
index. However, any method can be used for calculation 
of the reliability index with a good accuracy. Moreover, 
all these probabilistic methods consider the effect of 
uncertainty in soil and seismic parameters that are not 
accounted for in deterministic analysis. From Figure 6, it 
can be seen that variability in the internal friction angle 
is the most critical parameter followed by variability in 
the seismic coefficient and excess pore pressure 

coefficient. For example if V, ;, increases from 0.03 to 

0.3. a typical value, then the reliability index decreases 
from 7.4 to 2.48 (for example, using FOSM) for Case 1 
(rn=0.6). Variability in soil unit weight and inclination of 
seismic force has relatively very low impact on the 
reliability index, as can be seen from Figure 6. Due to 
the combined effect of all the varia bles, the reliability 
index decreases considerably which affects the 
performance level of the slope under consideration. 
Thus, the COY of input variables has significant 
influence on the reliability index. 
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Table 1 Mean and COV of variables {Fd is the calculated deterministic safety factor) 

Case m H a ¢' y ks 8 ru fd 

1 0.6 1.278 
5 m 10° 35° 18 0.1 30 ° 0.2 

2 0.2 1.75 
COV (for both cases) 0.1 0.03 0.3 0.5 0.4 

0.4 
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Table 2 Reliability index using different methods 

Case m fJFOSM fJHL fJPEM fJMCSM 

I 0.6 !.OJ 1.12 1.13 1.11 

2 0.2 2.05 2.58 2.14 2.10 

Mean and variance of excess pore pressure 

As shown in Figure 6, variability in the excess 
pore pressure ratio significantly reduces the reliability 
index and it is necessary to determine the mean value 
and the COV of the excess pore pressure ratio. Excess 
pore pressure developed during seismic events at a 
specific instant can be evaluated from the empirical 
relationship proposed by Seed et al. (1975 a) as: 

2 . -'[[Neq JL j r
11 

=-sm --
" Nuq 

(25) 

where Neq is the equivalent number of uniform 

cycles representing earthquake motion , N 1;q is the 

number of uniform cycles causing liquefaction or excess 
pore pressure ratios equal to one and a is an empirical 

constant. Both N ,;q and· a can be determined from 
stress controlled cyclic triaxial tests. For a given soil, 
Nuq is proportional to relative density and inversely 

proportional to the magnitude of load ing; a depends on 
the soil type and test conditions. The lower and upper 
values of a as shown in Figure 7 are 0.5 and 0.9, 
respectively with a mean value of 0.7. Neq. an 

equivalent number of uniform cycles during an 
earthquake depend on earthquake magnitude M. For a 
given magnitude of M, mean value of N eq ( fi Neq ) and 

Neq at intervals of ±10' can be obtained from the 
empirical chart developed by Seed et al. (1975 b), 
shown in Figure 8. For an earthquake of magnitude, M = 

7, f.l N is 10, Neq at ±10' are 15 and 5, respectively, 
eq 

and O'N = (15-5)/2 = 5 and COV of N ( V N ) = 
eq q eq 

5/ 10 = 0 .5 (50%). Similarly, for an earthquake of 

magnitude, M = 7.5, f.lN is 15, Neq at ± 10' are 23 
"'' 

and 8, respectively and thus O'N,"' = (23-8)/2 = 7.5 and 

COV of N eq ( V Neq ) = 7.5/ 15 = 0.5 (50%). 

Therefore a typical COV of N eq may be assumed 

to be 0.5. The standard deviation of a ( 0' a) can be 
calculated similarly, using the 3o rule (Duncan 2000}, 

as a a =(0.9-0.5)/6 "'0.07 and COV as 

va = 0.07/ 0.7 = 0.1 (I 0%) 

Depending upon the variability of ex and N eq , the 

variability_ in ru can be expressed by using_FOSM as: 

Var(ru) = (aru J2 

Var(a) + [ aru ]

2 

Var(Neq ) (26) 
aa 8Neq 

where, 8r11 I aa and aru I aNeq are the partial 

derivatives of r 11 with respect to a and N eq , 

respectively, evaluated at their mean values. Figure 9 

shows the effect of COV of N eq and a constant COV of a 

on the COV of excess pore pressure ratios for different 
values of Nu

9 
(i ndirectly related to the soil relative 

density). The increase in COV of Neq also increases the 

COV of r,, for a given Nuq . As Nuq increases, there may 
be either an increase or decrease in the COV of 

ru depending upon the COV of Neq. Similarly for a 

constant COV of N eq , there is increase in the COV of 

r., for an increasing COV of a and increasing Nliq. For a 

typical of V N =0.5 
eq 

and va =0.1, value 

V,~ "'0.39- 0.42 depending on Nu
9 

= 20-100. 

A typical value of Vr" = 0.4 may be assumed 
appropriate for reliability evaluation of slopes 
considering variability in excess pore pressure ratio. 
Even though the other variables have negligible or 

minimum variability, variability in r
11 

is expected and this 
is attributed to model uncertainty (variability in a) and 

variability in N eq during a seismic event. As shown in 
Figure 6, the reliability index (e.g. using FOSM) 

decreases from 7.4 to 1.91 if the variability in r,, 
(COV=0.4, COV of other variables as minimum) is 
considered for Case 1 (m = 0.6) and the reliability index 
decreases from 14.7 to 3.85 for Case 2 (m = 0.2). 
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Effect of parameters variability on permanent 
deformation 

A displacement analysis of the slope can be 
carried out by double integrating the equation of motion 
expressed in Eq. 13, replacing k c by k ch . For a given 
earthquake input motion, the displacement is mainly 
dependent on k ch . Eq. 13 requires a step-by-step 
numerical integration to calculate the dynamic 
displacements of the slope. Dividing the excitation time 
into a series of small increments, ot; by the linear 
acceleration method (Biggs 1964), the relative velocity 
v(t + ot), and the displacement of the slide mass d(t 
+ ot) , at time t+ ot can be calculated from the previous 
values, v(t) and d(t) , at time t as 

( s:.) ( ) _a~(t):.._+_a....::..(t_+_Ot~) s:. vt+ut=vt+ ut 
2 

(27a) 

d(t + &) = d(t) + v(t)8t + 2a(t) + :(t + 8t) & 2 (27b) 

The seismic record used in the analysis is shown 
in Figure 10 (adopted from the online strong motion 
database source: http:j / db.cosmos-eq.org). The strong 
motion data is taken from the site where the peak 
ground acceleration (PGA) is 0.604g (Takatori, Kobe 
1995 earthquake, Japan). The displacements obtained 
for the strong motion using the simplified Newmark 
method are shown in Figure 11 for the infinite slope 
(Case 1). Here the value of k ch has been assumed 
constant and its value was obtained as 0.150 using the 
mean value of all the parameters. A permanent 
displacement of 115 em was obtained. 
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Due to uncertainties in soil and seismic 
parameters, k,11 will be a random variable. Assuming all 
the variables have normal distributions, the mean and 
COV of k, 11 are found to be 0.1507 and 0 .32, 
respectively. The histogram and the fitted normal and 
lognormal distributions of k,11 are shown in Figure 12. 
Figure 11 also shows the displacement obtained for 
f.1 ±a- of k ch where it can be found that the permanent 
displacements are 70 and 188 em for f.1 + a- and 

j.l - a- of k, 11 , respectively. This suggests a high degree 
of uncertainty for the permanent displacement of the 
infinite slope. The uncertainty in the actual 
displacement of the infinite slope depends on both the 
variability of k ch and the strong motion time history. 
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Conclusions 

A reliabil ity analysis of shallow landslides under 
seismic loading is performed using Infinite slope method 
and Newmark simplified block model. Based on 
deterministic and probabilistic analyses, the following 
conclusions are made: 

Critical seismic coefficients obtained by 
assuming that the seismic force is either paral lel to 
slope, horizontal or at a specific angle to the horizontal 
overestimate the critical seismic coefficient. The critical 
seismic coefficient should be determined assuming that 
the seismic force makes an angle rjJ'-a with horizontal. 

Due to high uncertainty associated with the 
determination of the excess pore pressure empirical 
model, the reliability index of infinite cohesionless slope 
is significantly reduced. A high variability in excess pore 
pressure is obtained due to variability in model 
constants and variability in the equivalent uniform 
stress cycle representation of an earthquake 's 
magnitude. A typical COV of 0.4 is recommended for 
excess pore pressure ratio if Seed's excess pore 
pressure evaluation model is used. 

For a given mean and COV of soil parameters, 
seismic parameters, excess pore pressure ratio, the 
reliability index of an infinite slope differs considerably 
depending on the probabilistic method used. Relative 
difference in computed reliability index using FOSM, 
AFOSM, PEM and MCSM is dependent on the soil 
variability, seismic parameters variability, as well as 
initial slope conditions. Though some difference in 
reliability index is obtained using different probabilistic 
methods, all these probabilistic methods consider the 
effect of uncerta inty in soil and seismic parameters that 
are not accounted for in deterministic analysis. Thus, 
these probabilistic methods are recommended for 
shal low landslides analyses. 
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