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Dynamic Analysis of Piles under Rocking Motion 

Indrajit Chowdhury* and Shambhu. P. Dasgupta** 

Introduction 

ibration of piles under rocking/rotational mode coupled with lateral translation 
is a typical characteristic of piles supporting rotating machines and piles 
under earthquake forces. In many cases it has been found that this coupled 

motion is the critical and often governs design.  

Researchers namely, Parmelee et al. (1964), Tajimi (1966), Penzien (1970), 
Novak (1974), Novak and El-Sharnouby (1983), Bannerjee and Sen (1987), Dobry 
and Gazetas (1988), have provided solution to this problem. 

Of these solutions, Novak’s method is very popular for its simplicity, though 
the method does not address a number of issues and has a few limitations, namely, 

> The values are given for Poisson’s ratio of 0.25 and 0.40 only. Thus for any 
intermediate values and values beyond 0.4 another set of interpolation/ 
extrapolation is necessary. 

> Novak and El-Sharnouby (1983) have given stiffness and damping 
coefficients for soil having parabolic variation but in many cases the 
variation is linear.  

> It does not address the case of partially embedded piles, which is of great 
practical importance for piles driven in Arctic condition (especially in 
Northern Siberia-which constitute of a large number of Oil and Natural Gas 
facilities). 

> The dynamic bending moment and shear force induced on pile cannot be 
evaluated- for which the common practice is to restrict the moments and 
shears to 50% of its design capacity– which in many cases could be very 
conservative. 

> The formulation is valid for long piles only (i.e. the failure takes place in pile 
before soil yields), it does not cater to the case when the pile is short, where 
the failure takes place by yielding of the soil prior to the structural failure of 
the pile. 
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Again, the formulas given by Dobry and Gazetas (1988), based on more 
rigorous analysis, are also popular. However, they do not address the issues of 
partial embedment, dynamic bending moments and shear or the case if the pile is 
short. 

The Analytical Solution 

The analytical solution of the present paper takes into the cognizance of 
many of the limitations listed above and also arrives at a formulation which makes 
the design procedure chart/coefficient independent and thus easily amenable to 
analysis based on a simple spread-sheet. The method is an extension of the 
method proposed earlier by Chowdhury and Dasgupta (2006, 2008).                                          

The present formulation is based Beredugo and Novak’s (1972) method of 
solution for a rigid cylinder embedded in an elastic half space. 

Shown in Figure 1 is a pile embedded in the ground consisting of a 
homogeneous elastic medium under plane strain condition. Also, it was assumed 
that the equation of beams on elastic foundation is applicable. The pile considered 
is long and slender.  

 

 

 

 

 

 

 

 

 

Under static loading, the equation of equilibrium in the x-direction for such a 
beam on elastic foundation is given by  

4

p p s4

d u
E I -k u

dz
            (1) 

where Ep = Young’s modulus of the pile; Ip = moment of inertia of the pile cross 
section; ks = elastic stiffness of the soil and is expressed as Gs S; Gs = dynamic 
shear modulus of the soil. 

For a long pile under load or moment at its head, the deflection equation 
[solution of eqn. (1)] can be written as  

-pz
0 1u e (C cospz C sinpz)                 (2) 

Fig. 1 Conceptual Model of Pile 
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in which 4
s θ1 p pp = G S /(E I ) ; S1= Beredugo’s constant which is basically 

frequency dependent and it was shown by Beredugo and Novak (1972) that S1 can 
be taken as frequency independent for practical design problems and the analysis 
becomes quite simplified for rigid circular embedded footing. 

Considering the pile head undergoing specified deflection and rotation as 
well as its head is fixed to the pile cap (same boundary condition considered by 
Novak, 1974), and using conditions, at z = 0 , u = u0 and 0du/dz = θ , eqn. (2) may 

be rewritten as 

  
    

  
-pz 0 0 0u uu

e cospz sinpz
L L L qL

                                (3) 

where L = length of the pile. 

For small rotation 0 0θ u /L  and θ u/L  , eqn. (3) may be written as 

 
 
 
 

-pz
0

1
= e ( pz + 1+ pz)

pL
cos sin     (4)        

Using β = pL  in eqn. (4), the shape function in dimensionless form for any 
arbitrary loading can be written as  

-

( ) cos sin
    

z

L z z
z e

L L

                           (5)       

where
4

14 s

p p

G S L

E I
 ; and 


1

= 1+ .       

Thus the shape function for rotational mode remains invariant with respect 
to the lateral motion of pile for the given boundary condition. 

Differentiating eqn. (5) with respect to z, one can write  

   
       
 

- z

L
z z

(z) = e -1 cos - 1+ sin
L L L

        (6) 

The shape function of the pile in the fundamental mode is shown in Figure 2 

The potential energy d of an element of depth dz, shown in Figure1, under 
rotational mode is then given by (Craig, 1988)  

2
2

2 2

   
 

p p qE I Kdq
dP q

dz
        (7) 
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where, Ep = Young’s modulus of pile; Ip= moment of inertia of pile; K= rotational   
stiffness of soil having units of kN/m;  = rotation of pile in the x-z plane and about 
horizontal axis and may be written as (z) q(t). 

 

 

 

 

 

 

 

 

 

For a rigid circular embedded footing with embedment Df, the stiffness of the 
footing in the rotational mode may be expressed (Beredugo and Novak, 1972) as  

2
3 s f f

b 0 1 θ1 u12
b 0 0

G D D
K = G r C + S + S

G r 3r
 

  
      

      (8) 

where,  K = foundation stiffness in horizontal direction; Gs = dynamic shear 
modulus of the soil along foundation surface; Gb = dynamic shear modulus of the 
soil at foundation base; r0 = radius of the foundation; C S, and Su1 =  Berdugo’s 
constants which are basically frequency dependent.  

Ignoring the first term in eqn. (8) which represents the contribution of base 
resistance, and substituting the same in eqn.(7), for a cylindrical element of depth 
dz, embedded in soil, and also ignoring the term containing dz2 which is again 
exceedingly small, the potential energy dΠ  may be written as 

 
2 2

p p 2s 0 θ1
E I d G r S dz

d = +
2 dz 2

  
  

    (9) 

The total potential energy over the whole length of the pile (L) is then given 
by 

2L L2
p p 2s 0 1

0 0

E I d G r S
= dz + dz

2 dz 2
  

               (10) 

Considering (z,t)=(z)q(t), the rotational stiffness matrix may be written 
(Hurty and Rubenstein, 1967) as 

Fig. 2 Shape Function for the Pile for Ep/Gs =5000 
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L L
2

ij p p i j s 0 θ1

0 0

K = E I (z) (z)dz + G r S (z) (z)dz                (11)          

where the shape function of the problem is given by  eqn. (5). 

For the fundamental mode, the rotational stiffness of the pile may be 
obtained as 

L L
2 2 2

p p s 0 1
0 0

K = E I (z) dz + G r S (z) dz                 (12)                          

where '(z) is as expressed in eqn. ( 6), and squaring the derivative,  

2 z2 -2 L
2

2 z 2 z
(z) = e X - 2 cos + Ysin

L L L

      
 

  (13) 

where  2X =1+ ; 2Y =1- .   

Again squaring eqn. (5) one can have 

2 z
-2 L

X Y 2 z 2 z
(z) = e + cos + sin

2 2 L L

    
 
 

   (14) 

Substituting eqns. (13) and (14), eqn. (12), reduces to  

2 L 2 z
-p p L

θ 2
0

L 2 z
-2 L

s 0 1

0

E I 2 z 2 z
K = e X - 2 cos + Ysin dz

L L L

X Y 2 z 2 z
+ G r S e + cos + sin dz

2 2 L L







  

 

 
 
 

 
 
 




     (15) 

Integrating eqn. (15) and after simplification, it may be expressed as 
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2
s 0 1

-2
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1- e e sin2 - cos2 1

2 2 2 4
G r S

L
1- e sin2 cos2
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   (16) 

In eqn. (16), the values of e-2(sin2+cos2) and e(sin2-cos2) are 
ignored as they are exceedingly small and this also considerably simplifies the 
expression. Based on the above, simplified form may be written as  
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     (17) 

and   
2

s 1
2

p

4G S

E



 

   (17a) 

where =L/r0, the slenderness ratio of the pile and these are dimensionless 
quantities.                 

The accuracy of eqn. (17) will depend on the correct selection of S1. For 
instance, for a rigid circular footing, Beredugo and Novak (1972) have furnished a 
frequency independent value of S1= 2.5(for any value Poisson’s ratio) which has 
been found to give adequate accuracy for practical engineering design. 

Comparing the stiffness data with Novak (1974) and Dobry and Gazetas 
(1988), it is proposed that following values of S1, given in Table-1 through Table-3, 
may be used for the calculation of dynamic response of pile under rocking mode.  

Table-1  Suggested Value of S1 for Poisson’s Ratio of Soil =0.25 

Poisson’s 
Ratio 

L/r0 

(Slenderness 
Ratio) 

S1(250) S1(500) S1(1000) S1(2500) S1(5000) S1(10000) 

 25 16.968 23.089 30.776 43.412 54.647 66.877 

 40 17.358 23.656 31.586 44.678 56.390 69.253 

0.25 60 17.567 23.961 32.016 45.333 57.272 70.418 

 80 17.674 24.110 32.225 45.648 57.688 70.958 

 100 17.736 24.199 32.348 45.833 57.930 71.267 

Note- The value in Parenthesis after S1 depicts the value of Ep/Gs value of the soil 

Table-2  Suggested Value of S1 for Poisson’s Ratio of Soil =0.40 

Poisson’s 
Ratio 

L/r0 
(Slenderness 

Ratio) 
S1(250) S1(500) S1(1000) S1(2500) S1(5000) S1(10000) 

 25 18.037 24.623 32.937 46.707 59.054 72.614 

 40 18.448 25.221 33.794 48.05 60.909 75.145 

0.40 60 18.671 25.543 34.249 48.748 61.851 76.393 

 80 18.781 25.702 34.471 49.084 62.298 76.974 

 100 18.847 25.795 34.603 49.281 62.557 77.307 

Note- The value in Parenthesis after S1 depicts the value of Ep/Gs value of the soil 
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Table-3  Suggested Value of S1 for Poisson’s Ratio of Soil =0.50 

Poisson’s 
Ratio 

L/r0 

(Slenderness 
Ratio) 

S1(250) S1(500) S1(1000) S1(2500) S1(5000) S1(10000)

 25 18.717 25.599 34.316 48.817 61.888 76.316 

 40 19.141 26.217 35.202 50.21 63.813 78.946 

0.50 60 19.37 26.55 35.674 50.936 64.794 80.247 

 80 19.484 26.714 35.905 51.285 65.259 80.853 

 100 19.552 26.811 36.041 51.49 65.531 81.203 

Note:- The value in Parenthesis after S1 depicts the value of Ep/Gs value of the soil 

For a particular pile having specific slenderness ratio and Poisson’s ratio of 
the soil, the value of S1 may be selected from the above table and on substitution 
of the same in eqns. (3) and (17) gives the solution of pile stiffness in rocking 
mode. 

Estimation of Mass Contribution of Pile 

The mass matrix of the pile may be expressed as (Meirovitch, 1967) 

z i jM = m(z) (z) (z)dz      (18) 

 For the pile of length L, eqn. (18) can be expressed as 

p p 2
z

A
M = (z) dz

g


   (18a) 

where, m(z) = mass per unit length of the pile  p pA ; i j(z), (z)   are the shape 

function of the pile for different modes. For the fundamental mode i(z)  j(z)   

(z) , where (z) is as expressed in eqn (5) 

For the present case of pile of length L, mass moment of inertia Jx is given 
by 

L 2
2z 0

x

0

M r
J = + z dz

L 4

 
 
 
                 (19)  

Substituting eqn. (18) one may now write 

22 2L L
p p 0 p p2 2

x

0 0

A r A L z
J = j(z) dz + j(z) dz

4g g L

   
 
     (20)   

where p = unit weight of the pile material; Ap= cross sectional area of pile;              
g = acceleration due to gravity. 
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Substituting the values of (z) of eqn. (5) and after some simplification,        
Jx reduces to  

   


 


 
 
 

2
p p 0

x

A r L Y
J = XF( )+ +

16 g 2
                                                (21)      

in which
2

-2 2 -2
2 2

1 2
e - 4 e 2 -F( ) = 1-   

  

        
     

; Y is given in eqn. (13) and   

= L/r0, the slenderness ratio of the pile. F()is a function of the slenderness ratio 
of the pile. 

Eqn. (21) gives the inertial contribution of pile in the fundamental mode. 
Incidentally the inertial effect is usually ignored in design but could have significant 
effect if the number of pile is large in a pile group. 

Radiation Damping for Pile under Rocking Mode 

The damping of the pile embedded in soil will constitute of two parts: 
Material damping of the pile itself; and, radiation damping of the soil. It is obvious 
that the material damping of the pile will be much lower than that of the soil 
radiation damping. As the first step for calculating the soil damping one may ignore 
the material damping of the pile for the time being.  

Material damping of soil is also a part of the vibration system. There is not 
much reliable data on this regard and could be obtained either based on laboratory 
test, else it may also be obtained for soils based on the results of Hardin (1991).  

For a rigid footing embedded in soil for a depth Df, Beredugo and Novak 
(1972) proposed an expression 

2
4

0 2 2 22
0 03

  
  
        

s f f
s x

b

G D D
C r G C S S

G r r
                         (22) 

where, r0 = radius of the foundation; Gb = dynamic shear modulus at foundation 
base; Gs = dynamic shear modulus of soil in which the foundation is embedded;    
Df = depth of embedment; θ2 θ2 x2C  , S  and S =  frequency independent.  

Ignoring the first term in eqn. (22) which represents the contribution of base, 
damping   for a cylindrical element of depth dz, embedded in soil, and also ignoring 
the term containing dz2 which is again exceedingly small, the coefficient of damping 
may be written as 

3
0 2sc( ) r G S dz    (23) 

For systems having continuous function, the damping is usually expressed 
as (Mario 1986), 

i jC c( ) (z) (z)dz              (24) 
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For the present case of pile of length L, eqn. (22) can be expressed as 

2
3

0 2

0

2 2

2 2

L z
-

L
s

X Y z z
C r G S e cos sin

L L



 
      

            (26) 

Eqn. (26), on integration by parts and after some simplification, reduces to 

3 2
0 2 1 2 4-

sC r G S L X( - e ) Y / /
             (27) 

Eqn. (27) expresses the soil damping for a single pile under rocking mode of 
vibration. Here the Factor θ2S  is the damping coefficient, which is frequency 

dependent. Fortunately, the damping factor is required for calculation of the 
amplitude when the eigen solution of the problem is already done vis a vis, the 
dimensionless frequency number 0 0 sa r / v term is known. Polynomial curve-fit 

for 
θ2S  are available in terms of 0a  which can be used directly to arrive at these 

parameters.  

Berdugo and Novak (1972) gave the following expression for the values     
of S2  

2 3 4 5
2 0 0 0 0 0S 0.0144a 5.263a -4.177a 1.643a -0.2542a         (28) 

This value unlike other Beredugo’s constant is independent of Poisson’s 
ratio. 

Material Damping of Pile 

The structural stiffness contribution of the pile is given in the first part of eqn. 
(16), while that of the mass moment of inertia is given in eqn. (21). Thus, if cC  be 

the critical damping of the pile then it can be expressed as c xC = 2 KJ , where K 

and Jx are the stiffness and mass moment of inertia of the pile. 

Depending on the material used for pile like RCC, steel etc, a suitable 
damping ratio  ζ  can be assumed. The damping (Cp) for the pile can be expressed 

as 

p cC C        (29) 

3 2
0 2

0

L

sC r G S (z) dzθ θρ φ= ∫                       (25) 

Here (z), (z)i jφ φ  are the shape functions of the pile for different modes. For 

the fundamental mode i j(z) (z) (z)φ φ φ= = , where ( )zφ is as expressed in eqn (5), 
and hence 
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This, when added to the radiation damping, calculated in eqn. (23), gives the 
complete damping quantity for the soil-pile system.  

Piles with Different Boundary Conditions 

Having established the stiffness, inertial and damping contribution of the pile 
in rocking mode based on minimization of the potential energy of the system, the 
method is extended to piles with other boundary conditions for which there is no 
standard solution available. 

Partially Embedded Piles 

This is a very common practice in Arctic and North Siberian condition, where 
due to environmental reason; the steel piles are driven into the ground when they 
protrude about 2-3m above the ground over which the pile cap and vibrating 
equipments are placed. 

Let us consider the situation shown in Figure 3 for a partially embedded 
system. 

 

 

 

 

 

 

 

 

If L denotes the full length of the pile and the length of embedment in soil is 
L1, the constant β of eqn. (2) may be written as 

 
4

1 1
4

s
e

p p

G S L

E I
         (30) 

where subscript “e” represents embedment of the pile. 

Thus, the shape function can be written as 

1

1 1

ez
-

L e ez z
(z) e (cos sin )

L L


 

      (31) 

and 

Fig. 3 Schematic Diagram of Partially Embedded Piles under Horizontal Load 
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  (32)       

Square of the above is given by 

22
2

2
1 1 1

2 2
2

ez
-

e e eL
e e e

z z
(z) e X - cos Y sin

L L L

  
 

 
    

 
  (33) 

where  21 eX   ; 2
eY =1-η  and 

1
1e

e




  .  

and 

1

2

2

1 1

2 2

2 2

ez
-

L e e e e
e

X Y z z
(z) e cos sin

L L

  
 

 
    

 
        (33a) 

Considering the fact that the embedment of a beam does not have any 
effect on the shape function of the system (Timoshenko, et al, 1990), the stiffness 
of the pile can be expressed as  

2 2
1

0 0

1LL

q p p i s q iK E I (z) dz G S (z) dz       (34) 
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-p p e e eL
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E I z z
K e X - cos Y sin dz

L L L

X Y z z
G r S e cos sin dz
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  (35) 

Now considering 1α = L/L  eqn. (35) may be expressed as 

 
 

2 2

1

2 4 2

2 1

e e- - e e
e e e e e

p p

e

X - e - e Y - -
E I

K
L -

  



      



          
      (36) 

Here 
2

1
2

4 s e
e

p e

G S

E



 

  and 1

0
e

L

r
  . 

Eqn. (36) gives the solution for stiffness of partially embedded piles. The 
correctness of the equation can be back checked by the fact that when the pile 
becomes fully embedded i.e.L1 = L one can have 1  , e = , Xe = X, etc. when 
eqn.(36) degenerates to eqn. (17), the stiffness for a full embedded pile. 

The mass moment of inertia of pile remains same as stated in eqn. (21). 

The damping matrix is given by the expression 
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-23
0 2 1[ (1- ) / 2 ] /[4 /( -1)]

     s e e e e
eC r G S L X e Y   (37). 

Stiffness of the Pile for Varying Elastic Property 

In the previous section, the calculation of stiffness as well as the damping of 
soil was based on the dynamic shear modulus of soil invariant with depth. While 
this could be possible for clayey soils, there are many cases when the dynamic 
shear modulus of the soil has been found to vary with depth. Generally this can be 
expressed as  

m
s sG = G (z/L)     (38) 

where m= a number varying from 0-2 [considered 0 when Gs is constant with 
depth, assumed 1 for linear variation and 2 for parabolic distribution]. 

Thus for linearly varying soil the stiffness matrix can be written as  

2 2
-

2
0

2
-2

0 1
0

2 2
- 2 cos - sin

2 2
cos sin

2 2

L z
p p L

L z

L
s

E I z z
K e X Y dz

L L L

z X Y z z
G r S e dz

L L L









  

 

   
 

       
   




        (39) 

Integration of above by parts and ignoring the terms containing the factors  
e-2.cos2, .e-2sin2 etc. which have extremely small values one can have 

 p p -2E I 3 1
K X 1 - e 1 1 Y - - 1-

2L 2 2 8 2 4




     
   

                   
         

    (40) 

Here ψ  is as defined in eqn. (17a), and the damping matrix for this is given 

by  

3
0 s 2 -2

x 2

r G S L 3Y
C X 1- e (1 )

4 4 2
  


        

   (41) 

The mass coefficient remains same as expressed in eqn. (21). 

When the dynamic shear modulus variation is parabolic with depth the 
stiffness equation of the pile is expressed as  

2 L 2 z
-p p L

2
0

2L 2 z
-2 L

s 0 1

0

E I 2 z 2 z
K e X - 2 cos Y sin dz

L L L

z X Y 2 z 2 z
G r S e cos sin dz

L 2 2 L L









  

 

    
 

       
   




    (42) 

   Eqn. (42) on successive integration by parts and simplifies to  
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p p -2
2 2

E I 1 2 Y
K X 1 - e 1 2 - -

2L 8 2 2




   
  

                          
    (43) 

Eqn.(43) gives the stiffness expression of pile under parabolic variation of G 
along the length of pile. Here ψ  is as defined in eqn (17a). 

Proceeding in the manner stated earlier, the damping matrix may be 
expressed as  

3
0 s 2 -2

2 2

r G S L 1 1 2
C X - e 2 -

4 4
 




   

   
         

   (44)  

The mass coefficient remains same as in eqn. (21). 

Dynamic Bending Moment and Shear Force in the Pile  

For machine foundation subjected to a dynamic moment of M0sinmt, and using, 

   
-1

2 22MF 1- r 2 r
 

  
  

, the amplitude of vibration is given by 

 0 m(t) (M / K )sin t MF     (45) 

where m= operating frequency of the machine; M0 = unbalanced dynamic 
moment;  

r = m/n the ratio of operating and natural frequency; = damping ratio of 
the system. 

The peak amplitude is given by 

0(t) (M / K )MF   (46) 

The complete displacement function may be written as 

(z,t) = 
z

-
L

0

z z
MF(M /K )e cos sin

L L




   

 
  (47) 

Thus bending moment is given by 

   
z

-
L

p p 0

z z
M(x) MF(E I M /K ) e 1 sin - -1 cos

L L L




      

 
  (48) 

Considering maximum moment will be at the head at z = 0, the maximum 
dynamic moment may be given as 

 max p p 0M -MF(E I M / K ) -1
L
     (49) 
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The dynamic shear force is given by  

z2 -
L

p p 0 2

2 z z
V(z) MF(E I M /K ) e sin - cos

L L L




     

 
      (50)  

Dynamic Response of Short Piles under Rocking Mode 

There are number of areas (e.g. Bonny river delta in Nigeria) where the top 
soil constitutes of very weak clay underlain by dense sand and the soil will yield 
much ahead of the pile itself. Broms (1965) has shown that the displacement 
curvature for such piles are completely different than that of long piles.  

While a long pile embedded in soil behaves as a semi-infinite beam on 
elastic foundation, a short pile behaves as a beam of finite length on elastic 
foundation. Chowdhury and Dasgupta (2008) have given solution to the 
displacement curvature of such short beams on elastic foundation which is given by 

0 1 2 3u C coshpzcospz C coshpz sinpz C sinhpz sinpz C sinhpzcospz     (51) 

where p is same as expressed in eqn. (2) 

Expressing the above in terms of Puzrevsky function (Karnovsky and Lebed, 
2001), eqn. (51) can be expressed as  

0 0 1 1 2 2 3 3u = C V (pz) + C V (pz) + C V (pz) + C V (pz)      (52) 

where,  

0V (pz) = coshpzcospz ; 1V (pz) = (coshpz sinpz + sinhpz cospz)/ 2    (53) 

2V (pz) = sinhpzsinpz ; 3V (pz) = (coshpzsinpz - sinhpzcospz)/ 2   

Puzrevsky function has some unique functional properties as defined below 
and shall be used for subsequent analysis for derivation of the stiffness, damping 
and mass of the piles. 

0 0 0 0V (0) =1;V (0) = 0;V (0) = 0;V (0) = 0  
 

1 1 1 1V (0) = 1;V (0) = p 2 ;V (0) = 0;V (0) = 0                                                      

2
2 2 2 2V (0) =1;V (0) = 0;V (0) = 2p ;V (0) = 0    

3
3 3 3 3V (0) = 1;V (0) = 0;V (0) = 0;V (0) = 2 2p    

3 2V (pz) = p 2V (pz) ; 2 1V (pz) = p 2V (pz) ;                                                   

1 0V (pz) = p 2V (pz) ; 0 3V (pz) = p 2V (pz)                                              (54)   
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For solution of the short pile, the model used is shown in Figure 4. 

 

 

 

 

 

 

 

 

 

 

For analysis similar to previous case, the pile is assumed fixed at the base 
and is also fixed at pile cap level and can undergo deflection and rotation at the pile 
head. Considering base of pile as z = 0, as shown in Figure 4, one can write, at      
z = 0, u = 0 0 0 C ; and at z = 0, u = 0 1 0 C  which gives  

2 2 3 3u = C V (pz)+ C V (pz)          (55) 

at the pile head, z = L, u = 1 which gives 

2 2 3 3C V (pL) + C V (pL) =1    (56)                             

again at, z = L, u  = 1 which gives  

2 2 3 3C V (pL)+ C V (pL) =1    (57)  

Using the derivative properties as shown above we have 

2 1 3 2

1
C V (pL)+ C V (pL) =

pL 2
    (58) 

Expressing the above in matrix form, these conditions may be written as 

V C = p             (59)                             

which may be expressed as 

2 2 3

3 1 2

1
C V (pL) -V (pL)1

= 1
C -V (pL) V (pL)Δ

pL 2

 
     
    

    
 

  (60) 

  M 

P

dz

Soil Stiffness=GsSx1  

Z 

X 

Fig. 4 Conceptual Model of Short Pile Under 
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where 2
2 1 3V (pL) - V (pL)V (pL)   which gives 

3
2 2

1 V (pL)
C = V (pL) -

Δ pL 2

 
 
 

and 2
3 1

1 V (pL)
C = - V (pL)

Δ pL 2

 
 
 

    (61)    

Thus the displacement for the given boundary condition may be expressed 
as  

3
2 2

1 V (pL)
u = V (pL) - V (pz)+

Δ pL 2

 
 
 

2
1 3

1 V (pL)
- V (pL) V (pz)

Δ pL 2

 
 
 

  (62)  

Considering the fact that for a long pile, the shape function remains invariant 
for rocking mode with respect to lateral motion. For same boundary condition, it 
may be concluded that for a short pile also, the same condition would hold good. 
Thus, the shape function in dimensionless form in the rocking mode may be written 
as 

3
2 2

V ( )1 z
(z) V ( ) - V

L2

  


          
2

1 3

V ( )1 z
- V ( ) V

L2

 


   
      

  (63) 

where the determinant  gets modified to,   2
2 1 3V ( ) - V ( )V ( )   . 

Considering A = C2/ and B = C3/the shape function can now be 
expressed as  

       2

z
(z) AV

L

    
 

3

z
BV

L

 
 
 

        (64) 

Typical shape function for the short piles for Ep/Gs = 2500 is shown in   
Figure 5. 

 

 

 

 

 

 

 

Differentiating eqn. (64) using the simplifications mentioned earlier, one can 
write 

1 2

2 z z
(z) AV BV

L L L

  
          

    
        (65) 

Fig. 5 Shape Function of Short Pile for Ep/Gs=2500 
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Substituting the above functions in eqn. (8), the stiffness reduces to  

222 L L
p p 2

1 2 s 0 1 2 32
0 0

2E I z z z z
K AV BV G r S AV BV

L L L L L 

                           
          

    (66) 

The above is too complicated to solve in closed form and numerical 
integration may be used to arrive at a solution. 

Considering z /L  and L.d dz  ; as z L;  ξ 1; as z 0 ξ 0;  which gives 

        


           

2 1 L
2p p 2 2

1 2 s 0 1 2 32
0 0

2E I
K AV BV Ld G r S [AV BV ] Ld

L
 (67)    

Substituting the value of  in eqn. (67) it reduces to 

2
s 0 1 1 2

2
K G r S L I I  

 
  

 
    (68) 

In which ψ  is as defined in eqn (17a). 

where, 

1
2

1 1 2
0

I AV ( ) BV ( ) d      and
1

2
2 2 3

0

I AV ( ) BV ( ) d        (69) 

The integrals I1 and I2 can be solved by using Simpson’s 1/3rd rule between 
limits 0-1 and can be back substituted in eqn. (68) to arrive at a stiffness value for 
the short pile. 

As there is no theoretical or experimental benchmarking against which the 
stiffness values can be checked or compared, the use of this expression must 
always be backed up by dynamic field test of the piles to adjust the data (specially 
Sx1 or Ep/Gs) to match the field observed value. The procedure is described as 
given hereunder. 

Start the design with the following suggestive values of Sx1 for various Ep/Gs 
values of Table-4. 

Table 4 Suggested for Sx1 for Short Piles (L/r ≤ 20) for Field Data Iteration 

Ep/Gs Sx1(=0.25) Sx1(=0.4) Sx1(=0.5) 

250 15.563 16.561 17.197 

500 21.046 22.468 23.3.72 

1000 27.873 29.860 31.135 

2500 39.05 42.041 43.976 

5000 49.07 53.014 55.576 

10000 60.187 65.311 68.598 
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The values mentioned above, is based on formulation for long pile (with     
L/r <25), but may be used as a starting point for the iteration based on field 
observed data. 

The mass moment of inertia of the pile for fundamental mode is given by 

22 2L L
p p 0 p p2 2

x
0 0

A r A L z
J (z) dz (z) dz

4g g L

 
     

       (70) 

 
 

2 3
p p 0 p p

x 2 3

A r L A L
J I I

4g g
         (71)   

where 

21

2 2 3
0

I AV ( ) BV ( ) d       and    
1

22
3 2 3

0

I AV BV d       .        

Finally, 

2
p 0 2

x 2 3

M r
J I 4 I

4
      (72)          

where  

p p
p

A L
M

g


    

To start the design a value of S1 is selected for the specific of Ep/Gs from 
Table-4 and the value of the frequency based on eqns. (68) and (72) is find out. 

Let this be defined as c , where the subscript c stands for the word 

“computed”. 

Let the field-tested natural frequency of the pile be fω , where f cω ω . 

In most of cases it is seen (Prakash and Puri, 1995) that the field observed 
frequency value is different from the computed one and is usually less by about 30-
40%. This is logical, for when the pile is bored or driven, the soil gets displaced and 
clayey soil due to its thixotropic property looses a part of its shear strength thus 
resulting in reduced dynamic shear modulus compared to the value observed 
during geotechnical investigation. Also, there could be cases when the field 
observed values be more than the computed one, especially in sandy soils, where 
the soil gets densified due to pile driving. The bottom line is that in very rare cases 
the computed and observed values would match. 

Based on the above argument, the error () in the analysis is given by 

c f-   .  For 0   one can have, ω =ωc f   ω =ω2 2
c f . 
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using 2
c

x

K

M
  , it reduces to 

 
1 2

2s 1
f2

p 2 3

2
I I

4G S L
- 0

M I 4 I
  



  
  

 
  

                                                    (73) 

Here   is as defined in eqn (17a). 

It will be observed that all the factors , I1, I2, I3 in eqn.(73) is a function of 
Ep/Gs. The difference (which is the error ) can now be set to zero or minimum by 
varying the value of Ep/Gs for which lim 0. 

This can very easily be done by using the standard solver or goal seek in a 
spread sheet with boundary constraint that S1>0. 

The above will automatically revise the value of Ep/Gs and upgrade the 
values of I3, I2 and I1 (which are dimensionless functions), which may then be used 
to calculate the revised and exact stiffness and mass contribution of the pile which 
would closely simulate the field condition. The method has been explained in detail 
in Chowdhury and Dasgupta (2008). 

Having established the mass and stiffness coefficients of the pile correctly 
based on field data, the damping may be established as  

3
0 s 2 2C r G S LI  .                                                                    (74) 

Here θ2S  may be obtained from equation (28) after calculating the 

dimensionless frequency number 0 0 sa r v  

Group Effect of Piles 

The formulation given in the preceding (for both long and short pile) is valid 
for single pile needs to be modified to consider the group effect when Kgroup is not 

necessarily 
n

xi
i=1

K  where n = number of piles in a group. For such cases, the 

method proposed by Poulos (1971) is possibly the best-suited technique and can 
be used to modify the total stiffness of a pile group having n number of piles. 
Accordingly 

n n

group xi xi
i 1 i 1

K K 
 

              (75) 

where xi are the interaction factors provided by Poulos (1971). 

Similarly the damping of the pile group may be obtained from the expression 
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n n

group xi xi
i 1 i 1

C C 
 

                                         (76) 

Effect of Pile Cap on Pile Stiffness 

The pile cap has been found to affect the response of footing significantly. 
Before considering its effect within the proposed framework, it would be worthwhile 
to recapitulate the practice in vogue. 

The sketch given in Figure 6 can represent the pile group with pile cap.   

 

 

 

 

 

 

 

 

                                                                                                                                               

In such case usually the embedment stiffness GsSfDf is added to the pile 
group stiffness and the system is considered as a lumped mass single degree 
freedom system, the details of which are furnished in Novak(1974) and Prakash 
and Puri (1988). 

In conventional formulation as the stiffness matrix is statically coupled, 
another set of stiffness Kx needs to be derived in addition to what has been 
derived above. To circumvent this issue, use of the following model is proposed as 
mentioned hereunder. 

The Lagrange equation (Thompson, 1984) from the energy principle may 
used to derive the governing equations as follows 

d(T U) 
1

-


    
        

 
n

i
i i i i

d T T U
dq

dt q q q
= 0 (77) 

where 

1 2 3 1 2, 3( , , ....... ; , ,.......... )n nT f q q q q q q q q        and  

 1 2 3( , , ,......... )nU f q q q q .                                                              

Fig. 6 Schematic Diagram of Pile and Pile-Cap with Embedment.  

Zc   Df
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where q’s are the generalized coordinates, and dots indicate their time derivatives. 

The kinetic energy, T for the system using the mathematical model of  
Figure 7, is given by 

2 2 21 1 1
( )

2 2 2
        

x x f cT M u J M u x Z    (78) 

 

 

 

 

 

 

 

 

The potential energy U is  

  2 2 21 1 1

2 2 2x fU K u K K x   (79)    

Differentiating 

 x f c

d T
M u M u x Z

dt u
       
  

 ;   x f c c

d T
J M Z u x Z

dt
 


       

       

 f c

d T
M u x Z

dt x
      
 

   (80)    

and for potential energy  

;x h

U U U
K U K and K x

u x
  

  
  

   (81)                             

where K= rotational stiffness of pile group; U = potential energy of the system; 

T = kinetic energy of the system. 

Substituting the above values in eqn. (77) and writing in matrix form the 
governing equation may be deduced as 

 

      
              
            



2

0 0

0 0 0

0 0

f f f c f

f f x f c x

f c f c x f c

M M M Z x K x

M M M M Z u K u

M Z M Z J M Z K

  (82) 

Fig. 7 Mathematical Model of Pile Group and Pile Cap  
under Coupled Sliding and Rocking Mode 

 

K Kx 



Zc 

  u 

x 

Mf=Mass of (Pile cap + Machine  

Kf = Embedded stiffness of soil GsSfDf

Mx= Mass of pile group  
Jx= Moment of inertia of Pile group
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Eqn. (82) gives the complete free vibration equation of motion for pile plus 
pile cap with machine considering pile springs in translation and rocking modes. 

Considering the equation to be dynamically coupled, the damping matrix can 
now be expressed as  

0 0

0 0

0 0

f

x

C

C C

C

 
     
  

    (83) 

in which, Mf = mass of pile cap plus mass of machine; Mx = mass of pile 
group; Jx = mass moment of inertia of piles; Zc= center of mass of foundation plus 
machine along vertical axes; Kh = lateral embedded stiffness of pile cap = Gs Sfx Df ;  

Gs = dynamic shear modulus of soil; Sfx = Berdugo’s constant = 3.6,4, 4.1 for       
= 0.0, 0,25, 0.4 respectively; Df = depth of embedment; Kx= lateral stiffness of pile 
group where  

 

 
 
 
 
  

-2β
p p

X 3 3

5X 3Y 3
(1 - e ) - - ηE I 4 8 4K =

L η -1
     (84) 

Equation (84) has been derived in detail in Chowdhury and Dasgupta 
(2008). 

It is to be noted that for calculations, the mass and mass moment of inertia 
of the pile group pile group, the mass and mass moment of inertia the mass and 
inertia of single pile has to be multiplied by the number of piles in the group. While 
for stiffness and damping the group stiffness and damping has to be derived 
according to eqns. (75) and (76). 

Comparison of Results 

The method proposed herein can very well be used for dynamic analysis of 
piles under horizontal force. However, the sanctity of the same will depend on how 
accurately the stiffness values have been evaluated. For this two RCC piles of 
radius 0.4m, 1.0m of length 40m has been has been checked with the reported 
results for comparison. The values K[eqn. (16)] is shown in Figures. 8 and 9 for 
comparison. 

 

 

 

 

 

 
Fig. 8 Comparison of Stiffness Values for R =0.5m and Length=40 Meter 
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The results clearly show that the values are in very good agreement for the 
base case and thus can well be used for other cases as mentioned above for which 
there are no direct solutions. 

Finally the stiffness of a short pile is calculated, based on field observed 
data having the following properties. 

1. Length of Pile= 10m, Diameter of pile=1.2 meter. Material of pile: RCC.  

2. Method of installation- Bored Pile 

3. Based on soil test, observed Ep/Gs =5000. 

4. Ep considered  3x107 kN/m2. 

5. Density of pile material =25 kN/m3. 

6. Field observed natural frequency of the pile is = 28 rad/sec (4Hz). 

7. Poisson’s ratio of soil considered = 0.4. 

For the above conditions 

Selected value of S1 from Table-3 = 53.014 

Ep/Gs = 5000 (given); = 5.681.     vide eqn. (5) 

A = -0.000912                vide eqn. (64) 

B = -0.003447                           do 

I1 = 0.0277902, I2 = 0.201259, I3 = 0.16886    vide eqn. (72) 

Computed Stiffness =7.78 x 105  kN/m 

Computed natural frequency
 
  
 

θ

x

K

J
= 39.96 rad/sec(6 Hz); Error()=11.96 

Setting the error()=0 and running the goal seek/solver function in a spread 
sheet for changing Ep/Gs for boundary constraint S1>0, we have the following 
upgraded data: 

Fig.9 Comparison of Stiffness Values for R =1.0m and Length=40 Meter 
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Sx1 = 53.014; Ep/Gs = 3357; = 6.2762; A = -0.0009; B = -0.00528 

I1 =0.00113, I2 = 0.13898, I3 =0.1168181.  

Computed natural frequency based on above data=28 rad/sec (4Hz) 

Revised Error ()=-0.000826 

Thus based on the above data as per eqn. (68) the correct stiffness of the 
pile is given by Kpile=2.64 x 105 kN/m. 

In case the above correction is already done for lateral pile stiffness and E/G 
value has been already modified to agree with the field observed data, the same 
can directly be used without carrying out the above mentioned modification again.  

Discussions on the Results 

Referring to Figures. 6 and 7 it is observed that the results are in excellent 
agreement with both Beredugo and Novak (1972) and Dobry and Gazetas (1988) 
stiffness values. Considering the base case being in such agreement, the other 
formulations can now be very easily adapted for which there are no standard 
solutions available. 

The short pile case is basically a theoretical solution and needs significant 
field test and lab testing to arrive at a predefined S1 value, which would make the 
method more powerful.  

However in absence of such data the present algorithm as mentioned herein 
could become a very powerful tool for dynamic analysis of such piles for which no 
solution is available till date and yet remains a serious practical problem. 

The method proposed would be valid for such piles while reported methods 
do not provide with any coefficients for piles with (L/r < 25). 

Conclusion 

A comprehensive analytical solution for dynamic analysis of long piles is 
presented herein, which is in very good agreement with the established formulation. 
Based on this, piles with boundary conditions like partially embedded and variation 
of G with depth can also be analyzed. 

Considering the fact that the dynamic bending moment and shear force can 
also be obtained by this method, the standard practice of restricting the pile 
capacity to 50% of its capacity may be relaxed. It will be observed vide eqns. (45) 
and (47) that the moment and shear takes care of the dynamic magnification factor 
of the load as well as gives the complete distribution of the magnitudes along depth 
of the pile. This when combined with static load would give the complete design 
moment of the pile. Considering there is no uncertainty with this formulation, we 
can perhaps restrict the pile load limit to a higher value than 50% as in vogue 
presently. Short piles for which no established method exists can also be solved by 
the method presented herein. 
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Notations 

The following symbols are used in this paper: 

Ap = cross sectional area of the pile; 

a0 = dimensionless frequency number 0 sr v ; 

Cc = critical damping of the pile =
c xC = 2 KJ  ; 

Cp = damping for the pile;  

C S, and Su1 = Berdugo’s constants which are basically frequency 
dependent 

andθ2 θ2 x2C  , S   S =  Berdugo’s constants (frequency independent)  

Df = depth of embedment;  

Ep = Young’s modulus of pile;  

Gs = dynamic shear modulus of the soil; 

g = acceleration due to gravity; 

Gb = dynamic shear modulus of soil at the foundation base;  

m
sG G (x L)  = dynamic shear modulus of the soil, where m = a number 

varying from 0-2 [considered 0 when Gs is constant with depth, assumed 1 
for linear variation and 2 for parabolic distribution]; 

Ip = moment of inertia of the pile cross section;  

ks = elastic stiffness of the soil and is expressed as GSθ1; 

K = foundation stiffness in horizontal direction;  

K and Jx = stiffness and mass moment of inertia of the pile; 

L=  length of the pile;  

L1=  length of the embedment in soil; 

mp = mass of the pile; 

Mz = mass variation along the pile length;  

P0 = amplitude of dynamic force; 

r0 = radius of the foundation; 

r = m/n = the ratio of operating and natural frequency; 

S1= Beredugo’s constant can be taken as frequency independent; 

u = displacement of the pile in the x direction; 

V(z)= Puzrevsky functions; 

 Embedment ratio L/L1; 

p = unit weight of the pile material;  
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 = rotation of pile in the x-z plane and about horizontal axis = (z) q(t); 

 = damping ratio; 

П = total potential energy over the length of the pile, L;  

 mass density of soil; 

(z) = shape function; 

 m = operating frequency of the machine;  

c = computed natural frequency of the pile; 

fω  = field-tested natural frequency of the pile. 
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