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One-Dimensional Non-Reactive Contaminant 
Transport with Scale-Dependent Dispersion 

E. C. Nirmala Peter*, M. R. Madhav** and E. Saibaba Reddy*** 

Introduction 

etermination of scale-dependent hydraulic and transport parameters of 
soils is essential for quantifying fluid flow and chemical transport through 
the subsurface. One of the key parameters used in the transport of the 

contaminant species is hydrodynamic dispersion coefficient. Several studies 
have shown that the dispersion coefficient increases with distance or travel time 
(Sposito et al., 1986). From the experiments conducted on leaching columns, 
Yong and Warith (1989) suggested the variable nature of the dispersion 
coefficient and obtained a linear relationship between the dispersion coefficient 
(Dx) and the mean velocity (Vx).  Watson et al. (2002) also indicated that the 
hydrodynamic dispersion coefficient was a non-linear function of the seepage 
velocity. Wang et al. (1998) suggested that the contaminant transport could be 
modeled accurately only if dispersion coefficient is allowed to increase with or 
adjusted to scale. Their study also indicated that the true migration or seepage 
velocity of the contaminant may not be obtained from Darcy’s velocity divided by 
n (v/n where v – Darcy’s velocity and n is the porosity of the porous medium). 
They observed that a close fit to the experimental data can be obtained by using 
the value of measured seepage velocity, Vx, defined as the velocity of the mean 
point (C/C0 = 0.5) of the experimental break-through curve (Rumer, 1962), in the 
mathematical model. All these studies stressed on the variable nature of 
dispersion coefficient with scale and type of soil.  

D

The Convection-Dispersion Equation (CDE) in general, has been in use 
for describing contaminant transport through the porous media. In the classical 
CDE, the dispersion coefficient is assumed constant, but the results from 
several field studies (Taylor and Howard, 1987, Domenico and Robbins, 1984, 
Toride et al., 1995) indicated scale-dependent dispersion i.e. dispersion 
coefficient increases with distance ‘x’ from the source of pollution. Many 
analytical solutions have been developed for CDE with scale-dependent 
dispersion e.g. Khan and Jury (1990), Pachepsky et al. (2000), Pang and Hunt 
(2001). These solutions are difficult to implement due to their highly idealized 
boundary conditions and parameters. As an alternative, numerical methods are 
often preferred as these methods are easier to implement than the analytical 
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solutions. Mishra and Parker (1990) applied a hyperbolic distance-dependent 
dispersivity in a study on solute transport through porous media.   

This paper presents the development of a numerical model for one-
dimensional flow and dispersion considering power law variation of dispersion 
coefficient, Dx, with distance of contaminant travel as Dx = Dd + mxn where Dd - 
coefficient of diffusion, x.-.distance of contaminant travel, ‘m’ and ‘n’ are 
parameters which are dependent on the type of soil. In the present study, 
convective-dispersive transport for only non-reactive contaminant has been 
considered for deriving the governing equation. The partial differential equation 
is solved by the finite difference method. The solutions obtained from the 
proposed model are compared with the published long column experimental 
data of Huang et al. (1995).  

Theory  

Problem Definition 
A view of the landfill (Figure 1(a)) indicating the different components is 

the basis for the numerical as well as the laboratory experimentation of the 
study of the scale-dependent dispersion. A simple schematic of the problem 
(Figure 1 (b)) shows a landfill resting on a low permeable soil layer of finite 
depth, overlying highly permeable strata. The concentration of the contaminant, 
C, at the base of the landfill is C0 at any time greater than zero. The contaminant 
disperses through the low permeable layer into the next layer. The flow through 
the low permeable layer is considered as one-dimensional.  
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For conceptualization of the model, the assumptions made are: 

> One-Dimensional flow and dispersion through the low permeable strata. 

> The source of contamination is continuous with the same concentration, 
C0.  

> The depth of the porous medium under consideration is finite. 

> The porous medium is saturated. 

> The hydrodynamic dispersion coefficient varies with distance. 

> The concentration of the contaminant initially in the soil is zero. 

Initial and Boundary Conditions  
Landfills are of finite extent and have limited active life. If the landfill is 

constructed on low permeable soil, the time to reach peak concentration of any 
chemical is often small compared with the time scale imposed by the slow 
pollutant migration through the soil layer. In many practical situations the most 
hazardous pollutant has a maximum concentration, C0, initially (zero time). This 
concentration will then decrease with time as leachate is transmitted through the 
soil. However if the height of the leachate in the landfill is large, then the 
concentration remains more or less constant. Though this assumption of 
constant concentration is extremely conservative, it is used because it covers 
many important aspects of the problem of pollutant migration through a finite 
layer. Therefore it is assumed that 

C(x, 0) = 0 at t = 0    (1) 

C (0, t) = C0 for t > 0                                                     (2) 

The concentration in the underlying more permeable stratum will tend to 
zero if the base velocity is sufficiently large to remove the discharged leachate. 
However, in many cases the velocity being relatively small and also to provide a 
means of estimating this concentration it is assumed that the concentration in 
the underlying permeable stratum does not vary in the vertical or horizontal 
directions. Therefore 

  C (L1, t) = C (L, t) for L1>L                                               (3) 

where L is the total depth or thickness of the stratum.                                            

Governing Equation 
The governing equation for one-dimensional convective-advective 

transport for non-reactive contaminant with scale-dependent dispersion 
coefficient is 

  
2 C

t
∂
∂2

x
x x

DC CD V
x x x

∂∂ ∂⎛ ⎞− − =⎜ ⎟∂ ∂ ∂⎝ ⎠
                                                (4) 

                                                  
Where Dx [L2/T] is the dispersion coefficient, Vx [L/T] is the measured 

seepage velocity, C [M/L2T2] is the concentration of the contaminant, t [T] is time 
and x [L] is the distance of travel of the contaminant. Several studies (Khan and 
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Jury (1990), Huang (1991), Toride et al.(1995), Huang et al., 1995, Pachepsky 
et al., 2000) have shown that the dispersivity increases with depth. They also 
indicated a non-linear variation of dispersivity with depth or distance (Figure 2).  

 

 

 

 

 

 

 

 

 

In general dispersion coefficient, Dx is given by Dx = α v + Dd where α is 
the dispersivity, v – seepage velocity and Dd is the diffusion coefficient through 
the porous medium. However for a given contaminant and diffusion through a 
given porous medium, the coefficient of diffusion, Dd is constant. Therefore 
taking into consideration that the dispersion coefficient varies non-linearly with 
depth, a power law variation of the dispersion coefficient, Dx = Dd + mxn is 
considered.  The governing equation is written as       
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on normalizing equation (5) with X= x/L, T= t/t0 and t0= L/Vx, one gets  
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=  Eq. (6) transforms to 
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The initial and boundary conditions are given in Eqs. 1, 2 & 3. 
 

Finite Difference Method of Solution   

The partial differential equation describing the flow and transport 
processes includes terms representing derivatives of continuous variables. The 

     Fig. 2 Dependency of the Solute Dispersivity on Distance in Soils 
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total length of the column is divided in to ’n’ number of segments (Figure 3). The 
nodes are located at the centre of each segment. The concentration of the 
contaminant in each segment at any given time ‘t’ is represented as C(i-1, t), C(i, t), 
etc. up to C(n,t). An equation is written for each nodal point. Finite difference 
method approximates the derivative in the partial differential equations as 
difference quotients, both in space and time, with respect to the interval between 
those adjacent nodes.  

C i-1, t

C i, t

C i+1, t 

 Δx

 

L

      Concentration for L1>L, C (L1, t) = C (L, t)     

   Concentration at the in let on top of the soil surface,
                     C = C0 for t > 0                                         

 

 

 

 

 

 

 
                                          Fig. 3 Elements for Finite Difference            

The first derivative of concentration, C
x

∂
∂

 at a point midway between the 

nodes under consideration is given by the central difference formula as 

1, 1,( )
2.

i t i tC CC
X X

+ −−∂
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∂ Δ
   (8) 

Similarly the second derivative is given by 

2
1, , 1,

2 2

( 2. )
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∂ Δ
   (9) 

Substituting Eqs. (8) and (9) in the governing equation with scale-
dependent dispersion with power law variation, Eq. (7) transforms to 
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The unknown concentration of the non-reactive contaminant is solved as 

1
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where  

2( )x
( ).n

D X Tα βμ + Δ
=

xΔ
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nn X Tββ

− −
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Δ
Δ

. On substitution of μx and   xβ=

in Eq. (11), the above equation reduces to  

[ ] [( ) ], 1, , 1,. 1 2. . .i t t x x i t x i t x x iC C C Cμ β μ μ β+Δ − += + + − + − t
  (12) 

Check for Stability and Convergence 

The stability and convergence of the solution is checked by evaluating 
the concentration of the contaminant at each of the nodes for different values of 
∆T in Eq.11. The input parameters (Table 1) resulted in the Break-Through 
curves shown in Figure 4. The normalised time T is t/t0. The Break-Through 
curves (BTC) are drawn for αD = 1x10-5, β = 0.1,   n = 1.5, ΔX = 0.02, and for 
different values of ∆T equal to 1.5 x10-3, 1 x10-3, 9 x10-4 and 7.5 x10-4. The 
curves for all these values of ΔT converged to the same BTC.   The values of (μx 
+ βx), (1 – 2μx) and (μx - βx) are positive for the above values of ΔT. However for 
∆T equal to 2 x10-3, the value of (1 – 2μx) is negative while the other two values 
are positive. These values do not yield proper solution, and hence break-
through curve couldn’t be obtained. Therefore to obtain convergence of the 
curves, the size of the time step, ∆T should not exceed 1 x10-3 for value of ∆X 
equal to 0.02. However it was also noted that the limiting value of ∆T changes 
with value of ∆X, e.g., for αD = 1x10-5, β = 0.1, n = 1.5, ΔX = 0.01, the limiting 
value of ∆T was 5x10-4. Thus each value of ΔX has a limiting value of ∆T for 
which the BTCs converge to a single curve.  

Table 1 Input Parameters to Check the Stability of the Model for  
Different Values of ∆X and ∆T 

Input 
Parameters 1 2 3 4 5 6 7 

αD 1x10-5 1x10-5 1x10-5 1x10-5 1x10-5 1x10-5 1x10-5 

β 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

n 1.5 1.5 1.5 1.5 1.5 1.5 1.5 

∆X 0.02 0.02 0.02 0.02 0.02 0.01 0.01 

∆T 1x10-3 1.5x10-3 7.5x10-4 9x10-4 2x10-3 4.5x10-4 5x10-4 

μ x 0.250 0.3750 0.18751 0.22502 0.5 0.45004 0.50005 

β x -0.021 -0.0319 -0.01594 -0.01913 -0.0425 -0.01913 -0.02125 

μ x + β x 0.229 0.3432 0.17158 0.20589 0.458 0.43092 0.4788 

1 -2*μ x 0.4999 0.2499 0624963 0.54995 -1x10-4 0.09991 -1x10-4 

μ x - β x 0.271 0.4069 0.20345 0.24414 0.543 0.46917 0.5213 
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Parametric Study 

The parameters αD, β and n from Eq. (11) are identified as the key 
parameters that have the most influence on model calibration and predictions. In 
this study the input parameters and the ranges of these parameters within which 
they are varied must be justified. The analysis of the key parameters is 
performed so that a range of the “best” and “worst” scenarios could be 
simulated. The parameters αD and β are given by 

d
D

x

D
LV

α =  and  
1n.

x

mL
V

β
−

=  (13) 

In the present study, NaCl solution is taken as the contaminant and the 
following values of Dd, L and Vx are assumed to obtain the maximum and 
minimum values of the parameters:  

1. Dd = 1.5 x 10-6 cm2/s [Dd = W.D0]; D0 ranges from 1.47 x 10-5 to 1.612 x 
10-5 cm2/s for a non-adsorbing species like NaCl; the value of ‘W’ 
ranges from 0.5 to 0.01. Therefore a Dd value of 1.50 x 10-5 cm2/s and 
W value of 0.1 are assumed (Shackelford and Rowe, 1998).  

2. In landfill construction, the thicknesses of the clay liner and other layers 
such as filters, etc., vary between 30 cm to a maximum of 200 cm. But 
for the present study, the range of L is taken from 1 cm to 200 cm.  

3. The range of measured seepage velocity, Vx, keeping in view the 
different types of soils is between 1 x 10-2 and 1 x 10-9 cm/s.  

4. A minimum value of αDmin = 7.5 x 10-7, and a maximum value of αDmax = 
1500 result from the above assumptions. However for the present study 
the values of αD are varied from 1 x 10-7 to 100. 

5.  The key parameter is β (mLn-1/Vx) which is dependent on L, Vx, m and 
n.  The parameters ‘m’ and ‘n’ are dependent on the type of the soil.      
L and Vx are taken within the range mentioned above. The parametric 
study for the model is carried out considering a range of ‘n’ between 1 
and 5, and that of β from 0.001 to 1 (Figures 5 through 10).  

                    Fig. 4 Break-Through Curves for Different Values of ∆T  
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         Fig. 6 Normalised Time vs. Relative Concentration for αD = 1 and β = 0.1 
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Fig. 8 Normalised Time vs. Relative Concentration for
αD = 1x10-5 & 0.001, β = 0.01 & 0.1 and n = 1

Fig. 9 Normalised Time vs. Relative Concentration for αD = 1, n = 1.5

Fig. 10 Normalised Time vs. Relative Concentration for β = 0.1, n = 1 
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Discussion 

The parametric study with the key parameters n, αD (Dd/LVx) and β (mLn-

1/Vx) yielded the following observations. For low values of αD i.e., for 0.001 
to1x10-7, the effect of n on the break-through curves (Figure 5) is to increase the 
normalised time for increase in the value of ‘n’ from 1 to 2. The difference in the 
break-through curves (BTC) for n equal to 1 and 2 decreases for αD increasing 
to 0.1 while for αD = 1 the BTCs for values of n equal to 1, 2 and 5 converge to a 
single curve (Figure 6). Low values of αD (≤ 0.001) indicate high seepage 
velocities greater than 10-3 cm/s through the soil. αD value decreases further 
with increase in value of ‘L’. Therefore the effect of ‘n’ on break-through curves 
is significant in coarse soils for velocities of flow greater than 10-3 cm/s.            
αD increases with decrease in velocity resulting in decreasing the effect of ‘n’ on 
break-through curves. For soils with very low velocities (≤ 10-6 cm/s), the BTCs 
converge to a single curve indicating that in soils with low seepage velocity 
(clay) the effect of ‘n’ ceases because only diffusive process of contaminant 
transport exists in the soil. In soils with velocity between 10-2 to 10-4 cm/s, the 
normalised time value of the break-through curves increases slightly with 
increase in the ‘n’ value. For soils with velocity between 10-4 to 10-6 cm/s,         
the difference in BTCs for n = 1 and 2 decreases with decrease in seepage 
velocity i. e. increase in αD. 

Break-through curves could not be drawn for αD < 0.001 and β < 0.01. 
For αD < 0.001 and β < 0.01, the seepage velocity through 1 cm length of the 
soil is greater than 10-2 cm/s. As velocity increases above 10-2 cm/s, the flow 
becomes completely advective. Therefore break-through curves could not be 
obtained. Similarly for αD ≥ 1 and β ≥ 0.1, the velocity is less than 10-6 cm/s and 
the contaminant transport becomes completely diffusive and the break-through 
curves converge to a single curve. 

In soils with velocity between 10-3 to 10-6 cm/s, the break-through curves 
for any value of αD ≤ 0.001 and β = 0.01 have the same range of T value of 0-
1.1 for the variation of C/C0 from 0 to 0.96. All these curves remain at zero 
relative concentration up to a T value of 0.65. C/C0 increases rapidly to a value 
of 0.96 at about a T value of 1.1 (Figures 7 and 8). This indicates that the 
movement of solute particles in soils may not follow Brownian motion. The Levy 
motion can predict the BTCs (even with heavier tails) better than the Brownian 
motion. Particles undergoing Levy motion can be characterized as Brownian 
motion except for occasional large jumps. These jumps are clustered and in this 
type of motion, the particles trapped in relatively stagnant vortices for periods of 
time, travel within ‘jets’ of high velocity fluid (Weeks et al., 1995). This Levy 
motion explains the stagnant zero relative concentration up to T value of 0.65 
and the rapid increase in the relative concentration to reach a value of 0.96 at 
about T=1.1. This response confirms that the Levy motion is predominant in 
soils with seepage velocity between 10-3 to 10-6 cm/s.   

The range of Vx and m for various values of αD and β are presented in 
Table 2. This study resulted in the following conclusions with reference to the 
effect of αD, β and n on the predicted break-through curves.     

Break-through curves cannot be obtained for αD ≤ 0.001 and β < 0.01 
due to advective transport of the contaminant. 
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Table 2  Range of Vx and m Corresponding to Different Values of αD and β 
with n Equal to 1 and 2 

S. No. αD β Vx (cm/s) m 

1 ≤0.001 0.01 
10-3 

 
10-6-10-2 

 

2 0.001<αD≤0.1 
≤ 0.1 

(0.1&0.01) 
10-3-10-6 

10-12-10-6 
 

3 ≥ 1 ≥ 0.1 10-9-10-7 10-13-10-8 

4 ≥ 1 ≤ 0.1 10-4-10-8 10-12-10-7 
5 < 0.01 0.1 10-5-10-7 10-7-10-11 

 

The normalised time (T) over which the relative concentration (C/C0) 
varies from 0 to any specific value (ex. 0.96) increases with increase in the n 
value and decrease in the value of αD (Figure 5). The parameter ‘n’ is effective 
only in the range of seepage velocities between 10-2 to 10-6 cm/s.  

The break-through curves are not affected by the n value and converge 
to a single curve for any set of αD  and β for αD ≥ 1 and β ≥ 0.1 (Figure 6) due to 
diffusive  transport of the contaminant. 

The break-through curves for any value of αD ≤ 0.001 and β = 0.01 have 
the same range of T values of approximately 0 to 1.1 for the variation of C/C0 
from 0.0 to 0.96.  The relative concentration in all these curves remains at zero 
up to a T value of 0.65     and increases rapidly to obtain a value of 0.96 at 
about a T value of 1.1 (Figures 7 and 8). This shows the Levy motion of the 
contaminant through the porous medium with seepage velocities between 10-3 
to 10-6 cm/s.  

The BTCs converge to a single curve for a given values of αD ≥ 1 and 
values of β ≤ 0.1 (Figures 9). 

The BTCs converge to a single curve for a given value of β ≥ 0.1 and 
values of  αD < 0.01 (Figures 7 and 10).  
 

Verification of the Solution  

Power Law Variation of Dispersion Coefficient with Experimental 
Data of Huang et al. (1995)  

Laboratory tracer (NaCl) experiments are conducted to investigate solute 
transport in 12.5 m long, horizontally placed homogeneous sand column and 
break-through curves obtained. The concentration of the contaminant in the 
column is measured with electrical conductivity probes inserted at every 50 cm 
interval. The relative concentrations of the contaminant for various time periods 
at each of the locations (2 m, 5 m, 8 m and 11 m) are used as per the Figure 11 
(Huang et al., 1995). The data of times and relative concentrations is furnished 
in Table 3.  
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Table 3 Experimental Data for Different Locations of the Homogeneous 
Column from Huang et al. (1995) 

x = 2 m x = 5 m x = 8 m x = 11 m 

Time 
(h) 

C/C0 Time 
(h) 

C/C0 Time 
(h) 

C/C0 Time 
(h) 

C/C0 

 
4.810 
4.979 
5.145 
5.228 
5.311 
5.643 
5.710 
5.726 
5.783 
5.809 
6.307 
6.781 

 

 
0 

0.0159 
0.0476 
0.0952 
0.2142 
0.3490 
0.5633 
0.7380 
0.8094 
0.9120 
0.9681 
0.9998 
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Fig. 11 Concentration Distribution in a Homogeneous Column (Huang et al. 1995) 
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Verification of the solution for power law variation of dispersion 
coefficient is carried out by developing break-through curves at different 
locations, i.e. at 2 m, 5 m, 8 m and 11 m, of the column. The seepage velocities 
calculated from the ratio of the distance of travel, L, (2 m, 5 m, 8 m and 11 m) to 
the time corresponding to a relative concentration of 0.5 (t0.5) obtained from the 
Break-Through curves (BTC’s) are used to predict the concentration profiles. 
Parameters m and n are obtained from log-log plot of distance vs. dispersion 
coefficient calculated from the formula (Fried, 1975) 

Dx = (1/8) {[(x – vx t0.16)/ (t0.16)0.5] - [(x – vx t0.84)/ (t0.84)0.5]} 2                               (13)  

Where t0.16 and t0.84 are the time periods which correspond to the relative 
concentrations of 0.16 and 0.84 respectively. Comparison of these numerical 
solutions and experimental data is presented in Figure 12. The input parameters 
for the numerical solutions are furnished in Table 4. The ‘m’ and ‘n’ values 
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obtained from the log-log plot of Dx (Fried, 1975) and distance, x, are 5.01x10-6 
and 1.5946 respectively. However it is observed that the numerical solutions 
using these parameters deviated from the laboratory concentration profiles 
slightly. This may be due to the inaccuracies involved in the measurement or 
interpolation of the relative concentrations from the Figure 11 and also because 
of using Fried’s analytical solution for the calculation of Dx. The model was 
calibrated to obtain solutions with values of ‘m’ equal to 5.01x10-6, 2.9x10-6, 
2.15x10-6 and 2x10-6, and an ‘n’ value of 1.5635 for 2 m, 5 m, 8 m, and 11 m 
lengths of the column respectively, which fitted well with the experimental data, 
Figure 12.  

Table 4 Input Parameters for Break-through Curves at Different Locations 
of the Homogeneous Column  

Depth, x 2 m 5 m 8 m 11 m 

Dd (cm2/s) 1.5x10-6 1.5x10-6 1.5x10-6 1.5x10-6 
m 4.85x10-6 2.9x10-6 2.15x10-6 2x10-6 
n 1.5635 1.5635 1.5635 1.5635 

L (cm) 200 500 800 1100 
Vx(cm/s) 0.009921 0.0098 0.009416 0.0092 

αD 7.56x10-6 3.06x10-7 1.99x10-7 1.48x10-7 
β 0.009678 0.009819 0.009873 0.01125 
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Fig. 12 Comparison of the Numerical Solutions with Experimental Data of          

Huang et al., (1995)            
Comparison of Scale-Dependent Dispersion Model with 
the Classical Constant Dispersion Model 

Laboratory column test is conducted on 94 cm soil column using 
experimental set up (Figure 13) to study the scale effect of dispersion 
coefficient. The NaCl contaminant samples are collected at 14 cm, 34 cm, 54 
cm, 74 cm and 94 cm of the column from the top of the soil surface. The 
dispersion coefficients for each depth are calculated from Fried’s analytical 
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solution (Eq.13). Parameters ‘m’ and ‘n’ are obtained from the log-log plot of 
depth of column vs. dispersion coefficients. The seepage velocities from 
evaluated from the break-through curves were used to predict the break-through 
curves for both classical convection-dispersion model which assumes constant 
dispersion coefficient and the scale-dependent dispersion model with power law 
variation of dispersion coefficient with distance. These numerical curves are 
compared with the measured data at respective depths. This study indicated 
that the model considering constant dispersion coefficient over predicts           
the measured data while the proposed model with power law variation of 
dispersion coefficient yields BTCs which compare well with the measured data       
(Figures 14 & 15). 
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Fig. 13 Experimental Set-Up (a) Photograph of the Mould 
(b) Schematic Diagram of the Mould  

Fig.14 Break-through Curves at 34 cm Depth of the Column  
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Conclusions 

A numerical solution is developed for the governing equation with a 
variable dispersion coefficient for one-dimensional non-reactive contaminant 
transport, with convection and dispersion as processes of transport. The 
dispersion coefficient is assumed to vary as a power law function of distance. 
This solution predicts the concentrations of the contaminant at all locations 
satisfactorily for the column and the results are in good agreement with the 
experimentally measured concentration data while the solution to classical 
convection-dispersion equation over predicts the concentration profiles. It is also 
observed that the use of measured seepage velocity (vm) from break-through 
curves in the mathematical model achieved a close fit to the experimental data. 
This study establishes that dispersion coefficient essentially varies as a power 
function with distance over the scale of the experiment or measurement. The 
proposed model predicts the concentration profiles accurately for non-reactive 
contaminants where as the model with constant dispersion over predicts the 
concentration profiles.  

List of Notations 

∆T  Normalised time increment 

∆X  Ratio of the distance between the centres of two successive 
segments to the total length of the column  

BTC  Break-through curve 

C0  The concentration of the contaminant Introduced as a 
continuous source 

CDE  Convection-dispersion equation 

Cit  Concentration of the contaminant at the centre of the ith 
segment at any time ‘t’ 

Fig.15 Break-through Curves at 94 cm Depth of the Column 
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Cit+∆t  Concentration of the contaminant at the centre of  the ith 
segment  at time ‘t+∆t’ 

D  Dispersion coefficient 

Dd  Coefficient of diffusion in porous medium 

Dx  Dispersion coefficient in the direction of flow in one-dimensional  
contaminant  transport  through a soil column 

m  A multiplying factor which is dependent on the type of soil, and 
used in the expressions for the variable dispersion coefficient 

n  Exponent used in the power law variation of the dispersion 
coefficient and dependent on the type of soil 

T Normalised time, t/t0 where t0 is L/Vx 

Vx  Measured seepage velocity for the soil column 

x  Distance in cm from the top surface of the column (source) to 
the point at which measurement of the concentration of the 
contaminant was taken                         
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