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Abstract: The paper deals with the estimation of contact pressure beneath a footing resting on a 
compacted granular bed, overlying a deposit of poor granular soil, with geosynthetic reinforcement 
placed at the interface of the soil strata. The footing and reinforcement are idealized as elastic 
beams resting on a Winkler medium. The variation in the modulus of subgrade reaction due to the 
variation in the confining pressure beneath the beam is considered in this study. Governing 
differential equations for predicting the flexural response of reinforced foundation bed under 
different loading conditions were developed and solved by using finite difference method. The study 
shows that the type of loading significantly affects the contact pressure and subgrade modulus 
profiles along the length of the beam. The study indicates that the modulus of subgrade reaction is 
not uniform along the length of the beam, contrary to the conventional assumptions .• Comparative 
results have been presented to highlight the deviations in the behaviour obtained from the 
assumptions of uniform and varying modulus of subgrade reactions. Typical results considering 
varying modulus of subgrade reaction shows maximum deviation of 45%-50% in non-dimensional 
flexural responses when compared to the results obtained assuming uniform subgrade modulus 
along the length of the footing. 

Introduction 

Flexural analysis of foundations on granular soils 
is carried out by modeling the same either as beams or 
as plates on elastic medium. Since long, this has been 
an interesting and widely studied research area in 
geotechn ical engineering. One of the approaches of 
tackling such problems is to model the soil by closely 
spaced discrete springs. This gave rise to the 
development of the concept of subgrade modulus 
[Winkler (1867)]. In developing and solving the resulting 
differential equations, most of the studies have been 
carried out either by assuming the modulus of subgrade 
reaction to be constant, or of some known distribution 
along the span of the foundation. It is well known that 
modulus of elasticity is a function of the confining 
pressure, initial void ratio and the deviatoric stress, 
although it is established that confining pressure and 
deviatoric stress are inter-dependent, and not 
independent parameters. 

Apart from parameters such as the width and 
depth of foundation, modulus of subgrade reaction 
depends on elastic parameters of the soil, and hence, 
likely to be a function of the confining pressure. 
Depending on the loading conditions, the confining 
pressure varies along the length of the footing; thus, the 
elastic modulus, and subsequently the modulus of 
subgrade reaction are also likely to vary spatial ly, even 
for homogeneous soils. Thus, there is a need and scope 
to look into the issue more critically and check the 

validity of the assumed distributions. Such a study is 
undertaken and reported in this paper. 

Modeling the behavior of strip and combined 
footings resting on soils has largely been carried out as 
beams on elastic foundation using Winkler's 
assumption. Even though the original Winkler-madel is 
subjected to several limitations, with appropriate choice 
of the parameters, the model is found to be quite 
efficient and reasonably correct in analyzing and 
predicting the behavior of long beams resting on such 
foundations. Several researchers [Filolenko-Borodich 
(1940), Hetenyi (1946), Pasternak (1954), Kerr (1964)] 
proposed improvements on the Winkler model to 
remove its inherent deficiencies. These models have 
been extended to analyze the response of footings 
resting on reinforced foundation beds [Ghosh and 
Madhav (1994), Shukla and Chandra (1994), 
Maheshwari eta/. (2004), Deb et at. (2005)]. However, 
in all these studies, the authors used constant modulus 
of subgrade reaction along the length of the footing, as 
it had been done in the original model. However, this 
assumption may not be realistic. 

Makhlouf and Stewart (1965) showed that 
elastic modulus of granular soil is a function of confining 
pressure, and not a function of maximum principal 
stress. Janbu (1963) proposed the following relationship 
between the elastic modulus of soil and the effective 
confining stress, as follows. 
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is the elastic modulus of the subgrade (E) 

in a non-dimensional form and ah = ( ah I Pa) is the 

non-dimensional effective confining stress. Pa is the 

atmospheric pressure, and m and n are modulus 
number and a dimension less number respectively. 
Depending on the type and characteristics of the 
granular soil, the parameters m and n may vary 
significantly. Some data have been reported as follows: 
The parameter n has a magnitude of 0.5 for medium 
dense sands [Lade and Nelson (1987)]; for sands and 
silty sands, the magnitude of m vary from 50 to 500 
[Janbu (1963), Lade and Nelson (1987)]. 

Janbu's expression [Equation 1] has been used 
to determine the regression parameters (m and n) for 
the reported data by Makhlouf and Stewart, 1965, 
(obtained from the laboratory triaxial tests on sands of 
two different relative densities). For the dense sand, 
m=18 and n=0.6212 has been determined, while for 
the loose sand, the parameters are found to be 
m=22.17 and n=0.7185. Based on the idea developed 
about the magnitudes of m and n from Figure 1, in the 
present study, typical va lues of m=25 and n=0.5 have 
been chosen for the compacted overlying bed. Although 
the chosen values may be artefacts and need to be 
determined from experimental procedures for each type 
of soil, still they prove to be handy enough to develop a 
generalized technique to determine the variation of 
subgrade modulus and contact stress in unison along 
the span of the footing resting on reinforced foundation 
bed. 

From several plate load tests, the modulus of 
subgrade reaction (k) is observed to be a function of 
shape and size of the plate, depth of embedment and 
the type of soil [Terzaghi (1955)]. Several researchers 
[Biot (1937), Vesic (1961) , Barden (1963), Vlasov and 
Leontiev (1966), Fletcher eta/. (1971), Horvath (1983)], 
have correlated the modulus of subgrade reaction with 
the Elastic modulus and Poisson's ratio. Daloglu and 
Vallabhan (2000) suggested that the value of modulus 
of subgrade reaction should vary along the domain of a 
slab depending on the material and geometric 
properties of the plate; however, it was cautioned that it 
is not easy to determine this variation . Dey (2005) 
proposed a parabolic distribution of subgrade modulus 
along the width of footings without any proper 
justification. Therefore, in this paper, an attempt has 
been made to present a study on the determination of 
the variation of subgrade modulus beneath beams 
resting on elastic foundations, subjected to different but 
practically possible loading conditions. 

Statement of The Problem 

Figure 1(a) depicts a surface footing resting on 
a compacted granular bed , underlain by a poor granular 
deposit and subjected to a generalized loading system. 
A layer of reinforcement (geogridjgeomatjgeocell) has 
been placed at the interface of the granular media. 
Figure l(b) provides the schematic diagram of the 
proposed problem. The granular strata are represented 
by Winkler medium and both the footing and the 
reinforcement are idealized as elastic beams of length 

2/ f and 21r, possessing flexural rigidities of E 1 I 1 
and Erl r respectively. The reinforcement is placed at a 

depth H beneath the footing, which is same as the 
thickness of the overlying compacted granular bed. The 
unit weight of the overlying and underlying granular 

strata are considered to be Y! and Y2 respectively. The 

generalized distribution of the contact pressures at the 
footing-soil and reinforcement-soil interfaces are 

denoted by p 1 ( x) and Pr ( x) respectively. The 

reinforcement is subjected to a uniform surcharge nH 
all over its length effective due to the overburden 
pressure from the overlying granular bed. This 
eventually induces a horizontal frictional force along the 
entire span of the reinforcement with a maximum 
magnitude at the mid-span and a minimum value of 0 
(zero) at its edge. The reinforcement is considered 
inextensible. However, full mobilization of the frictional 
force is assumed owing to a very small magnitude of 
deflection . Three different loading conditions commonly 
encountered in geotechnical practice has been 
considered as has been shown in Figure 2, and are 
described as follows: 

2/,-
p p p 

H 
Compacted Granular bed {ri) 

2/, 

Poor Granular deposit (yz) 

Fig. 1a Definition Sketch of the Problem: Beam on 
Reinforced Elastic Foundations 
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Fig. 1b Schematic Diagram of the Problem: Beam on 
Reinforced Elastic Foundations 

Case A: Concentrated load acting at the centre of a strip 
footing. 

Case 8: Two concentrated loads acting at the edges of a 
combined footing. 

Case C: Footing acted upon by a generalized loading 
system as in an aqueduct. 

Analysis 

Assumptions 

The analysis is based on the following 
assumptions: 

(a) Plane strain condition persists along the section 
normal to the footing, and 

(b) Due to symmetry in loading and geometry, it is 
sufficient to analyze only half of the footing. 

Governing differential equations 

Referring to Figure 1(b), the governing differential 
equation for the footing is expressed as follows [Hetenyi 
(1946), Maheshwari et at. (2004)]: 

Ej lf tt[; (x)] Pf(x)=-{kJ (x)J\[YJ(x)]-[y,.(x)J) VO~x~IJ 
(2) 

where, k1 ( x) is the distribution of subgrade modulus 

along the width of the footing, and y 1 ( x) . Yr ( x) is 

the spatial deflection of the footing and reinforcement 
respectively. 

Similarly, the governing differential equations for 

the flexural response of the reinforcement are 
expressed as: 

d4y,.(x) d2[y,.(x)] d[T(x)]d[y,.(x)] 
E I - --T(x) -----

r r dx4 dr2 clr clr 

= r1H -([p,.(x)]-[Pr(xl]) vo s x s tr 
= YJ !-1 - ([ k1 (x)]+[ kz (x) ]l[Yr (X)]+ [ k1 (x )][Y f (x )] 

(3a) 

(3b) 

where, k2 ( x) is the distribution of modulus of 

subgrade reaction along the length of reinforcement, 

and T ( x) is the mobilized tension along the length of 

the reinforcement, which is expressed as follows: 

(3c) 

where, flJ. and J.l2 are the coefficients of 

interface friction at the top and bottom of the 
reinforcement-soil interface respectively. Ideally, since 
the characteristic and properties of the granular 
medium at the top and bottom of the reinforcement are 
different, the coefficient of the interface friction at the 
top and bottom of the reinforcement-soil interface 
should be also different. However, as the~ coefficient of 
interface friction between the granular soil and geogrids 
vary between 0 .3 - 0 .5, which is not so significantly 
different, it is assumed that the coefficient of interface 
friction at the top and bottom of reinforcement-soil 
interface are identical and equal, and is denoted by J.L, 
and Equation (3c) is modified and expressed as follows: 

T( x) = 2J.LYJH(!,. -x) (3d) 

The above equation indicates that the tension 
mobilized in the reinforcement is minimal at the edges 
and maximal at the mid-span. The above equations are 
expressed in their non-dimensional form and are utilised 
to determine the flexural response of the footing resting 
on reinforced foundation beds as described in a later 
section. 
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Boundary and Continuity Conditions 

The boundary conditions for the footing 
subjected to different loading conditions, as shown in 
Figure 2, are described as follows: 

~uw 
Case A Loillfing Case B Loading Ca e C Loading 

Fig 2. Different Types of Load Distribution Considered in 
the Study 

case A Loading condition 

(a) At the mid-span of the footing, the slope is 
zero and the shear force is half of the applied load i.e. 

x=O 

p 

2 
x=O 

(4a) 

(b) At the edge of the footing, the bending 
moment and the shear force are zero i.e. 

(4b) 

Case B Loading condition 

(a) At the mid-span of the footing, the slope and 
the shear force are zero i.e. 

d
3 [Y f (x)] 

0 and -EJI f 0 
dx3 

x=O x=O 

Case C Loading condition 

(a) At the mid-span of the footing, the slope and 
the shear force are zero i.e. 

and 

x=O 

(6a) 

(b) At the edge of the footing, the bending 
moment is equal to the concentrated edge moment 

( M) and the shear force is equal to the applied 

concent rated edge load ( P) i.e. 

The above boundary conditions are expressed in 
non-dimensional form and have been used in the 
iterative procedure to determine the flexural response of 
the footing as described later. 

As the flexural response of the reinforcement is 
governed by two differential equations [Equations (3a) 

and (3b)] within the ranges of 0 5, x 5, If and 

If 5, x 5, lr , continuity is to be established at the 

junction of the domains governed by the two equations. 

Thus, at an infinitesimal distance (e) left and right of 

the point, situated at a distance of If from the mid

span of the reinforcement (denoting the junction of the 
domains governed by the two equations as mentioned 
above), continuity is established in terms of deflection, 
slope, bending moment and shear force, which is 
expressed in non-dimensional form as follows: 

Deflection is equal: 

(7a) 

(Sa) Slope is equal: 

(b) At the edge of the footing, the bending moment is 
zero and the shear force is equal to the applied 
concentrated edge load i.e. 

(5b) 

r d[y; (xnl]l = f d [y~ (xn )J] 
l ~n l ~n 

xn=l-e xn=l+e 

(7b) 

Bending moment and Shear force is equa l: 
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(7c) 

(7d) 

Solution Technique 

The differential equations governing the 
flexural responses of the footing and the reinforcement 
are expressed in finite difference form using the Centra l 
Difference Scheme. The footing and the reinforcement 

are discretized into n1 and nr number of nodes. The 

finite difference form of the governing equation for the 
footing (Equation (2 )] is expressed as follows: 

Yfj-2-4Yfi-1(6+h /q; Yfj-4Yfj+I+Yfj+2 .' , 

[ 

, , . I 4 , ) , , , l 
--------~--~~----------=~~~ 

~ 

(8 ) 

where, y f ,i, Yr,i is the non-dimensional deflection of 

the footing and reinforcement at the /h node 
I 

respectively, and kt,i is the non-dimensional modulus 

of subgrade reaction of the overlying compacted 

granular stratum at the /h node. 

Similarly, the finite difference forms of the 
governing differential equations for the reinforcement 
[Equations (3a) and (3b)] are expressed as 
follows: 

cf;-:ir ,i-2 +cf,;-1;,. ,i- 1 +cf,;Y,·; +cf;+~r ,i+l +cf,i+2;r,i+2 =nHn +kv;li 

(9a) 

cP ' cP ' cfl' cP' cP ' ' r,i-'J!r,i.-2+ r,i-IYr,i- 1+ ,.jYr,i.+ r,i+IYr,i.+l+ r,i+zYr,i.+2=nHn 

(9b) 

ca 
2 

-ca. 2 and cb . 2 - cb . 2 are the derived r, t- r ,t+ r ,t- r,1+ 
non-dimensional coefficients are expressed as follows: 

Ca. 2 = Cb 2 =-r ,t- r ,l - h4 
ll 

4 
Ca. I= Cb. I= 

r,1- r,J - h~ 

2JJH nY;• R (1, - Xn,i ) 

h,~ 

(10) 

where the non-dimensional coefficients are expressed 
as follows: h11 is the length of mesh segment, H n is the 

relative depth of reinforcement below the footing or 
relative th ickness of the overlying compacted granular 

II 

bed, n is the relative unit weight of the compacted 

granular fill , R is the relative flexural rigidity of footing 

and reinforc;ment, 111 is the relative length of the 

footing and reinforcement, xn,i is the non-dimensional 

distance of / h node from the mid-span of the footing, 
I 0 

kJ,i , k2,i is the non-dimensional modulus of subgrade 

reaction of the overlying compacted stratum and the 

underlying poor granular stratum at the / h node, and 
I 

kr,i is the non-dimensional relative stiffness of the 

granular media at the ;th node. 

In order to obtain the flexural response of the 
footing and the reinforcement, the finite difference form 
of the governing non-dimensional equations [Equations 
(8 ), (9a) and (9b)] are solved by the method of 
successive approximations as suggested in standard 
references (Whittaker and Robinson (1924), Hetenyi 
(1946)]. In order to start the iteration for the solution, a 
deflection profile is assumed for the footing and 

reinforcement[[y:r(xn)Jiprevious and[y~(xn)JiprevioJ as an 

initial guess. With the assumed profile, Equation (8) is 
written for each node of the discretized footing (with 
proper incorporation of the boundary conditions) to 
obtain a set of equations, which are solved by Gauss
Seidel iterative technique to determine the approximate 
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deflection profile of the footing [[Y/ (xn l]l J. The 
curre111 

approximate deflection profile of footing is further used 
to solve the set of equations governing the flexural 
response of reinforcement [Equations (9a) and (9b)] 
(written for each node of the discretized reinforcement) 
in order to determine the deflection profile of the 

reinforcement [ [v;. (x, l]l J. This completes one 
current 

cycle of iteration. After each complete cycle of iteration , 
the RMS error in the non-dimensional deflection profiles 
of the footing and reinforcement 

[ RMSyJ, RMSy ,r resp.J between successive 

iterations are calculated and summed up, to obtain the 

total RMS error [ RMSy,tota/ J of the reinforced 

foundation system between successive cycles. The 
above mentioned RMS errors are computed as follows: 

x,~o {[v/ fxn l]icurrent {v! (xn )t,evious r (11a) 

"/ 

I { }2 ll ' ' L y,.(x,) - y,.(x,) 
x

11 
=0 [ l urrent [ trevious (11b) 

RMSy,total = RMSyJ +RMSy,r (11c) 

The method of successive approximations is 
stopped when the magnitude of the total RMS error 

becomes smaller than the desired tolerance level ( I o-5 

for this case). Once the final deflection profile of the 
footing and reinforcement are determined by the above 
procedure, the same is used to compute the bending 
moment, shear force and the contact pressure along the 
length of the footing and the reinforcement. 

Results and Discussion 

Typical Distributions of Contact Pressure and 
Modulus of Subgrade Reaction for Beams on 
Elastic Foundation Bed 

In order to initiate the iterative process to 
obtain the final solution, as available from various 
literatures, initial guesses for normalized contact 

pressures along the span of the footing [ P/(x)J are 

considered and is depicted in Figure 3. The 
representative polynomial forms are described as: 

(a)p/·(x11 ) = l - x11 

(b) Pf. { x11 ) = - I. 7 lx~ + I .82x?, + 0.32x11 + 0.454 

(c) Pf (x11 ) = 14.32x?, - 28.41x~ + 1 9.78x~ - 5.62x~ + 0.576x17 + 0.341 

(d) p:r (x11 ) = -4.54x?, +9. 13x~ -3.29x?, - 2.45x~ +0.242x17 + I 

' 2 -7 (e)pj(x11 )=--D.9x11 + 6 x l0 x11 +1 

(f)pj(x11 )= I 

(12) 

"\<»n-dimton\iunaldi .., 1-lln<'t' fron• mid-"'r.a tt l) ffoo l i.n~ ~"o~ l 

0 0.25 0.5 H.75 

0 r-------~--------~------~------~ 

"' .. . -.s· 0.2 

Lj·· 
0 
~ 
.~ 0.8 
E 
.§ 
1 
J 

... _ _ Cnsc:(d} 

-. 
'nsc(~~. · · 

' . _. , 

1.2 .L ______________________ __J 

Fig. 3 Initial Non-Dimensional Contact Pressure 
Distributions 

The normalized confining pressure along the 

span of the footing [ ah ( x11 ) J is computed using the 

following expression: 

(13) 

wherein , the coefficient of earth pressure at rest 

( Ko) is determined using Jaky's expression as: 

Ko = 1-sin¢' (14) 

' 
where, rjJ is the effective angle of internal friction of the 

granular medium. A value of 30° is assigned for the 
same in this problem. 

Thereafter, the distribution of non-dimensional 
elastic modulus along the span of the footing 

[ £' ( x11 ) J is determined by using Equation (1), and 

using it in conjunction to the correlation proposed by 
Vesic (1961), the distribution of normalized modulus of 

subgrade reaction along the length of footing [k ; (x" )] 

is obtained as: 
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(15) 

where, b f is the width of the beam, and v5 is the 

Poisson's ratio of the soil. In this problem, the width of 
the beam is considered as unity and the Poisson 's ratio 
for sand is taken as 0.35. 

The distribution of normalized modulus of 
subgrade reaction along the length of beam as obtained 
from Equation (15) is used in conjunction to the method 
of successive approximation (described earlier) in order 
to determine the deflection profile of the footing. Similar 
to the RMS errors for deflection, the RMS errors of the 

contact stress distributions { RMS p,f) from the two 

consecutive iterations is computed as follows: 

RMSpJ = 
11f 

I { -~ }2 L PJh) - PJh} ' 
Xn =0 [ Jlcurrent t previous 

(16) 

If the magnitude of total RMSE is ·observed to 
be greater than the desired tolerance level (considered 

w-3 for the present problem). the entire process 
described above is repeated based on the current 
distribution of contact pressure along the footing. At the 
end of the numerical procedure, the final distribution of 
modulus of subgrade reaction beneath the footing is 
determined based on the final distribution of contact 
pressure of the beam. Thus. in the procedure developed 
herein, the distribution of modulus of subgrade reaction 
and the contact pressure along the length of the footing 
are both obtained as a part of the solution process 
contrary to the conventional approach of assuming the 
modulus of subgrade reaction and then determining the 
contact pressure beneath the footing. 

Figure 4 depicts a typical representation [Case A 
Loading condition (Figure 2) and Case (c) contact stress 
distribution (Figure 3) of as the initial guess] of the 

reduction in the magnitude of RMS p,f with the 

number of iterations, thus revealing the termination of 

the iterative procedure when the RMS p,f falls 

below I0-3 . It is observed that 80 iterations are 
required to achieve the final solution for this typical 
case, whereas based on the results from other cases 
(not presented here for the sake of brevity), the number 
of iterations required to achieve the final solution 
ranged from 80-120. For a typical case [Case A loading 

and Case (d) contact stress distribution], Figure 5 shows 
the transition in the nature of the contact pressure with 
the number of iterations required to achieve the final 
solution. For the sake of brevity, other detailed results 
are not presented herein. A typical distribution of 
contact pressure and the modulus of subgrade reaction 
studied for a particular loading condition are depicted in 
Figure 6. The figures reveal that regardless of the choice 
of the initial contact pressure distribution, the final 
distribution is unique for each of the loading conditions 
encountered in the problem. 

I.E+oO ,.---,.---,..-------..-----. 
; 

j 
l ' .------ ·t·-------r---------

1 I 
I ! : 

I I 

10 40 60 80 tOO 

~umber o(Hnalion\ 

Fig. 4 Variation in the Magnitude of RMSE with the Number 
of Iterations [Case A Loading Condition and Case (c) 
Distribution of Contact Pressure as the Initial Guess 

• on.<fi.mt n•ional distan<t from mld·•pan or footing ~cJ 

0 O.l 0.4 0.6 0.8 l 1.2 

o r-----~--~----~----~----~---4 

5 
"' §; O.l 
1: 
" E o.4 
"' 1; 

" ~ 0.6 

"' 'i ·S o.s 
" a 
1 
~ 

"·i.:J'-------... 
· ... )9,., 

u..__ ________________ __, 

Fig. 5 Variation of Non-Dimensional Contact Pressure along 
the Footing with the Number of Iterations [Case A Loading 
Condition and Case (d) Distribution of Contact Pressure as the 
Initial Guess] 

The distribution of non-dimensional modulus of 
subgrade reaction (expressed in a range of zero to one) 
beneath the footing, as obtained from the final 
distribution of contact pressure beneath the footing, is 
depicted in Figure 7. 
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It is noted here that the modulus of subgrade 
reaction is not uniform beneath beams on reinforced 
elastic foundation and exhibits considerable 
variations both spatially and with the change of 
loading conditions. 

Non-dim•ruiouul di.t:~or. from ruid-sp:on offooting lx.l 

0 0.1 0.4 0.6 0.8 1.2 

Ca~J 
· - -··-·-·· 

.. 
' • , 

Cas<?! , ', ->< .. ;..: 
,' .-· -.. 

, ::... ~;; ~ ---_ .- .- . ~>:.· -:.: ~----::.·:- . 
Casc6 

t..l -'------------------' 
Fig. 6 Initial and Final Distributions of Contact Pressure 
for Case C Loading: Beams on Reinforced Elastic 
Foundations 

Non-dimt-n~ionnl diS-hmcc- from mid-span of footiug ~,-.1 
0 0.1 OA 0.6 0.8 1 I. 

0+-----~--~----~----~----~----1 

c~tse ll 
. ~:·ding 

1.2 -'-------------------' 

Fig. 7 Variation of Subgrade Modulus Beneath Beam 
on Reinforced Elastic Foundation Subjected to Various 
Loading Conditions 

The polynomial fits (with R2 > 0.995 ) 
representing the distribution of sub grade modulus 
along the length of the beam resting on reinforced 
elastic foundation subjected to various loading 
conditions are expressed as follows: 

Case A Loading: 
I . 3 2 

k ( Xn) = 0.081xn - 0.181xn - 0.0 lxn +I (17a) 

Case B Loading: 

• 2 
k (xn)=0.428xn -0.024xn +0.596 (17b) 

Case C Loading: 

• 3 2 
k ( xn) = -0.0 \6xn + 0.076xn - 0.003xn + 0.943 (17c) 

Typica l Flexural Responses for Beams on 
Reinforced Elastic Foundation Beds with 
Constant and Variable Subgrade Modulus 

Figures 8 (a-c) depict typical variation in the 
flexural response of a footing resting on reinforced 
elastic foundations and subjected to Case A loading 
condition. It is observed that the assumptions of 
constant and variable modulus of subgrade reaction 
produce flexural responses, which are quite different 
from each other. Instead of considering uniform 
modulus, accounting of variable subgrade modulus 
results in a difference of 46%, 56% and 57% in the non
dimensional deflection, bending moment and shear 
force in the footing. Therefore, it is extremely important 
to consider a realistic distribution of modulus of 
subgrade reaction and verify with proper 
experimentation to gain an insight into the problem of 
behavior of reinforced foundation beds, especially its 
flexural characteristics . 

.:'\on-dintt-n'l:l.Qnaldistan('«-from mid-span offOQtiug ~"·.) 

0 0.2 0.4 0.6 0.8 I 
- 0.5 +---...._--~---'---~---'----; 

2 0.7 ;;: 
~ 0.9 

~1.1 
C<mst."'lnt mVt.iltlu:iof SIJ(.w.ul~ r~act1on 

~~long:rhe l~mg.tl l oftht: be;am 

~ '---------------------------~ l.J -to 

c 1.5 

:?! 1.7 . 
~ l.? 

~ 2.1 

\"auable modulu.• of •ul'!<f3dc n:actoo11 
along lhe leng1 h <>f the hewn 

~ 2.3 4------------------
Q 

~ l .5 -'--------------------' 

Fig. 8a Typical Variation in the Non-Dimensional Deflection 
of Footing [case A Loading] 

Comparison of the Contact Pressure Distribution 
beneath the Footing Resting on Unreinforced 
and Reinforced Elastic Foundations 

Considering the footing resting on unreinforced 
and reinforced elastic foundations, the nature of contact 
stress distributions beneath the same are highlighted in 
Figures 9(a-c). 
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Compared to the beam resting on unreinforced 
foundation system, it is observed that for all the cases of 
loading that have been considered in the study, the 
contact stress distribution obtained for reinforced 
foundation system shows more uniformity along the 
length of the footing. This may be stated as an effect of 
provision of the reinforcement, which induces reduction 
of differential stress distribution along the length of the 
footing to achieve a more uniform spatial stress 
distribution . It is also observed that the magnitude of 
the contact stress beneath the beams on reinforced 
elastic foundation is sufficiently reduced due to the 
provision of reinforcement. 

Conclusions 

Based on the studies reported above the following 
conclusions are made: 

Conventionally, the analysis of beams on elastic 

foundation is carried out by assuming a 

particular distribution of contact pressure at the 
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soil-structure interface. However, it is more 

prudent and rational to determine the same as a 

part of an analysis, as very often, the assumed 
contact pressure distribution may vary 

significantly from the actual one, which should be 

unique for the parameters under consideration . 

One such parameter is the modulus of subgrade 

reaction , which is very often assumed constant 

along the length of the beam, but in fact, shows a 
considerable spatial variation. 

• In the developed generalized analysis procedure 

to find the flexural response of beam on elastic 

foundation, no a-priori assumptions regarding the 

distribution of contact pressure and modulus of 

subgrade reaction need to be made; rather t hese 

are the outcome of the analysis itself. 
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