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Dynamic Analysis of Piles under  
Lateral Loading 

Indrajit Chowdhury∗ and Shambhu P. Dasgupta** 

Introduction 

ibration of piles under lateral or horizontal load is an important study for 
the pile supporting rotating machines and also structures under 
earthquake loading. In the majority of cases it has been found that of all 

the modes (like vertical, rocking, yawning, twisting etc.); the lateral vibration 
(coupled with rocking) is the most critical and often governs the design. Thus a 
study of such motion is of paramount importance for piles supporting important 
installations facilities in earthquake prone areas. 

V 
A number of researchers namely, Parmelee et al. (1964), Tajimi (1966), 

Penzien (1970), Novak et al. (1974, 1983), Banerjee and Sen (1987), Dobry and 
Gazetas (1988) only to name the notable ones, have proposed solutions to this 
problem. Of these solutions, Novak’s method is the most popular in design 
offices for its simplicity in application. However, the method does not address a 
number of issues and has the following limitations.  

> The method is coefficient based [function of the ratio of Young’s modulus 
of pile (Ep), and dynamic shear modulus of soil (Gs)], as such for 
intermediate values one has to interpolate which may not always be very 
accurate. 

> The values are given for Poisson’s ratio of 0.25 and 0.40 only. Thus for 
any value between 0.25 and 0.40, or beyond 0.40 another set of linear 
interpolation/ extrapolation is necessary. 

> Novak and El Sharnouby (1983) has given stiffness and damping 
coefficients for soil having parabolic profile but in many cases the 
variation is linear and no coefficients are available for this case. 

> The method does not have a solution for partially embedded piles, which 
is of great practical importance for piles driven in arctic condition (for 
example, Northern Siberia which has large number of Oil and Gas 
facilities). 

> The dynamic bending moment and shear force induced on pile cannot be 
evaluated. 
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> Finally the formulation is valid for long piles (i.e. the failure takes place in 
the pile body before soil yields) and do not cater to short piles. 

The simplified formulas given by Dobry and Gazetas (1988) are based 
on more rigorous analysis, but do not address the issues of partial embedment, 
dynamic bending moment and shear, short piles (i.e. L/r < 25), etc. 

The Proposed Method 

In the present paper an analytical solution has been proposed, which 
overcomes many of the limitations mentioned above and also arrive at a 
formulation making the design procedure independent of charts and coefficients 
and thus easily amenable to analysis using simple spreadsheet programs. 

The present analysis is an extension in lateral direction of the theory as 
proposed by Chowdhury and Dasgupta (2006) for piles under vertical vibration. 

Most of the work on dynamic analysis of pile is based on Baranov’s 
(1967) solution on embedded foundation. The present formulation is based on 
Novak and Beredugo’s (1972) usage of the above for a rigid cylinder embedded 
in elastic half space. Shown in Figure 1 is a pile embedded in homogeneous 
elastic medium and considered under plane strain condition.  

 

 P 

M

X

Z dz

Soil Stiffness = GsSx1

 

 

 

 

 

 

 

 
Fig. 1 Conceptual Model of Pile under Lateral Load 

 

The pile is considered long and slender, to start with. Under static 
conditions, the equation of equilibrium in the x-direction [similar to beams on 
elastic foundation] is given by Timoshenko (1956) 

xk
dz

xdIE spp −=4

4

                          (1)  

where, Ep = Young’s modulus of the pile; Ip = moment of inertia of the pile cross 
section; ks = elastic stiffness of the soil and is expressed as GsSx1; Gs = dynamic 
shear modulus of the soil; Sx1 = Beredugo’s constant which are basically 
frequency dependent. 
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However, it has been shown by Novak and Beredugo (1972) that 
considering this term frequency independent, no accuracy is lost for practical 
design problems and the analysis becomes quite simplified for rigid circular 
embedded footing. Elaboration about this parameter, in terms of piles, will be 
made later. 

The general solution of Eqn.(1) may be written as 

)sincos()sincos( 3210 pzCpzCepzCpzCex +++= pzpz−          (2) 

where, 1
4

s x

p p

G Sp
E I

=

pz−

.                                                                         (2a)     

For long piles under load or moment at its head, it is reasonable to 
assume that at significant distance from the pile head (where the load is 
applied), the curvature vanishes. This condition can only be satisfied when C2 
and C3 in Eqn. (2) is considered insignificant. Hence the deflection equation   
can be taken as  

)sincos( 10 pzCpzCex +=                                                     (3) 

Considering the pile head undergoing specified deflection and rotation as 
well as its head is fixed to the pile cap (same boundary condition as considered 
by Novak (1974)), one can have [Figure 1], at z = 0, let x = x0 00 xC =⇒ , 
which gives, 

0 1( cos )pzx e x pz C sin pz= +−     (4) 

Again, at z = 0, 0
x
z

d
d

θ=  one can have 

p
xC 0

01
θ

+=                                                                                 (5) 

Thus Eqn. (4) can now be represented as  

)sincos( 0
00 pz

p
xpzxex pz

⎟⎟
⎠

⎞
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⎝
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++= − θ

                                    (6) 

For magnitude of rotation being small 0 0x Lθ ≈ , x may be written as 

0
0 0( cos sin )pz x

x e x pz x pz
pL
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                               (6a) 
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 Now considering pl=β  and using Eqn. (6b), for any arbitrary loading, 
the generic shape function in dimensionless form can be represented as  

( ) (cos sin )L z z1z e 1
L L

zβ β β
φ

β
⎛ ⎞

= + +⎜ ⎟
⎝ ⎠

−

                                             (7)         

in which 

in which
4

s x14

p p

G S Lβ=
E I

 , L being the length of the pile       (7a)                

Eqn. (7) can be further reduced to 

( ) (cos sin )L z zz e
L L

zβ β βφ η= +
−

           (8)  

where     

11η
β

= +                                                       (9)     

  The generic shape function of the pile for the fundamental mode as in 
Eqn. (8) is shown in Figure 2 for a typical value of Ep/Gs=5000. 
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Fig. 2 Generic Shape Function Pile in the Horizontal Mode 
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  The potential energy dΠ of an element of depth dz, shown in Figure 1, 
is then given by [Shames and Dym (1995)]  

2
2

2

22
v

K
dz

vdIE
d hpp +⎥

⎦

⎤
⎢
⎣

⎡
=Π

2

x1

                                                 (10) 

where, Ep = Young’s modulus of pile; Ip = moment of inertia of pile; Kh = lateral 
dynamic stiffness of soil; v = displacement of the pile in the x direction and may 
be written as [φ(z) q(t)]. 

For a rigid circular embedded footing of embedment Df, the stiffness of 
the footing may be expressed (Novak and Beredugo (1972)) as  

h b 0 b s fK = G r C +G D S                                                 (11) 

where,  Kh = foundation stiffness in horizontal direction; Gs = dynamic shear 
modulus of the soil along foundation surface; Gb = dynamic shear modulus of 
soil at the foundation base; r0 = radius of the foundation; Cb and Sx1 = constants 
which are basically frequency dependent.  

Ignoring the first term in Eqn. (11) which represents the contribution of 
base resistance, and substituting the same in Eqn. (10), for a cylindrical element 
of depth dz, embedded in soil, the potential energy dΠ  may be expressed as 

2
p p 2s x12

2

E I G S dzd vdΠ = +
2 dz 2

⎡ ⎤
⎢ ⎥⎣ ⎦

v             (12) 

The total potential energy over the length of the pile (L) is then given by 

2L L2
p p 2s x1

2
0 0

E I G Sd vΠ = dz +
2 dz 2

⎡ ⎤
⎢ ⎥
⎣ ⎦

∫ ∫ v dz        (13) 

Considering v(z,t) = φ(z) q(t), it can be proved (Hurty and Rubenstein 
(1967)) that, 

                            (14)          ′′ ′′∫ ∫
L L

ij p p i j s x1 i j
0 0

K = E I φ (z)φ (z)dz+G S φ (z)φ (z)dz

where the shape function of the problem is given by  Eqn. (8). 

For the fundamental mode, stiffness of the pile is then given by 

L L
2 2

p p i s x1 i
0 0

K = E I φ (z) dz+G S φ (z) dz′′∫ ∫         (15)                       

On double differentiation, Eqn. (8) reduces to 
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2

2

2( ) (sin cos )L
z z zz e

L L L

ββ β βφ η′′ = −
−

           (16) 

and     
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where,   

21 η+=X ;  and 21 η−=Y η  is given in Eqn. (9). 

Again from Eqn. (8)  
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Substituting Eqns. (17) and (18) in Eqn. (15), the stiffness reduces to  

4

⎠
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Eqn. (19) on integration by parts and on simplification may be   
expressed as   
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In Eqn. (20), e-2β(sin2β+cos2β) and e−2β(sin2β-cos2β) may be ignored as 

their values are exceedingly small( highest is of the order 10-3 and the lowest is 
10-30  for Ep/Gs value varying from 250 to 10,000) and has practically no effect 
on the stiffness value and this also considerably simplifies the expression. 
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Based on the above simplification, Eqn. (20) may be rewritten as  
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Taking EpIpβ3/L3 as common in Eqn. (22) and substituting the value of β 
from Eqn. (7a), Eqn. (22) reduces to  
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The accuracy of Eqn. (23) will be dependent on the correct selection of 
Sx1. F

   
      

 Sx1 has been obtained by using similar technique used 
earlier 

Table 1  Suggested Value of Sx1 for different Ep/Gs value of soil with 

L/r0 
(Slenderness 

Sx1 Sx1 Sx1 
(1000) 

Sx1 
(2500) 

Sx1 
(5000) 

Sx1 
(10000) 

or instance for rigid circular footing Novak and Berdugo (1972) has 
furnished a frequency independent value of Sx1 = 4.0 to 4.1(depending on 
Poisson’s ratio). This has been found to give adequate accuracy for practical 
engineering design. Comparing the stiffness data with Novak (1974) and Dobry 
and Gazetas (1988), it is proposed that the values of Sx1 as furnished in  
Tables 1,2 and 3 be used for the calculation of dynamic response of the pile in      
the lateral direction. 

The values of
by Lysmer and Richart (1966), for deriving equivalent stiffness and 

damping of circular footings for Lysmer’s analog from a solution based on elastic 
half space theory as proposed by Bycroft(1956). 

Poisson’s Ratio  = 0.25 (figures in the parentheses are Ep/Gs) 

Ratio) 
(250) (500) 

25 2.00 1.83 1.66 1.43 1.25 1.07 
40 2.19 2.05 1.90 1.70 1.55 1.39 
60 2.30 2.17 2.05 1.87 1.74 1.60 
80 2.36 2.24 2.12 1.96 1.84 1.71 

100 2.39 2.28 2.17 2.01 1.90 1.78        
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Table 2  Suggested Value of Sx1 for different Ep/Gs value of soil with 

Poisson’s Ratio = 0.40 (figures in the parentheses are Ep/Gs) 

(
Ratio) 

) 
L/r0 

Slenderness 
Sx1 

(250) 
Sx1 

(500) 
Sx1 

(1000) 
Sx1 

(2500) 
Sx1 

(5000) 
Sx1 

(10000

25 2.27 2.08 1.89 1.63 1.43 1.23 
40 2.48 2.32 2.16 1.94 1.76 1.59 
60 2.60 2.46 2.31 2.12 1.97 1.82 
80 2.66 2.53 2.40 2.22 2.08 1.94 

100 2.70 2.57 2.45 2.28 2.15 2.02               

Table 3  Suggested Value of Sx1 for different Ep/Gs value of soil with 
Poisson’s Ratio = 0.50 (figures in the parentheses are Ep/Gs) 

(
Ratio) 

) 
L/r0 

Slenderness 
Sx1 

(250) 
Sx1 

(500) 
Sx1 

(1000) 
Sx1 

(2500) 
Sx1 

(5000) 
Sx1 

(10000

25 2.45 2.25 2.05 1.77 1.55 1.34 
40 2.67 2.50 2.33 2.09 1.91 1.72 
60 2.80 2.65 2.50 2.29 2.13 1.96 
80 2.87 2.72 2.58 2.39 2.24 2.10 

100 2.91 2.77 2.63 2.45 2.32 2.18 
 

or a particular pile having specific slenderness ratio and Poisson’s ratio 
of the soil, the value of Sx1 can be selected from Table-1 and on substitution     
of the 

ontribution of Pile Mass 

d [Meirovitch(1967)] as 

24) 

For the present ca  of length L, Eqn. (            
expressed as 

F

same in Eqn. (7a), Eqn. (23) gives the solution of pile stiffness in the 
lateral direction. 

Estimation of C

The mass matrix of the pile may be expresse

dzzzxm ji∫ )()()( φφ                                   (M x =

se of the pile 24) can be  

∫=
L

pp A
M

γ
x dzz

g 0

2)(φ                                    (25) 

where, γp = unit weight of the pile material; Ap = cross sectional area of the pile;          
g = acceleration due to gravity. 
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or,  
2 2 2
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zL
p p L
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A X Y z zM e
0
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g L L

βγ β β−

η⎡ ⎤= +∫ +⎢ ⎥⎣ ⎦
             (26)   

Eqn. (26) on integration and after simplification gives 

⎥
⎥
⎥
⎥
⎤

⎢
⎡ ++− − ηγ

β

2
)1( 2eXLApp

⎦⎢
⎢
⎢

⎣

=
β4

Y

g
M x

                    (27) 

Eqn. (27) is the inertial contribution of the pile material for the 
fundamental mode. Incidentally, the inertial effect is usually ignored in design 
but could have significant effect if the number of piles is large in a pile group. 

ll be constituted of two 
mping of the soil. It is 

obvious that the material damping of the pile will be much lower than that of the 
soil ra

  
           

ed the expression 

Radiation Damping for Pile under Lateral Load  

Damping of the pile embedded in soil medium wi
parts: material damping of the pile itself and radiation da

diation damping. Material damping of soil is also a part of the vibration 
system. However, it has been found that for translational vibration their effect  
is insignificant and may be neglected. Else if desired, their values may  
be obtained from resonant column test from the laboratory when the damping 
may be obtained from ratio of successive amplitudes. As the first step for 
calculating the total damping, one may ignore the material damping of the pile 
for the  time being. 

For a rigid footing embedded in soil for a depth Df, Novak and Beredugo 
(1972) have propos

( ) ( )z 0 b b b 0 s x2C = r ρ G C +r ρG S D       (28) f

where, r0 = radius of the foundation; = dynamic shear modulus at the 
foundation base; Gs = dynamic shear mod s of the soil in which the foundatio

Gb 
ulu n 

is embedded; Df = depth of embedment; 2 and b xC S =  frequency independent 
constants as defined by Novak and  Berdugo (1972). 

With reference to Figure 1 for a pil of length dz embedded   
in the soil, and ignoring the bearing effect, Eqn (28) ma

e element     
y be expressed as  

( )0 s x2c(x)= r ρG S dz                       (29) 

For systems hav us response function, the damping 
expressed as [Paz (198

For the pile of length L, Eqn. (30) may be expressed as 

ing continuo may be 
6)]  

dzzzxcC jix ∫= )()()( φφ             (30) 
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( ) ∫ 2
x 0 s x2

0

C = r ρG S φ(z) dz
L

                

or,

              (31) 

( )
L -2βz

L
L

x 0 s x2
0

X Y 2βz 2βzC = r ρG S e + cos +ηsin⎡ ⎤
⎢ ⎥2 2 L⎣ ⎦∫           (32) 

On integration and after simplification Eqn. (32) reduces to 

( )
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

-2 β

x

YX(1- e )+ +η
2C = r ρG S L                   (34)     

Eqn. (34) expresses the soil dampin gle pile under hori
mode of vibration. The factor  is a freque dent damping coef
Fortunately the damping fac uired for calculating the amplitude when  
the eigen solution of the prob is already done vis a vis, the dimensionless 
freque

0 s x2 4β

g for a sin zontal 
ncy depen ficient. 2xS

tor is req
lem 

ncy number svra /00 ω= term is known a priori. Polynomial fit curve for 

2xS  are available in terms of 0  which can be used directly to obtain these 
parameters. Sx2 for different Poisson’s ratios are  given in Table-4. 

 

Table 4  Values of 2  [Beredugo and Novak (1972)] 

 a

Sx

Poisson’s ratio Sx2 

  0.0 
00874.0

8652.0
334.7 0

0 +
a

a  
0 +a

90.3
59.41

83.0
0

0
0 +

+
a

a
a  0.25 

0.5 
68.4

559.56
96.0

0

0
0 +

+
a

a
a  

 

Material Damping of Pile 

he structural stiffness contribution of the pile is given in the first part of 
Eqn. (2 while that of the mass is given in Eqn. (27). Thus, if  be the critical 

n be expressed as

T
2), cC

pdamping of the pile then it ca c KmC 2= ; K and mp are 

being the stiffness and mass matrices of the pile. 
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Depending on the material used for pile (like RCC, steel etc.) a suitable 
damping ratio ( )ζ  can be assumed. The damping (Cp) for the pile can then be 
expressed as 

p cC Cζ=                                                                       (35) 

let

Piles with o

Having established the stiffness, mass and damping of the pile in lateral 
directio

nditions for which 
there are no standard solutions available. 

Partially Embedded Piles 

ng equipments are placed. In such 
used. However, a solution of the same   

representation of partially embedded pile     

                          

et L e embedment         
in soil 1. 

For thi

This, when added to the radiation damping, calculated through Eqn. (34), 
gives the comp e damping quantity for the soil-pile system.  

ther Boundary Conditions 

n based on minimization of the potential energy of the system, the above 
method can be extended for the piles with other boundary co

In Arctic and North Siberian condition, due to environmental reasons, the 
steel piles are driven into the ground when they protrude about 2-3m above the 
ground over which the pile cap and vibrati
cases the existing solutions cannot be 
is proposed hereunder. Aschmatic 
is shown in Figure 3.  

 

 Pile Cap

 Rotating Machine Dynamic Force

 Partially Embedded Piles

 G.L.

 L1 L

 

 

 

 

 

 

 

Fig. 3  Schematic Diagram of Partially Embedded Piles  
under Horizontal Load 

be the full length of the pile and the length of thL
be L

s case, one may write 

1

4
s x 1

4e
p p

G S L
β =

E I
                    (36) 
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Here s

The shape function can thus be represented by 

ubscript “e” represents embedment of the pile. 

1

1 1

( ) (cos sin )
e z

L e ez zz e
β−

L L
β βφ η= +                      (37) 

and  1

2

2
1 1 1

e
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e z
Le e ez zz e

L L L

β
β β βφ η
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and hence    
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24
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1
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Le e e eX sie

e
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L L L

β
β β βφ η
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⎝ ⎠
            

an

− (39) 

where, d 2
e eX = 1+η ; 2

e eY = 1 - η  
e

e

1η = 1+
β

. 

Now nsidering the fact that the embedment of a pile does not have 
any effect on the shape function of the system (Timoshenko et. al. (1990)),     
the stiffness of the pile for the fundamental mode may be written as  

L
           (40) 

Considering, 

, co

∫ ∫
1

1

L
2 2

p p i s x i
0 0

²K = E I φ (z) dz +G S φ (z) dz

1LL=α , Eqn. (40) may be rewritten as 

e1
4 -2β zαL

p p e e e e eL1
4E I β X Y 2β z 2β zK = e - cos - η sin dz+

⎛ ⎞
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e1

e4
01 1 1

-2β zL
e e e eL
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0 1 1

L 2 2 L L

X Y 2β z 2β zG S e + cos +η sin dz
2 2 L L

⎝ ⎠
⎛ ⎞
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⎝ ⎠

   (41) 

Eqn. (41) on integration by parts and after simplification, may be 
expressed  

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝⎣ ⎦
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⎟
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3
-α)

e e e e3
1

E I β 1 1 α 1 αK = X +α +Y - +η -α - X e e +1
L 4 8 2 4 4

       

which can be further simplified to 

(1   (42) 

( )

2 2 (1 )

33
1

1 1 1 1
4 8 2 4 4

1

e e
e e e e

p p

e

X⎡ Y X e eE I
K

L

β β αα αα η α

η

− − − ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + − + − − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦=
−

    (42a) 
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Eqn. (42a) gives the solution for stiffness of a partially embedded pile in 
the ground. The correctness of the equation can be back checked b
that when the pile becomes fully embedded i.e. for L1 = L

y the fact 
 1→α , βe = β, Xe = X 

etc. when Eqn. (42a) degenerates to Eqn. (23). 

Proceeding in an identical manner as done before, the mass and 
damping terms may be computed as 

⎥⎦⎢⎣
e ⎥

⎥
⎥
⎤

⎢
⎢
⎢
⎡

−

++−
=

−

)1/(1
2

)1(

4

2

1
e

e
e

pp
x

Y
eX

g
LA

M
e

η

αη
α

αγ
β

        (43) 

( )
e2 e

e e
YX (1 e )
2

− β

xC r G S L

⎡ ⎤− + + η⎢ ⎥
0 s x2 1

e4 /( 1)
= ρ ⎢ ⎥η −⎢ ⎥

⎣ ⎦

 (44) 

Pile Embedded in Soils with varying Elastic Property 

In the previous section, the calculation of stiffness as well as the 
damping of soil was based on constant dynamic shear modulus of the soil. 
While this could be possible for clayey soils, there are cases where the dynamic 
shear modulus of the soil has been found to vary with depth. Generally this    
can be expressed as  

  

′ sG = G ( x L )m                (45) 

where m = a number varying from 0-2 (considered 0 when G is constant with 
depth , assumed 1 for linear variation and 2 for parabolic distribution). 

For a linearly varying soil the stiffness matrix can be written as  

4 -2βzL
p p L

4
0

4E I β X Y 2βz 2βzK = e - cos - ηsin dz
L

⎛ ⎞
∫ ⎜ ⎟

⎝
-2βzL

s x1
0

2 2 L L
z X Y 2βz 2βz+G S cos +ηsin dz
L 2 2 L L

⎠

⎛ ⎞ ⎞
∫ ⎜ ⎟ ⎟
⎝ ⎠ ⎝ ⎠

    (46) 

     
n. (46) 

reduce

                          

Le +⎛
⎜

Integration of above and ignoring the terms containing the factor,    
βe-2β.cos2β, β.e-2βsin2β etc., having extremely small contributions, Eq

s to  

( )⎡ ⎤
⎢ ⎥⎣ ⎦

p p -2β
3

E I β YK = X 1-e - -η
L 2

3 ⎡ ⎤⎡ ⎤⎣ ⎦⎢ ⎥⎣ ⎦
-2βs x1

2

G S L 3Y η+ X 1- e (1+ β) + +
4β 4 2

  (47) 
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and can be further simplified to 
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⎥
⎦
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β β
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16
3

2
1

4
1

4
111 2

3

3

YeX
L
IE

K pp     (48) 

The damping matrix for this case, proceeding in same manner as 
outlined earlier, can be represented by  

( ) ⎡ ⎤⎡ ⎤⎣ ⎦⎢ ⎥⎣ ⎦

0 s x2 -2β
x 2

L 3Y ηC = X 1- e (1+ β) + +
4β 4 2

                  

ains the same as expressed in Eqn. (27). 

When the dynamic shear modulus variation is parabolic with depth, the 
stiffness equation of the pile can be expressed as  

r ρG S
(49) 

The mass coefficient rem

4

s x1
0

4E I β X Y 2βz 2βzK = e - cos - ηsin dz

2βzηsin dz
L 2 2 L L

⎛ ⎞
∫ ⎜ ⎟

⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

Eqn. (50) on integration and on subsequen n reduces to 

-2β zL
p p L

4
0

2 -2β zL
L

L 2 2 L L

z X Y 2βz+G S e + cos +

⎝ ⎠

⎛ ⎞ ⎛
∫

   (50) 

t simplificatio

( )⎡ ⎤
⎢ ⎥⎣ ⎦

p p -2β
3 X 1- e - - η

L 2
+ ⎡ ⎤⎛ ⎞⎛ ⎞3E I β YK = ⎢ ⎥⎜ ⎟⎜ ⎟

⎢ ⎥⎝ ⎠⎝ ⎠

-2βs x1
2 2X - e 2+ -

4β 4β β β
 

⎣ ⎦

G S L 1 1 2 (51) 

which can be further simplified to 

⎡ ⎤⎧ ⎫⎛ ⎞ ⎛ ⎞
⎢ ⎥⎨ ⎬⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎩ ⎭⎣ ⎦

3
p p -2b

3 2 2

E I β 1 3 1 1 YK = X 1+ - e + - - - η
L 16β 2 4β 8β 2

  (52) 

Eqn. (52) gives the stiffness expression of pile under parabolic variation 
of G along the length of pile. 

expressed as                  
Proceeding in same manner as stated above the damping matrix may be 

( ) ⎡ ⎤⎛ ⎞⎛ ⎞
⎢ ⎥⎜ ⎟⎜ ⎟
⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

0 s x2 -2 β
x 2 2

r ρG S L 1 1 2C = X - e 2+ -
4β 4β β β

            (53)  

The mass coefficient remains the same as expressed in Eqn. (27). 
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Computation of Bending Moment and Shear Force  

For machine foundation subjected to a lateral load of P0 sinωmt,            
the amplitude of vibration is given by 

( ) ( )222 21 rr
K

ζ+−
           (54) 

0P
ωsin

)(
t

tv
m

=

where,  ωm = operating frequency of the machine; P  = unbalanced dynamic 
force; r = ωm/ωn = the ratio of operating and natura cy; ζ= damping
of the system. 

0
l frequen  ratio 

Thus the peak amplitude is given by 

( ) ( )222 21 rr ζ+−

0

K
P

           )(tv = (55) 

The complete displacement and bending moment functions are given by 

v(z,t)= 

( ) ( )
)(

21 222

0

z
rr

K
P
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ζ+−

   (56) 

or        v(z,t)= 
( ) ( )

0 z
P
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cos sinL z zK e
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      (58a)  

The maximum moment will be at the head i.e. at z = 0, and it can be 
expressed as 

( ) ( )

0

max 22 22

2
( 1)

1 2

p pE I P
KM

Lr r

β β

ζ

+⎛ ⎞= ⎜ ⎟
⎝ ⎠− +

                  (59) 
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The shear force is given by  

=−=′′′ )(zVvIE pp
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  (60) 

Dynamic Response of Short Piles in the  
Horizontal Mode 

There are no solutions till date for this type of piles. Existing solutions are 
based on long piles with the implicit assumption that under ultimate load piles 
fail before  number of areas (e.g. Bonny river delta   
in Nige tute of very weak clay underlain by dense 
sand) where the soil will yield much before the pile. Broms (1965) has shown 
that the displacement curvatures for such piles are completely different than  
that of long piles.  

While a long pile embedded in soil behaves as a semi-infinite beam on 
elastic foundation, a short pile behaves as a beam of finite length on elastic 
foundation. Bojtsov, et. al.(1982) has given solution to the generic displacement 
curves of such short beams on elastic foundation which is given by 

 the soil. However there are
ria, where the topsoil consti

0 1

2 3

x = C cosh pz cos pz +C cosh pz sin pz +
C sinh pz sin pz +C sinh pz cos pz

      (61) 

e in terms of Puzrevsky function (Karnovsky and 
Lebed 

where p is same as expressed in Eqn. (2a) 

Expressing the abov
(2001)), Eqn. (61) can be expressed as  

)()()()( 33221100 pzVCpzVCpzVCpzVCx +++=       (62) 

where,  

pzpzpzV coscosh)(0 =           (63) 

)cossinhsin(cosh
2

1)(1 pzpzpzpzpzV +=         (64) 

pzpzpzV sinsinh)(2 =            (65) 

)cossinhsin(cosh
2

1)(3 pzpzpzpzpzV −=       (66) 
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Puzrevsky function, defined below, has some unique functional 
properties, which will be used for subsequent analysis for derivation of the 
stiffness, damping and mass of the piles. 

1)0(0 =V ; 0)0(0 =′V ; 0)0(0 =′′V ; 0)0(0 =′′′V               (67)  

 

2)0(1 pV =′ , 0)0(1 =′′V ; 0)0(1 =′′′V01 ;)0( =V       (68) 
 

0)0(2 =V ; 0)0(2 =′V ; 2
2 2)0( pV =′′ , 0)0(2 =′′′V      (69)        

    

0)0(3 =V ; 0)0(3 =′V ; 0(3′′V ; 3
3 22)0( pV =′′′0) =     (70)  

)(2)( 23 pzVppzV =′ ; )z ;  (71)  (2)( 12 pVppzV =′       

)(2 0 pzVp= ;)(1 pzV ′ )(2)( 30 pzVppzV −=     (72) 

For a solution of the short pile one may use the model shown in Figure 4. 

′

For the analys s similar to previous cas pile may be assumed
fixed at the base and fixed at the pile cap d can undergo de   
nd rotation at pile head. Considering base of pile at z = 0 shown in Figure 4, 

y write, 

At z = 0, x = 0 

i e, the  as 
 level an flection  

a
one ma

′00 =⇒ C  and at z = 0 x = 0 01 =⇒ C  which gives,  

)) 322 pzVCVCx (( 3pz +=          

 

 

 

 

 

 

 
Fig. 4  Conceptual Model of Short Pile under Lateral Load 
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At the pile head, i.e. at z = L x = 1 gives 

1)()( 3322 =+ pLVCLV  

 
C p   (74) 

gain at z = L x′ =1/L ( as θ=δ/L) which gives  A

1)()( 3322 =′+′ pLVCLVC p /L           (75)  

Using Eqns. (71) and (72), one may write 

2
1)()( 2312 pL
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he above may be expressed in 

        (77) 

which c e further reduced to  
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Performing the above operation gives  
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Thus, the displacement for the given boundary condition is then 
expressed as  
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the generic shape function in 
dimensionless form is given by 

Based on above considering β=pL, 
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he determinant Δ gets modifiedwhere t  to )(2
2 βV=Δ )()( 31 ββ VV− . 
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Considering A = ⎥
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the shape function can now be expressed as  
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A typical shape function for the short piles Ep/Gs = 2500 is sho
Figure 5.          
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Differentiating Eqn. (83) and using properties mentioned earlier one 
could have 
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g the above functions in Eqn. (15), the stiffness can be 
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Eqn. (85) is too complicated to solve in closed form as such numerical 
quadrature schemes may be used to obtain K. 

onsideringC  
L
z

=ξ  we have dzdL =ξ.  and as ;Lz → ;1→ξ as 

0→z ;0→ξ which gives 
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Fig. 5 Generic shape Function of Short Pile for Ep/Gs = 2500  
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βIE
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44
= LdBVAVGSLdBVAV

L x
0

321
0

10 ∫∫ +++  (86)     

Substituting the value of β [Eqn. (7a)] in Eqn. (86), the stiffness may be 
written as 

]  (87)  

    

[ ] [ ])()()()(4[
21

0
32

21

0
101 ξβξβξξβξβξ dBVAVdBVAVLGSK x ∫∫ +++=  

]4[ 211 IILGSK x +=                                                 (88) 

where 

 and  (89) 

The integr an very easily be solved by using Simpson’s 1/3rd 
rule between limits 0-1 an an be back substituted in Eqn. (88) to compute   
the stiffness for the short pile.  

However, one should note that there is no theoretical or experim
benchmarking against which the stiffness values can be checked or compared. 
So use of the expression must always be backed up by dynamic field test of the 
piles to

tive values of Sx1 for various Ep/Gs given in Table-5. 

Table 5  Suggested for Sx1 for Short Piles  (L/R ≤ 20) for  
Field  Data Iteration 

Ep/Gs Sx1 Sx1(ν=0.5) 

[ ] ξβξβξ dBVAVI
21

0
101 )()(∫ += [ ] ξβξβξ dBVAVI

21

0
322 )()(∫ +=   

als I1 and I2 c
d c

ental 

 adjust the data (especially Sx1 or Ep/Gs) to match with the field observed 
values. In absence of comparative benchmarks the design may be initiated with 
the sugges

(ν=0.25) Sx1(ν=0.4) 

250 1.53 1.75 1.89 
500 1.35 1.54 1.68 

1000 1.17 1.34 1.46 
2500 0.95 1.09 1.46 
5000 0.95 1.09 1.46 

10000 0.95 1.09 1.46 
 

The values mentioned above, are based on the formulation for long pile 
(with L/r < 25) but may be used as a starting point for the iteration based on field 
observed data. 

The mass of pile for the fundamental mode is given by 
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To st e design a of Sx1 is se  for a spe p/Gs from 
Table-5 and fo ut the val frequenc ed on Eqns. (88) and (90). 
Let this be defi as 

art th value lected cific E
und o ue of the y bas
ned cω wher bscript c w puted”. 

Let the field  na fre y of the pile 

e the su stands for the ord “com

-tested tural quenc be fω , where cfω ≠ ω . 

In most of cases it has b  seen (Jadi. H ( 9)) that the bserved 
frequency v viates from the computed on  is usually s by about 
30-40%. This is logical, for when the pile is bored or driven the soil gets 
displaced and clayey soil may loose a part of its shear strength thus resulting in 
reduce

 more than the computed ones, especially in sandy soil where 
the soil gets densified due to pile driving. The bottom line is that in rare cases 
the com

Based on the above argument the error(ε) in the analysis is then 

een 199
es and

 field o
 variealue de

d dynamic shear modulus compared to the value observed during 
geotechnical investigation. There could be cases where the field observed 
values might be

puted and observed values would match very closely. 

given by 

 2 2
c fω ω= . fc ωωε −= ,  we have fc ωω =  and for 0→ε

2
c

K
Considering 

M
ω =  and using Eqns. (88) and (91), one can have, 
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γ pp
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I
I

A
gSG                                                     (92) 2

f

n (Lasdon et al. 
(1978)). The procedure begins with the nonlinear optimization technique with 
equalit
or xs

2 to 
to fi(x) = 0 for i where j is mber of constrained equations and n 
is the number o ndent v e n > m. 

It will be observed that all the factors β, I1, I2 in Eqn. (92) is a function of 
Ep/Gs. The difference (= the error ε) can now be set to zero or minimum by 
varying the value of Ep/Gs for which lim ε → 0. 

This can very easily be done by using the standard solver or goal seek in 
a spreadsheet with boundary constraint that Sx1 > 0.   

The solver basically uses an algorithm called generalized reduced 
gradient technique (GRG2) used for constrained optimizatio

y constraints. The necessary slack and surplus variables are added as xs 
any inequality constraints, and the problem is to optimize y(x), subject 

= 1, 2, ..., j, the nu
f indepe ariables wher
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This is a very standard technique used in all nonlinear programming and 
is use s a math y 
available software like MS excel, MATLAB etc having varied applications in 
engineering, science and economics modeling. 

Use of the above will a Ep/Gs and u
the values of I2 and I1(dimensionl p s which may th
used to calculate the revised and exact stiffness and mass contribution of the 
pile which would closely simulate the field condition. 

d routinely a ematical tool in many standard commerciall

utomatically revise the value of pgrade 
ess but a function of E /G ), en be 

The steps are furnished in detail in Appendix A as to how the data are 
updated and corrected for the example cited in example mentioned below. 

Having established the mass and stiffness coefficients of the pile 
correctly based on field data the damping may now be established as  

( ) 220 ILSG xsρ                   (93) 

where I2 is the corrected upgraded value and Sx2 is as obtained from Table 4. 

Comparison of Results 

The method proposed herein can very well be

r

 used for dyna
s

 is shown
for comparison. 

Cx =

mic analysis 
of pile

 

 

 under horizontal force. However, the sanctity of the same will depend on 
how accurately the stiffness values have been evaluated. For this two RCC piles 
of radius 0.3m, 0.6m of length 30m has been has been checked with the 
reported results for comparison. The values Kxx [Eqn. (23)]  in Figure 6 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6  Comparison of Stiffness Values for  r = 0.3m and Length = 30 m 
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Next, the results of uncoupled horizontal frequency of a real time 
compressor foundation weighing 400kN supported on 9 RCC piles of length 
36m an eter 1.8 m. The pile cap size is 7mX5mX2m. The piles are spaced 
at dista ce of 3.0m. The natural frequencies of the foundation are compared for 
Ep/Gs value varying from 250-10,000. Weight of the compressor is 400 kN. 

he results clearly shows that the values are in very good agreement   
for the base case and thus can well be used for other cases as mentioned 
above for which there are no direct solutions. Finally, the stiffness of a short pile 
has be mputed. This is based on the field observed data having the 
following properties: 

ength of Pile = 10m, diameter of pile = 1.2m, material of pile = RCC.  

ethod of installation- Bored Pile 

ased on soil test, observed Ep/Gs = 5000. 

p considered = 3X107 kN/m2. 

weight of pile material = 25 kN/m3. 

eld observed natural frequency of the pile is = 58rad/sec (9Hz). 

Poisson’s ratio of soil considered = 0.4. 

or the above conditions:  Selected value of Sx1 from Table-5 =1.09 

E /G = 5000 (given), 

d diam
n

T

en co

L

m

b

E

unit 

fi

F

p s

β = 2.1512.                       from Eqn. (7a) 

A= 0.50135 ; B=0.02705  from Eqn. (82) 

I1= 0.23802, I2 = 0.9035    from Eqn (89) 

Computed natural frequency
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

p

p

M
K = 68.26 rad/sec (11Hz) 

           Error(ε) = 10.26 

et 
for cha nt Sx1>0, the following upgraded data 
have be

1.96064; A=0.65984; B = -0.04832; I1 = 
0.27266 a

z). 

s of 
the pile kN/m. 

ue has increased from 5000 to 
7246 m me of its initial strength due to 
boring 

Setting the error (ε) = 0 and running the solver function in a spread she
nging Ep/Gs for boundary constrai
en obtained: 

Sx1 = 1.09; Ep/Gs = 7246; β =
nd  I2 = 0.949504. 

Computed natural frequency based on above data =58 rad/sec(9H

Revised Error(ε) = -2.79X10-7 

Thus based on the above data as per Eqn. (88), the correct stiffnes
410206.9 × is deduced as K = pile 

It is to be noted here that the Ep/Gs val
eaning thereby that the soil had lost so

of the pile-which is quite logical. 
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Results and Discussions 

  Referring to Figures 6 and 7, it may be observed that the stiffness 
values are in excellent agreement with the existing solutions. Assuming that the 
base c ent, the other formulations can now be very 
easily adapted for which there are no solutions available. 

ble 6 shows the uncoupled horizontal frequency, the result speaks for 
itself, for the frequency based on proposed stiffness matches with the existing 
results almost exactly. However, the natural frequency at Ep/Gs = 5000 based on 
Novak’s solution reflects an error that could set in due to linear interpolation. 

Table 6  Comparison of Natural Frequency for a Compressor Foundation 

Ep/Gs 
Frequency 

(rad/sec) with 
Kproposed 

Frequency 
(rad/sec) with 

KNovak 

Frequency 
(rad/sec) with 

KGazzetas 

ase being in such agreem

   

 

 

 

 

 

 

 

 

 

 

 
 

 

Ta

250 252.64 251.44 252.57 
500 192.10 194.85 192.07 

1000 146.14 150.76 146.07 
2500 101.79 107.21 101.71 
5000 77.30 94.66** 77.35 

10000 58.87 63.98 58.82 
y interpolated from Novak’s table for 

p/Gs= 5000 
** The stiffness value was linearl
E

 

Fig. 7 Comparison of Stiffness Values for  
r = 0.6m and Length = 30m 
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The short pile case is basically a theoretical solution and needs 
significant field test and lab testing to arrive at a predefined S  value, which 
would 

ing 
Gazetas’/Novak’s formula which is anyway not valid for such piles while Novak’s 
m
         
Conclusion 

A comprehensi tical soluti ynamic an  long piles 
has been ented an d agreem h the existing so ns. Based 
on this, p ith bou onditions l al embedm ls with 
varying G lso be d. 

The solutions n worked out for various v Ep/Gs and 
ν varying 10 nd 0.25-0 tively. Po ratio, ν is 
insensiti il type, essure d ratio but d  very much 
on the d

lays and sands below WT,  ν ≈ 0.5 
y saturated clays, above WT, ν ≈ 0.4   

 out the 
tiffness and damping of pile only. No direct formula for bending moment or 

een derived or suggested by them. It is for this the industrial 
n of machine foundations resting on pile is restricted to 

resonance and amplitude check only and no calculation is usually done for 
derivin

ar force can also be obtained by this method, 
and that too analytically inducing no numerical error the standard practice of 
restrict

ile. This when combined 
with static load would give the design moment for the pile. 

exists also can be solved by 
the pre

ate software is required 
and can directly be used for design office use by generating a simple 
spreadsheet. 

x1
make the method more powerful. However in absence of such data the 

present solution could become a very powerful tool for the dynamic analysis of 
such piles for which no solution is available and yet remains a serious practical 
problem. The proposed method would be far more rational then us

ethod does not provide with any coefficients (L/r < 25) for the same. 

ve analy on for d alysis of
pres
iles w

d is in goo
ndary c

ent wit
ike parti

lutio
ent and soi

s can a  analyze

have bee alues of 
 from 250- 000 a .5 respec isson’s 

ve to so  confining pr and voi epends
egree of saturation and drainage condition. 

or saturated cF
Nearl
Wet silty sand (Sr = 50 to 90%),   ν≈ 0.35 
Nearly dry sands, stiff clays and rocks,  ν ≈ 0.25 

This range is sufficient to cater to all type of soils i.e. from very soft clay 
to reasonably stiff medium dense sand. Details of Gs and Ep values are reported 
elsewhere (Fang (1997)). 

It may be noted that both Novak and Gazetas has worked
s
shear force has b
practice of desig

g the dynamic moments and shears induced in the pile due to dynamic 
loads. To circumvent this deficiency and uncertainty, the pile load is usually 
restricted to only 50% of its static capacity. Considering the fact that the 
dynamic bending moment and she

ing the pile capacity to 50% of its capacity will not be necessary. It will be 
observed from Eqns. (58) and (60) that the moment and shear take care of the 
dynamic magnification factor of the load at the same time gives a complete 
distribution of its magnitudes along the depth of the p

Short piles for which no established method 
sent method. 

The analysis being totally closed form no elabor
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Notations 
The following symbols are used in this paper: 

Ap = cross sectional area of the pile  

a0 = dimensionless frequency number svr0ω   

Cb and Sx1 = Beredugo’s frequency dependent constant  

=2 and SCb  frequency independent constants   

cC  = critical damping of the pile = pc KmC 2=    

Cp = damping for the pile   
Df = depth of embedment   
Ep = Young’s modulus of pile   
Gs = dynamic shear modulus of the soil  
g = acceleration due to gravity  
Gb = dynamic shear modulus of soil at the foundation base   

mG G(x L)′ = = dynamic shear modulus of the soil, where m = a number 
varying from 0-2 [considered 0 when Gs is constant with depth, assumed 

ks = elastic stiffness of the soil and is expressed as GSx1  
ral dynamic stiffness of soil   

e pile   

 

r = ωm/ωn = t ency  

1 for linear   variation and 2 for parabolic distribution] 
Ip = moment of inertia of the pile cross section   
K=  stiffness  of the pile  

Kh = late
L=  length of th
L1=  length of the embedment in soil  
mp = mass of the pile  
M(x) = mass variation along the pile length  
P0 = amplitude of dynamic force  
r0 = radius of the foundation  

he ratio of operating and natural frequ

2xS = frequency dependent damping coefficient factor   

v = displacement of the pile in the x direction = φ(z) q(t)  
V(z)= Puzrevsky functions  

=α embedment ratio L/L  1 

γ  = unit weight of the pile material   p

ζ = damping ratio  

П = total potential energy over the length of the pile, L   
=ρ mass density of soil  

φ(z) = shape function  
ωm = operating frequency of the machine   

cω = computed natural frequency of the pile  

fω  = field-tested natural frequency of the pile. 
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Appendix A 

Computer run steps for short pile based field observed data 

The appendix shows the computer run for the evaluation of the stiffness 
of the pile in lateral direction in three steps. 

> Stiffness and frequency calculation of pile based on theoretical data and 
calculating the error based on field observed data. 
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> 
 

The data screen just prior to run of the solver with command to change 
Ep/Gs value keeping the Sx1 value >0.

 
 

> Final value of the stiffness and frequency of the pile after solver has 
optimized the data. 
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