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Abstract: This paper presents a generalized solution for dynamic analysis of earth dam based on
modal response technique. Formulation for dynamic response takes care of both homogenous
dams and dams with internal clay core. A technique based on distribution of static stiffness has
been evolved to evaluate factor of safety (FOS) for a dam with internal clay core. 

It also furnishes formulation for dynamic analysis when the dynamic shear modulus varies with
depth of the dam and proposes a modified method for stability analysis that tries to combine the
pseudo static method of slip circle and sliding block technique to arrive at a rational factor of
safety under earthquake loading. 

The method being analytic in nature does not require a sophisticated software development, a
simple spread sheet or a MATHCAD shell would suffice for the same. Wherever possible, results
have been compared with existing solutions. 
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Introduction  

Earth dams and embankments play an important
role in irrigation, flood control and development of rail
road infrastructure. Considering their functional
requirement and importance in serving the community,
it becomes imperative that they remain operational even
after a strong motion earthquake with minimum
damage. 

The major analytical techniques that are popular
for earthquake analysis of such dams are those
developed by Mononobe (1936), Makdisi & Seed
(1977), Gazetas (1982) and finally numerical analysis,
based on Finite Element Method (FEM) as proposed by
Clough & Chopra (1966) to name only the pioneering
few. 

Of all these techniques the first three methods
are analytical in nature, where the dam is considered as
a triangular homogenous shear beam and a solution is
sought, based on its equation of motion in one
dimension under seismic force. Gazetas’s analytical
formulation is usually considered to be most rigorous
(Kramer 1984), while Seed’s method can cater to non-
linear deformation of dam based on hyperbolic stiffness
degradation of soil which is a function of induced strain
level due to vibration (Seed & Idriss, 1971). 

Finite element method (FEM) obviously gives the
most exhaustive solution, but is not without its
limitation. For other than exhaustive data preparation
and input requirement – that makes the analysis
expensive; if proper constitutive model cannot be fitted

into the mathematical model, it can often yield
unrealistic result. In many cases it is difficult to fit an
earth dam problem into a general purpose finite
element software thus necessitating development of
special purpose software which is not always readily
available commercially.  

It is for this, analytical methods as mentioned
above have remained more popular around the world
because of their simplicity in application, though they
suffer from deficiencies in many cases. For instance, all
methods cited above assume the dam to be a perfect
triangle (i.e. crest area is zero) while in reality it is not. As
a matter fact United States Bureau of Reclamation of
small dams suggests an empirical formula for crest
width (Bt) and height H  as Bt= H/5+10(in FPS unit).A
dam always has some finite dimension at crest for
maintenance and inspection. How much this data
affects its dynamic response is not very apparent.  

Both Mononobe (1936), Makdisi & Seed(1877)
gave solution assuming the dynamic shear modulus (G)
constant with depth, while this would hardly be the case
in real field condition. It has been found that G varies
with height (H) of the dam. Gazetas (1982) proposed a
formulation where he considered G to vary with depth (z)
as G (z/H) where  =0,1, 2 etc depicting variation of G
as constant, linear and parabolic with depth
respectively. However, many designers feel this could be
unrealistic, especially for linear and parabolic variation
as because it depicts G = 0 at the crest of dam. 

Finally, none of the analytical methods takes care
of the practical situation of impermeable clay core which
is often deployed in an earth dam of large magnitude to
control the seepage through it. 
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Present paper is thus an attempt to furnish a
solution to number of such deficiencies as cited above
and arrive at a more realistic solution. 

The Proposed Method 

Shown in Figure 1 is a typical triangular shear
beam usually considered for a conventional linear
analysis of a homogeneous earth dam. 
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in which, V = strain energy density;  = Poisson’s
ratio; x,z and xz = strain in the body. 

    Considering u(x,z,t) = Nr(x,z).q(t) we have  
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where, q(t) is exclusively a time function. 

From the above, it can be shown (Hurty &
Rubenstein, 1967) that for a body of height H and
uniform width B, the stiffness and mass matrices can be
expressed as  
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For shear waves propagating in the vertical
direction, it has been shown by Chowdhury & Dasgupta
(2007) that in one dimension, a soil body of depth H and
extending to infinity in horizontal direction, eqns. (6) and
(7) can be expressed as  
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The equation of motion of such dams are usually
expressed as  
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in which, soil properties are: G = dynamic shear
modulus;  = mass density (/g);  = unit weight; and g =
acceleration due to gravity; u = displacement amplitude
of the soil in x-direction. 

For the above type of earth dams, boundary
conditions considered are  

At z = 0, zu  = 0 for all values of t; 

At z = H, u = 0 for all values of t. 

Imposing the above boundary conditions, eqn. (1)
may be written as  

/z H


   n n n n 0 n
n=1

u(z,t)= A sinω t + B cosω t J (β )               (2) 

in which, An = Bn = constants that are functions
of the initial conditions; J0= Bessel’s function of first
kind of order 0; n = a constant having values 1 =
2.404, 2 = 5.52 3 = 8.65 etc. (Jeffrey, 2005). 

    Based on above it may be stated that the
generalized shape function of a triangular shear beam
vibrating under its own inertia can be expressed as  

 0 / j jN J z H   (3) 

 where j =1,2,3,4,…. are the number modes
considered for analysis. 

For a two dimensional plane strain body under
deformation, the shear strain energy (Timoshenko &
Young, 1982) may be expressed as  

For a typical trapezoidal section of an earth dam
shown in Figure 2, eqns. (8) and (9) can be modified
and expressed as 
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Fig. 1 Typical Triangular Shear Beam as  
Considered for Earth Dam 

Fig. 2 A typical Trapezoidal Section of  
an Earth Dam 
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where,  At= cross sectional area of the dam at z = 0 and for 1.0m depth (perpendicular to   the plane of the
paper) is equal to Bt;  is dimensionless constant expressed as ( ) /  b t tB B B ; 

Ni and Nr are expressed in eqn. (3). 

Considering / z H  when z0 0  and when zH, 1 , eqns. (10) and (11) can be expanded and
expressed for the first three modes as  
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where  sV Gg , the shear wave

velocity of soil. 

    Since , one can write   
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Values of C obtained as above, is
compared with other established methods in
Table-1. 

Eqns. (12) and (13) are generalized expression for
stiffness and mass matrices for a trapezoidal dam shown in
Figure 2, having G invariant with depth. Individual elements of
[K] and [M] matrices are obtained by numerical integration of
the respective terms between limits 0-1. 

For the particular case of trapezoidal section is a
triangle i.e. limit At 0  and  , eqns. (12) and (13) can
be expressed as  
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Considering the eigen value problem of the above
(Bathe, 1996) as 
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where  and  are the eigen values and eigen vectors of
matrix [K] and [M] respectively. 

    We have then  
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It is observed that Cbased on proposed
method is in excellent agreement with
established methods for limit At 0 . 

Having established the correctness of
basic condition of derivation for the particular
case of limit At 0 , we present variance of time
period of the dam for various values of 
considering T=2This is given in Table-2The
time period is expressed as Ti = CTi(H/Vs). 

Mode Mononobe Makdisi 
& Seed Gazetas Proposed 

1 2.409 2.4 2.404 2.403 

2 5.521 5.52 5.52 5.52 

3 8.654 8.65 8.654 8.646 

Table 1  Comparison of Cby  
Various Methods 
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It is observed that time periods gets elongated
with increase in crest width though the variation for
fundamental time period( which is most critical) is not
much and is of the order of 9% only (from  to 9).
As such, the proposed method though more realistic,
does not give any significant advantage over the
established methods using triangular homogeneous
sections. However, distinct advantage of the proposed
method will emerge subsequently when we take up the
case of dam with impermeable cores which is more a
reality in field than a homogenous section assumed for
dynamic analysis of such earth dams. 

The first three mode shapes/ eigenvectors for
the dam based on eqn. (3) are shown in Figure 3. 

For solution to this end, that has no established answers, eqn. (12) gets modified to 

   

     

       

1
2 2

1 1 1
0

1 1
2 2

1 2 1 1 1 2 2 1 2
0 0

1 1 1
2 2

1 3 1 1 1 3 2 3 1 2 1 3 3 1 3
0 0 0

1 1 ( ) Symmetrical

1 1 ( ) ( ) (1 ) 1 ( )

(1 ) 1 ( ) ( ) (1 ) 1 ( ) ( ) 1 1 ( )


 



       


     




 

  



 

 

     

              

                       

t

J d

GA
K J J d J d

H

J J d J J d J d









 
 

 (20)  

where =1 and 2 respectively for linear and parabolic variation. 

Based on above variation of CT for linear and parabolic profile for different values of  are as presented in
Table-3.  

Intermediate values can well be linearly interpolated considering the variation of CT with respect to  is almost
linear as shown in Figure 5. 

Effect of Variation of G with Depth  

Gazetas (1982) derived solution of dynamic
response of an earth dam considering G(z)=G(z/H). It is
apparent from above that while it gives a G value
constant with depth (=0), for linear and parabolic
variation it gives G = 0 at the crest of the dam. Since
this will invariably have a finite value we propose to
consider G(z) as  

 ( ) 1 / 


G z G z H  (19) 

The variation of G for this type of curve is shown
in Figure 4. 
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Table 2 Variation of CT  
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Fig. 3 Eigen Vectors for  
First Three Modes for the Dam 

Fig. 4 Proposed Variation of G With Depth
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The stiffness matrix for the dam section can be expressed as         
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in which,  Gc= dynamic shear modulus of clay core and let m = Gc/G the modular ratio of  clay core and outer

material,  Atc is area of inner core at the crest of dam @ 1tcB  . 

Substituting eqn. (3), eqn. (23) can be expanded for the first three modes as, 
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where,  
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
Linear Variation Parabolic Variation 

CT1 CT2 CT3 CT1 CT2 CT3 
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99 2.026 0.934 0.59 1.573 0.763 0.463 

49 2.048 0.943 0.594 1.591 0.776 0.466 

24 2.089 0.959 0.601 1.626 0.785 0.470 

15 2.134 0.975 0.607 1.664 0.798 0.475 

12 2.163 0.984 0.610 1.688 0.806 0.477 

9 2.203 0.996 0.614 1.722 0.816 0.480 
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Fig. 5 Variation of Factor CT1 for  
Linear and Parabolic Distribution of Soil 

Fig. 6 An Earth Dam with Clay Core  
to Restrict the Seepage 

Table 3 Values of CT With Respect to Linear and  
Parabolic Variation of Soil for First Three Modes 

It is again observed here that while the variation
in time period is about 25% for linear variation of G, with
respect to G constant with depth, the variation due to
tapering of the section is of the order of 10% only. 

Effect of Inner Core on Dynamic Response
of the Dam 

No analytical methods exist till date for this case
in terms of dynamic response. It is in such a situation
one resorts to the finite element method (FEM) for a
comprehensive analysis. However, considering the
dynamic response remaining linear, the problem can be
approached as given hereunder.  

Shown in Figure 6 is a typical earth dam with an
internal clay core. Let width of the core at crest be Btc,
and Bbc be the width at bottom. Here suffix c denotes
clay core.  

Maintaining mathematical similarity let us define,  

( ) /  c bc tc tcB B B  (21) 
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Similarly the mass matrix is given by the expression  
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Considering p c the unit weight ratio of core soil and the outer soil, mass matrix coefficients can be
expressed as  
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Once the stiffness and mass matrices are obtained based on above formulation one can follow eqn. (16) for
standard eigen value solution of the problem to derive the time periods and vibration modes.  Stiffness coefficients
derived through eqns. (25) to (30) is based on soil having G constant with depth. However, considering generality of the
solution it is not difficult to incorporate the variation of G with depth. For instance if we have a case where the outer
shell has a soil that varies linearly with depth while inner core has stiff clay whose dynamic shear modulus is constant
with depth the stiffness matrix gets modified as follows.  
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and so on. 
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It is apparent from above that where established
methods do not provide an answer to this problem in
terms of propagation of waves through a homogeneous
shear beam of varying cross section, the proposed
method comes up with a rational solution of this
practical problem. 

Estimation of Dynamic Amplitude and Stress 

For a body subjected to earthquake force,
maximum amplitude is expressed as (Clough & Penzien,
1982) 

2/ d aS S    (39) 

In terms of provision as furnished in IS code, eqn.
(39) can be finally expressed as  

22
   
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ai
di i

ZI S
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R
    (40) 

where,  Z = zone factor; I = importance factor; R=
ductility factor  and, I = modal mass participation factor

usually expressed as 2

1 1

n n

i i i i
i i

m m 
 
  . 

It is to be noted that IS 1893(2002) [draft code
for earthen dam] does not have any provision for R the
ductility factor in terms of earthen dam , though it
implicitly assumes a value of R=1.5 in a semi empirical
approach proposed there in. However, it has been
shown by (Chowdhury & Dasgupta 2007) that R=2 to 3
will mostly give a reasonable result. Surely, more
research is needed to define this value with more clarity
for earth dams. 

The modal mass participation factor based on
above formulation can be expressed in this case as  
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It is observed here that instead of a unique value
as expressed by Makdisi & Seed (1977) modal
participation factor is a function of the top and bottom
width in terms of . Different values of i with respect to
are furnished hereafter in Table- 4. 

It will be observed from the table that modal
participation factor varies significantly especially for the
second mode with respect to the top and bottom width
of the dam. The value of i as obtained for  
matches exactly the value as proposed by Makdisi &
Seed (1977). 

The displacement of the dam over the height H
can be thus expressed as  
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Substituting 2 ,  T  eqn. (42) after some
simplification, can be expressed as 
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    The shear strain is expressed as  
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    The shear stress that varies along the depth is
finally expressed as  
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Earthquake Stability and Estimation of Lateral 
Seismic Coefficient (h) 

Estimation of lateral stability of earthen dams
under earthquake is still marred by some uncertainties,
and a number of theories have been proposed e.g.  

> Slip Circle analysis based on pseudo static 
method. 

> Sliding block method  

> Dynamic finite element analysis. 

Of all the above methods, slip circle method
based on pseudo static analysis is most popular though
it has been shown that the method can at times gives
unsatisfactory results. Terzaghi (1950) who first
proposed it for stability of embankments under
earthquake conceded the method to be crude, while
Seed (1979) showed a number of dams in USA that had
undergone failure in earthquake, had a factor of safety
(FOS) greater than 1.0 based on pseudo static analysis. 

Newmark (1965) proposed a sliding block
technique, though found to be theoretically sound,
essentially requires time history response of a site which
is always not available. Moreover the movement of
failed mass as a rigid block may not be always realistic
when the soil is not reasonably stiff. 

Dynamic finite element analysis (Chopra &

   

  1.602 -1.065 0.851 

99 1.591 -1.00 0.85 

49 1.581 -0.94 0.849 

24 1.562 -0.827 0.847 

15 1.543 -0.718 0.845 

12 1.532 -0.655 0.844 

9 1.515 -0.561 0.843 

 

Table 4 Variation of 
Modal Participation Factor I with 
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 Clough 1966, Duncan 1992) though gives the most
comprehensive result, requires significant engineering
effort and very careful evaluation of in-situ soil
parameters of dam which is surely an expensive
exercise and can possibly be justified only for very large
dam of utmost importance. 

Thus, in-spite of its limitation, pseudo static
analysis based on slip circle method because of its
simplicity in application continues to be the most
popular method in practice where the earthquake force
is simulated by an equivalent lateral seismic coefficient
h (Figure 2). 

One major difficulty and limitation that arises in
estimation of h for dams is that unlike a normal
structure, where the lateral seismic coefficient can be
considered as constant over the height of a structure,
an earth dam is a far more flexible system and as such
h varies with height. Hence in many cases what would
be the effective lateral seismic coefficient becomes a
matter of judgment.  

As per IS-1893(2002) [draft code for earthen
dam], for instance, h is expressed by an empirical
formula of 

1
3

   h Z I S   (46) 

where Z and I are as explained earlier and S is
soil factor that varies from max 2.0 for soft soil to 1.0
minimum. 

Based on Figure 7, eqn. (48) can be expressed
as  
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           or, 
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where i =1,2,3,….is the number of modes. 

It is evident from eqn. (50) that h is a function of
the depth z and shape function as described in eqn. (3). 

Now let as assume that this lateral seismic
coefficient is effective over the whole cross section of
dam.  

Thus over full height H of the dam, combining
eqns. (50) and (11), we have 
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where  
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Thus average lateral seismic coefficient over the full 
height of the dam can be expressed as 
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       (53) 

The peak horizontal ground acceleration (PHGA)

is considered as SIZa max , while the net lateral
force due to earthquake is given by 

1
3

    F Z I S W   (47) 

It is obvious that irrespective of the time period
of the dam this value remains constant for a particular
zone( II, III, IV etc) though it is well known that how much
acceleration a body is subjected to is dependent on time
periods of the body in different modes. 

Since value of h proposed is empirical in nature,
there could be cases when response could be
overestimated and vice versa and matching with above
mentioned codal provision vide Equation (47) can just
be a coincidence. 

Based on the proposed dynamic theory, lateral
coefficient h can be estimated as mentioned hereafter.
Typical slope failure profile of an earth dam, based on
wedge theory, is shown in Figure 7.  

Following Makdisi & Seed (1977), the total
horizontal force acting on this wedge is expressed as 

( , ) Mass of triangular wedge   avF z t u     (48) 

were  avu   average acceleration over the dam height. 
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Fig.7 Assumed Failure Profile of an Earth Dam 
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It may be observed that hi obtained using eqn.
(53) as expected is a dimensionless quantity. 

    Eqn. (53) can be further simplified to 

iCoeff
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where, Coeffi 
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Stability Analysis of Dam 

    As mentioned earlier the most popular method
for stability analysis of dams under static load is based
on slip circle methods like Swedish slip circle method,
Bishops simplified analysis, etc. That soil fails along an
arc was observed in a number of land slides in Alps from
where Fellenius (1936) originally developed the method.
In spite of its sound scientific background it has been
observed to overestimate FOS under an actual
earthquake Seed( 1979). One of the possible reasons
for this could be that for a homogenous isotropic
medium under transient dynamic load the failure
surface could be different from a circular arc as
assumed under static load. 

    Without going into detailed discussion, it can
be argued that under a transient shock if a body fails,
the failure profile would follow the path of least
resistance. Since resisting force within soil body is
developed by friction and cohesion in a particular plane
it is apparent that for least resistance this surface
should be a minimum. In other words it should be a
straight line rather than a circular arc. Failure of dams
along a straight line path is not uncommon and
Whitman & Lambe (1979) points out that a number of
dams resting on firm ground have been observed to
undergo failure along a straight line even under static
loads. Since most of the earthen dams are built on
relatively firm ground it would thus not be illogical to
assume a straight line failure profile of a dam surface
under an earthquake. Finally under earthquake a
number of frames which are essentially treated as shear

Values of the coefficient in eqn. (55) for various
values of  are furnished in Table-5. 

    The design lateral coefficient based on eqn.
(54) can finally be considered for first three modes as 

2 2 2
1 2 3hr h h h       (56) 

frames the infill panels have been observed to undergo
cracks that follow a straight line rather than a circular
arc (Agarwal & Shrikhande 2004). Similarly deep beams
and squat shear walls (where shear strain energy
dominates) failing under earthquake has been observed
to follow more or less a straight line (Park & Pauley
1980). 

Based on above logic we propose to evaluate the
dynamic stability of the dam as mentioned hereunder.  

Shown in Figure 8 is an earth dam subjected to
lateral earthquake force. It is evident that we can draw
infinite number of planes having an angle  that can
vary from 0 to angle (the slope of the dam) through
which the dam can potentially slide. Among all these
planes there exists one unique plane at an angle 
which is the weakest and has the maximum probability
of failure along that plane. In other words FOS against
failure on this plane is a minimum. 



G constant with depth 
Modes 

G linear with depth 
Modes 

G parabolic with depth 
Modes 

1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 

  1.11 0.14 0.05 0.65 0.09 0.03 0.39 0.06 0.02 

99 1.13 0.14 0.05 0.66 0.09 0.03 0.40 0.06 0.02 

49 1.14 0.14 0.05 0.68 0.09 0.03 0.41 0.06 0.02 

24 1.18 0.14 0.06 0.70 0.09 0.04 0.42 0.06 0.02 

15 1.21 0.14 0.07 0.72 0.09 0.04 0.44 0.06 0.03 

9 1.26 0.14 0.08 0.74 0.09 0.05 0.45 0.06 0.03 

                                                  Bt                     X  

                                                 Z                                                       H  
                              hW 
                                                 W 
                          

                                                   Bb 

Table 5 Values of Seismic Coefficient (coeffi) for Different Values of , for the First Three Modes 
 

Fig. 8 An Earth Dam with Various Failure Planes
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 Shown in Figure 9 is an earth dam section where
the critical failure profile plane is at an angle with the
horizontal. 

Based on geometry it can then be shown that
area of triangle PQR ( is given by 

21 sin sin
2 sin( )bB

 
 

 


 (57) 

Thus weight of the dam above failure plane PQ
can be expressed as  

  2 sin sin
2 sin( )cr b t bW B B H B
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 

    
  (58) 

Weight Wcr is then expected to slide down the
plane PQ which is the critical plane of failure. 

As shown in Figure 10, the weight Wcr slides
down a critical plane at an angle  with horizontal.  

The resistive force R may be expressed as  

R N c PQ     (59) 

where,  = Angle of internal friction of soil usually
expressed as tan c = cohesion of soil, and PQ= length

of the failure plane = bB sin / sin( )     . 

From free body diagram one can write 

(cos sin )cr hN W       (60) 

The force which drives the body down, is given
by,  (sin cos )D cr hF W     . 

The resisting force is thus given by 
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The factor of safety (FOS) is then expressed as  
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  (62) 

where Wcr is the weight expressed by eqn. (58). 

To determine minimum factor of safety (FOS) one
can now vary  from 0 to  at an increment of ,say, 1
degree and evaluate the plane which is critical and FOS
is minimum. 

through Finite Element Analysis showed vertical
acceleration affects seismic response of earth dams.
Ling & Mohri (1997) did an extensive study of this effect
on earth dams and strongly advocates its consideration
for estimating the stability. As per IS-1893 (2002), v is
usually considered as 0.5 of h. This can then be
incorporated in eqn. (62) as follows 
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 (63) 

Effect of Vertical Seismic Coefficient v on FOS 

Normal perception is that vertical component of
an earthquake has no effect on overall stability of dam.
Though Mononobe (1924) showed that, a combination
of horizontal and vertical acceleration led to severe
damage in earth retaining structures in Kanto
earthquake in Japan as early as 1920. Chopra (1966)

Stability of Dam with Impermeable Core  

Stability of dam including the impermeable core
induces significant computational difficulties. Firstly due
to heterogeneity of the medium, shear stress changes
between outer and inner shell material. Moreover, as
there is a significant variation in stiffness between the
outer and inner core material, distribution of forces
between the two parts also varies. Usual practice is to
use FEM for estimation of stability, where uncertainties
prevail for if the meshing of the soil material is not
sufficiently refined can provide upper bound results. 

The problem is approached as given hereafter. 

Normally the core constitute of stiff compacted
silty clay/clayey silt (little friction is preferable for it
significantly enhances shear strength with depth along
with cohesion c) having minimum void ratio to reduce
seepage. From strength point of view also they are
usually stiffer than the outer shell material by about 3 to
4 times. Thus, if one looks at the overall response of the
heterogeneous earth dam under earthquake, it can be
concluded that the system acts analogous to a shear
wall framed structure where the inner core acts as a stiff
shear wall  and outer shell acts like a connected frame. 

                                                Bt                           X  
                                                                     Q 
                                                                     
  
                                             Z                                                         H  
                                                               hW 
                                                   W 

   P                                                                      S                                R 
                                                       
                                                        Bb 

         

          hWcr 

                                                                                       R 

                                                             

                                   Wcr                                    
                      N
      P 

Q 

R 

Fig. 9 A Typical Trapezoidal Section of an  
Earth Dam with its Failure Plane 

Fig. 10 Sliding of Weight Wcr  
along a Sloped Surface 
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In other words distribution of the lateral force
among outer and inner shell material is dependent on
the relative stiffness of these two materials.  

For a homogeneous isotropic body of area A and
height H, static stiffness of soil is simply expressed as  

/stK GA H    (64) 

For earth dam with variable cross section having
clay core eqn. (64) can be expressed as  
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On simplification, eqn. (65) can be expressed as  
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      (66) 

where m=Gc/G and rc = Atc/At. 

The stiffness of the inner core may be expressed
as  
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  (67) 

    Thus, if hW is the total force on the dam,
force resisted by inner core is given by  

 c
hc h

st

K
F W

K


    

 
 

1
2

1 1 1
2 2

c
c

hc h
c

c

mr
F W

m r




 

    
   

         

   (68) 

     hc hcF W   where 

 

1
2

1 1 1
2 2

c
c

hc h
c

c

mr

m r



 
 

    
  

         

   (69) 

Proceeding in identical manner it can be shown
that the force induced in outer shell can be expressed
as 
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    Eqn. (70) can be rewritten as  

            hS hsF W   

where,  
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    Here the term ½ comes because of the fact
that outer shell constitutes of two parts, and as such the
total force on outer shell is thus divided equally into two
sections (provided of course the outer shell is symmetric
to the core). 

Based on time period obtained from eqns. (24)
and (31), the seismic lateral force coefficient h is
obtained using eqn. (56). 

For a composite dam the total weight W is
expressed as  

 W=  1 1 1
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c
t cA H r p
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   (72) 

For calculation of FOS let us consider Figure 11. 

It is evident that there can be two failures within
the dam section: 

1) Slope failure of the outer shell at a critical
angle the PQ plane. 

2) Shearing off of the inner core due to the force
Fhc , vide eqn. (68). 

Proceeding in the same line as explained earlier
if  be the critical plane at which the FOS is minimum,  

Based on Figure 11, the weight of soil, Wb below
the critical PQ plane is expressed as  
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The gross weight of one outer shell is given by 
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H
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Fig. 11 Lateral Seismic Force on an Earth Dam  
with Clay Core to Restrict the Seepage 
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where Bbs=0.5(Bb-Bbc) and Bts=0.5(Bt-Btc) 

Subtracting eqn. (73) from eqn. (74), we get the
critical weight Wcr that slides along plane PQ. 

The factor of safety for outer shell is now
expressed as  
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  (75) 

where ’hs is as expressed by eqn. (71) and ’v is
0.5 times ’hs. 

To arrive at minimum FOS we now vary  from 0
to  at some predefined increment of say 1 degree to
obtain the minimum value. 

For inner core, force Fhc as per eqn. (68) basically
acts as the base shear like in a continuous shear wall.
Then, this can be distributed over full height of the dam
as  

2
i i

i hc
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where  

Wi= Weight of core at a particular depth hi given

by  1(1 )i
c t i i

c

z
A z z

H
    ;  Qi= Nodal force at depth hi. 

Summing up of all these nodal forces Qi up to a
particular depth hi gives the shear force acting at that
particular level. Thus, 

on a vertical surface for a fluid medium extending to
infinity can be expressed as  
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in which,  Hw= vertical height of water in dam;
Saw= acceleration corresponding to free field time period
of the water expressed as 4Hw/vw; vw = velocity of sound
in water @ 1149 m/sec, and w= unit weight of water. 

    Thus for a surface at an inclination  the pressure 
normal (pn) to the surface can be expressed as    
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Thus the suction force Vw which reduces the
normal force N is given by 
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The factor of safety against stability considering
the suction effect of hydrodynamic pressure can then be
expressed as 
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 (82) 

For clay core dam replace v and h by sv   and

sh   respectively and shall affect the outer shell

material only. 
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The shear stress developed at any section is
given by  
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where cc zc  tan is the allowable shear
stress at a particular depth z from crest and c is
cohesion of soil in core and c is its internal angle of
friction. 

Effect of Hydrodynamic Pressure on Stability  

Hydrodynamic pressure on the dam will be most
critical when it creates a suction pressure on sloped
surface. 

It has been shown by Chowdhury & Dasgupta
(2008) that hydrodynamic pressure due to earthquake

Results and Discussions 

To compare the results, typical data of a dam
shown in Figure 12 is considered. 
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Fig. 12 Basic Dimension of Earth Dam 
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The dam is analyzed for two cases, visavis.  

1) Homogeneous section having vs =125 m/sec
=32o, c= 50 kN/m2, unit weight = 20 kN/m3, height
of water = 40m. 

2) The same dam with a silty-clay core (shown by
dotted line) the core having width at crest of 4.0 meter
and width at base of 65m having unit weight of c=21
kN/m3 and shear wave velocity of 220 m/sec, c=85
kN/m2 and c=12o.  

Maximum height of water in the reservoir = 40m.  

The dam is in Zone IV as per IS-1893 (2002)
having importance factor I as 2.0 and R is taken as 2.0
for this case. 

Comparison of time periods (in seconds) is
shown below: 

The modal response is found to be quite high
though within acceptable limit. Here it is observed that
stiffening effect of impermeable core induces more
acceleration and also induces a higher displacement in
fundamental mode though the SRSS values are almost
same. 

The lateral seismic coefficient for the dam is
given hereunder. 

Following the same trend as expressed earlier,
the lateral seismic coefficient for the heterogeneous
dam is higher- this reflects the importance of
considering the heterogeneous effect rather than
ignoring it – as is the practice- as of now. It may however
be noted that the values were obtained based on
damping value D = 5% for all cases .For clay core with
high plasticity damping is usually high thus considering
7% damping for the homogeneous dam and 10% for the
dam with clay core value of h will come to 0.16 and
0.20 respectively. 

Force transmitted to outer and inner shell based
on stiffness distribution is outlined below: 

Mode IS-1893 
(1984) Mononobe Seed & 

Makdisi Gazetas Proposed 
Bt=0.0 

Proposed 
Bt=10.0 

With clay 
core 

1 1.044 1.044 1.046 1.046 1.046 1.085 0.783 

2 - 0.455 0.455 0.455 0.455 0.471 0.338 

3 - 0.291 0.300 0.290 0.300 0.299 0.214 

It is observed that by proposed method time
periods are in excellent agreement with other
established methods for Bt = 0. However top width
having finite dimension (Bt=10.0m) elongates the time
period by about 4% for the fundamental mode- which
would be most critical. The clay core being much stiffer
than the outer shell has an overall stiffening effect on
the dam response when time period gets reduced by
25% than established expression- this is logical. 

Accelerations induced in different modes in dam
in terms of g is given hereunder. 

Mode Sa( homogeneous 
dam) proposed 

Sa with clay 
core(proposed) 

Sa as per IS-
1893(2002) 

1 0.15g 0.21g 0.19g 

2 0.30g 0.30g NA 

3 0.30g 0.30g NA 

Acceleration induced for first three modes by
proposed method is as shown above, it is evident that
depending on time period value the acceleration varies-
unlike recommendation of IS code that suggests a
constant value. Here it is again observed that the clay
core stiffening the overall response- attracts more
acceleration than a homogeneous dam. 

Modal displacement of dam crest is given below: 

Mode u(mm): 
homogeneous dam 

u(mm): 
with clay core 

1 675 683 

2 -135 -98 

3 55 40 

SRSS value 690 692 

Dam type h 

Homogeneous section 0.183 

With clay Core 0.250 

As per IS code 0.190 

Dam section Lateral Seismic coeff(h) Force(kN) 

Outer core  0.053 7268 

Inner Core 0.118 16228 

 The minimum factor of safety of dam under
various load combinations is given below: 

Load Case 
FOS 

(Reservoir 
full) 

FOS 
(Reservoir empty) 

Under Static load - 3.47** 

Under Earthquake-  
Homogenous Dam 1.60 2.01 

Under earthquake-  
with clay core 1.71 1.97 

Variation of shear stress in the internal core is
given in Figure 13. 
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Conclusions 

Based on above, it can be concluded that the
present paper proposes a formulation that is more
generic than the established methods for dynamic
analysis of earth dams based on modal response
technique. The proposed method can well cater to the
dynamic response of  

> Homogeneous section with finite crest width. 

> Variation in soil property along the depth of the 
dam. 

> Heterogeneous section with impermeable clay 
core. 

> A rational formulation of lateral seismic 
coefficient h 

The paper also proposes a modified method for
stability analysis of dam that tries to combine the
pseudo static slip circle method and sliding block
technique to arrive at a rational FOS under earthquake.
The technique for evaluation FOS for clay cored dam
based on distribution of their static stiffness is novel but
have a logical basis.  

The analysis being analytical in nature does not
require sophisticated software, a   simple spread sheet
or a MATHCAD shell would suffice for the same. 

Effect of stiffness degradation due to large strain
and dynamic pore pressure due to transient shock could
further enhance this study. 

Notations 

The following symbols are used in this paper: 

An = integration constant which is a function of
time 

At = area of dam at crest 

Atc = area of clay core at crest 

Bb = base width of dam 

Bbc = width of core at base 

Bn = integration constant which is a function of
time 

Btc = width of core at crest 

Bt = width of crest 

C = coefficient to determine natural frequency
of dam 

CT = coefficient to determine time period of
dam 

c = cohesion of soil 

F = lateral seismic force 

FD = driving force along critical plane 

Fhc = lateral seismic force on clay core 

Fhs = lateral seismic force on outer shell 

FR = resistive force along critical plane 

G = dynamic shear modulus of soil 

Gc = dynamic shear modulus of core material 

g = acceleration due to gravity 

H = height of dam 

Hw = height of water in the reservoir 

i = mode number i= 1,2,3,…. 

I = importance factor as per IS code 

j  = mode number 1,2,3,… 

J0 = Bessel’s function of first kind of order 0 

J1 = first derivative of Bessel’s function J0 

Kir = stiffness matrix of dam 

Kst = static stiffness of dam with clay core 

Kc = static stiffness of clay core 

m = modular ratio Gc/G 

mij = modal mass coefficient 

Mir = mass matrix of dam 

N = normal reaction on the critical plane of
failure 

Ni, Nr = modal shape functions 

P = ratio of core and outer shell weight
density 

p  = hydrodynamic pressure  

pn = normal hydrodynamic pressure of dam
slope. 

Qi = modal shear force 

q(t) = generalized time function 

rc = ratio of core area at top to crest area at
top 

R = response reduction factor as per IS code 

Fig. 13 Variation of Shear Stress in Inner Core  
for the Dam with C= 85 kN/m2 and C=12o 
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Sai = modal spectral acceleration 

Saw = spectral acceleration of free field water  

Sdi = modal displacement 

T = time period of dam 

t  = time 

u = displacement amplitude of dam 

avu   = average seismic acceleration 

V = strain energy density 

Vs = shear wave velocity 

Vw = force due to hydrodynamic pressure 

vw =velocity of sound in water 

Wcr = critical weight of soil mass above the
failure plane 

X = co-ordinate axes in horizontal direction 

Z = zone factor as per IS code 

z = co-ordinate axes in vertical direction 

  = a parameter defining variation of dynamic
modulus of soil with depth 

   = angle of inclination of the dam slope with
horizontal axes 

h  = lateral seismic coefficient 

V   = vertical seismic coefficient 

hc  = lateral seismic coefficient for clay core 

hs   = lateral seismic coefficient for outer shell
material 

n  = constants of Bessel’s function J0 

  = angle of inclination of clay core with
horizontal axes 

   = area of the triangular wedge of failure 

x z xz, ,    = strain in soil medium 

  = angle of internal friction of soil 

c   = angle of internal friction of clay core 

  = eigen vector of the dynamic system 

  = unit weight of soil 

c  = weight density of core material 

w  = weight density of water 

i  = modal mass participation factor 

  = eigen value of the system 

  = coefficient of friction for soil mass 

  = Poisson’s ratio of soil 

   = critical angle of failure 

  = mass density of soil 

xz  = dynamic shear stress induced in soil 

  = natural frequency of dam 

   = dimensionless parameter z/H 

  = dimensionless variable Bb-Bt/Bt 

c  = dimensionless variable Bbc-Btc/Btc. 
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