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Introduction 

he seismic behavior of concrete dams has been the subject of extensive 
research during the past decade because of concern for dam safety 
during earthquakes. Concrete dams are distinguished from other 

structures because of their large size and their interactions with the reservoir 
and foundation. The response of a dam during an earthquake depends on the 
characteristics of the ground motion, the surrounding soil and reservoir, and the 
dam itself. For the structure founded on soft soil, the motion of the base of the 
structure will be different from the free-field motion because of the coupling of 
the soil-structure system. This is due to the following reasons: First, the inability 
of the foundation to conform to the deformations of the free-field motion which 
would cause the motion of the base of the structure to deviate from the free-field 
motion. Second, the dynamic response of the supporting structure itself would 
induce deformation of the supporting soil. i.e., the soil on which a structure is 
constructed may interact dynamically with the structure during earthquakes, 
especially when the soil is relatively flexible and the structure is stiff. This kind of 
dynamic soil-structure interaction (SSI) can sometimes modify significantly the 
stresses and displacements of the whole structural system from the values that 
could have been developed if the structure were constructed on a rigid 
foundation. If the foundation is rigid, the energy received by the structure from 
the base during an earthquake, can be dissipated only through material 
damping mechanisms, such as viscous damping. In the case of flexible soils, 
some energy is fed back to the base and radiated away giving rise to the so-
called geometric damping or radiation damping.  

T 

Review of Previous Works 

The general methodologies for soil-structure interaction are direct and 
substructure approaches, depending on the modelling method for the soil 
around the structure (Dutta and Roy 2002). In the substructure method, the soil-
structure system is divided into two substructures: a structure that may include a 
portion of nonlinear soil adjacent to it and the unbounded soil. The unbounded 
soil region is usually represented by an impedance matrix, which may be 
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attached to the dynamic stiffness matrix of the structure. Though simple, this 
method is restricted to simple geometry and linear soil (Wolf, 1985). In the direct 
method, the structure and the soil adjacent to it are modeled directly and 
analyzed in a single step. A consistent free-field ground motion is being applied 
to the boundaries of the discrete model and the response of the combined soil-
structure system is computed. The response of the soil and the structure 
obtained was used as input in a second stage analysis to obtain the detailed 
structural response. Direct SSI analyses were more commonly performed using 
equivalent linear methods to approximate the effects of soil nonlinearity. This 
technique limits the extent of soil domain to be considered (Wolf 1985, 1987). 
Wolf and Song (1996) also developed consistent infinitesimal finite element cell 
technique which proved to be very useful in modeling the unbounded media. 
This method is exact in nature in radial direction and is able to simulate the 
nonlinear behavior of soil. The detailed description of this method can be found 
in this literature.     

Much of the reported research on the dynamic analysis of dam 
foundations assumes linear behaviour of the foundation media. Adnan and 
Wilson (1990) developed an efficient computational technique for the dynamic 
analysis of large linear structural systems with local non-linearities. They 
developed a rational approach to the earthquake-resistant design of structure-
foundation systems with predetermined non-linearities occurring along the 
structure-foundation interface. They had analyzed the dam-foundation model by 
considering local nonlinearities of soil. Yazdchi et.al. (1999) presented a 
computational method for the transient soil-structure interaction analysis using 
the coupled finite element-boundary element method. In the analysis, the half 
space soil was represented by the boundary element method (BEM) with linear 
material properties. Estorff and Firuziann  (2000) investigated the transient 
inelastic response of structures coupled with a half space using a general 
coupled boundary element and finite element formulation. The inhomogenieties 
and elastoplastic behavior with hardening effects were accounted for in the near 
field of the surrounding soil. The far field was modeled using boundary 
elements. At the interface, the nodal forces resulting from the BE were treated 
as additional loads in each iteration. Since non-linearities may occur only in the 
FE sub domain, the geometrical linearity was checked along the interfaces by 
observing the strains at the interface nodes. There is a common belief that 
boundary element method is superior over finite element for the modelling of 
infinite or semi-infinite domains. However, in the reported literature, (Yang et al. 
1993) the efficiency of boundary element method in time domain analysis is not 
ascertained. This is because of the presence of the convolution integral and 
singularity of the kernels of the formulation which requires large storage space 
and computational time for the evaluation of the effect of past time history and 
numerical integration of the kernels.  Moreover, use of boundary element 
method requires the solution of an unsymmetrical and unbounded matrix. Hence 
this method does not possess any significant advantage over the finite element 
method. On the other hand, the FEM are well-established procedures 
(Zienkiewicz and Taylor 1991, Bathe 1996). These methods routinely 
accommodate complex geometries and non-linear phenomena. Kocak and 
Mengi (2000) proposed a simple three-dimensional soil-structure interaction 
model in which the layered soil medium was divided into thin layers and each 
thin layer was represented by a separate parametric model. The parameters of 
this model were determined, in terms of the thickness and elastic properties of 
the sub layer. 
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Two important characteristics that distinguish the dynamic soil-structure 
interaction system from other general dynamic structural systems are the 
unbounded nature (Yun et al 2000) and the nonlinearity (Halabian et al 2002) of 
the soil medium. The coupled response of the dam-foundation system not only 
depends on their material properties, but also on the characteristics of the 
ground motion (Maity and Reddy 2007). That is why it is important to model the 
structure and the soil in such a way so that the actual behavior of the structure 
and the soil is represented. While the structural models are well established in 
the literature, soil models involve complicated analysis due to their unbounded 
nature. Soil being heterogeneous, anisotropic and nonlinear in force-
displacement characteristics is very difficult to model physically (Kim and 
Roesset 2004) and at the same time to represent mathematically.  

The focus of the present paper is to analyze concrete gravity dam 
considering soil-structure interaction for dynamic excitation considering 
nonlinear material properties for the foundation. The interaction effect due to 
foundation has been adopted by the direct method of soil-structure interaction. 
The results show the need of consideration of foundation flexibility while 
analyzing massive structures like concrete gravity dam. 

Theoretical Formulation 

Modeling of Dam  

The structural system considered for the present investigation, has been 
analyzed using two dimensional plane strain formulations. Since the problem 
involved here is a long body, whose geometry and loading do not vary in the 
longitudinal direction, can be analyzed by this idealization appropriately. The 
equation of motion of the dam under seismic excitation in time-domain can be 
expressed as: 

fg FuMKuuCuM +−=++ &&&&&     (1)  

Where, M and K are the mass and stiffness matrices of the dam 
respectively. The parameter u, and  are displacement, velocity and 

acceleration vectors respectively,  is the vector of ground acceleration, and 

Ff is the force vector generated from the foundation-dam interaction. The 
damping matrix C represents viscous damping in the structure. In this 
formulation, a popular spectral damping scheme, called Rayleigh or proportional 
damping is adopted. The damping matrix C is formed as a linear combination of 
the stiffness and mass matrices as 

u&
gu&&

u&&

KMC βα +=          (2)                        

       where, α and β are called proportional damping constants. The use 
of this damping matrix is equivalent to damping effects that vary with frequency 
(Bathe 1996).        

Modeling of Foundation Domain 

The foundation nonlinearity is incorporated through Wen (1976) elasto-
plastic model. The model is described in some details in the following section. 
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Wen Plasticity Model 

The plasticity model is based on the hysteretic behavior proposed by 
Wen (1976) as shown in Figure 1.  

 

 

 

 

 

 

 

 

 

Fig. 1 Wen Plasticity Property Type for Uniaxial Deformation 

 

All internal deformations are independent. Therefore, the yielding at one 
degree of freedom does not affect the behavior of the other deformations. The 
nonlinear force-deformation relationship is given by 

( ) zyrdkrf −+= 1      (3)   

where k is the elastic spring constant, y is the yield force, r is the 
specified ratio of post-yield stiffness to elastic stiffness (k), and z is an internal 
hysteretic variable.  

This variable has a range of 1≤z , with the yield surface represented 

by 1=z . The initial value of z is zero, and it evolves according to the 

differential equation  

( )
otherwised

y
k

zdifzd
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exp 01
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...

   (4)   

where exp is an exponent greater than or equal to unity. Larger values of 
this exponent increase the sharpness of yielding as shown in Figure 2. The 
practical limit for exp is about 20 (Wen, 1976). The equation for  is equivalent 
to Wen’s model with A = 1 and α = β = 0.5. Nonlinear Model Time-History 
Analysis method is used to perform the analysis. 

z&
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Fig. 2 Definition of Parameters for the Wen Plasticity Property 

Replacing Foundation Material with Nonlinear Wen Link Elements 

Foundation soil is replaced with nonlinear Wen elasto-plastic link 
elements (1976). The stiffness and damping values for Wen link elements are 
calculated by using the following formulas shown in Table 1. 

Table 1 Empirical Formulas for Replacing Foundation Soil  
with Equivalent Springs 

Direction Stiffness (K) Damping Mass 

Vertical 4 1Gr v−  1.79 3K rρ  1.50 ρ r 3  

Horizontal 18.2Gr 2(1 ) (2 )v v− − 2  1.08 3K rρ  0.28 3rρ  

Rotation 2.7Gr  3 0.47 3K rρ  0.49 ρ r 5  

Torsion 5.3Gr  3 1.11 5K rρ   0.70 ρ r  5

 

Where,  

        ν - Poisson’s ratio, r - equivalent radius,    G-shear modulus, ρ- mass 
density of foundation 
 

Absorption Boundary on Foundation 

In the conventional approach of foundation-structure interaction analyses, 
the effect of far field (unbounded media) is not considered. For wave 
propagation analysis, the usual finite boundary of the finite element model will 
cause the elastic waves to be reflected and superimpose with the progressing 
waves. Besides modeling the foundation stiffness up to infinity, reflections of the 
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outgoing propagating waves on the artificial boundary at finite distance from the 
structure must be avoided also. In this case, some numerical treatment is 
needed to introduce artificial boundary so as to simulate the unbounded nature 
of the soil foundation and yet maintain a finite computational domain. An artificial 
boundary is required to be imposed at the truncated boundary using a non-
reflecting, absorbing, radiating or transmitting condition that can prevent 
spurious reflections. Viscous damper components normal and tangent to a far 
field boundary are used to simulate the radiation condition. The dashpot 
coefficients are determined in terms of the material properties of the semi-infinite 
domain as proposed by Wilson (1995).  

Solution Scheme for Coupled Dam-Foundation System 

on and the dam do 
not vi

 

Fig. 3 Foundation Structure Interaction Model 

The SSI model is divided into three sets of node points. The common 
nodes

     (5)

      
where the mass and stiffness at the contact nodes are the sum of th

contributions from the dam (d) and foundation (f), and are given by: 

 

In dam-foundation interaction problems, the foundati
brate as separate systems under external excitations, rather they act 

together in a coupled way. Therefore, these problems have to be dealt in a 
coupled way. To develop the fundamental SSI dynamic equilibrium equations, 
the two-dimensional foundation structure system is considered as shown in 
Figure 3.  

 

 

 

 

 

 

Foundation (f)  

Dam (d) 

Common Nodes (c) 

                                    

 at the interface of the dam and foundation are identified with “c”; the 
nodes within the dam are “d” nodes; and the nodes within the foundation are “f” 
nodes. From the direct stiffness approach in structural analysis, the dynamic 
force equilibrium of the coupled system may be given in terms of the absolute 
displacements, U, by the following sub-matrix equation:     
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( ) ( )f
cc

d
cccc MMM +=  and  ( ) ( )f

cc
d

cccc KKK +=  (6)  

 In terms of ab motion, there are n
system. However, the disp ements at the bound
known. To avoid solving this SSI problem directly, the dynamic response of the 
founda

 d accelerations  in terms of displacements u 
relativ

 (7) 

The above equation can now be written as  

 (8)     

where, 

⎫⎧⎤⎡⎫⎧⎤
 (9) 

 But this approach is numerically inconvenient. Therefore, in order to 
reduce the numerical difficulties, the following change of variables is introduced 
as suggested by Wilson (1995). 

 (10) 

Substitution of this change of variables into equation (8) yields the 
following dynamic equilibrium equation in terms of absolute displacements 

of the dam body. Therefore, equation (8) can be expressed as    

solute o external forces acting on the 
lac ary of the foundation must be 

tion without the structure is calculated. In many cases, this free-field 
solution can be obtained from a simple one-dimensional site model. The three-
dimensional free-field solution is designated by the absolute displacements v 
and absolute accelerations v&& . 

By a simple change of variables, it is now possible to express the 
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 The right hand side of equation (11) can be calculated as 
suggestions of Wilson (1995). Thus, the vector R is expressed as follows: 

Validation of Proposed Algorithm 
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height 15.0 m, crest-width 2.0 m and base w
isoparametric elements. The foundation size o

ered in this study (Figure 4).  The dam and the foundation are assumed to 
be linear elastic with the following material properties:  

Poisson’s ratio = 0.2  

modulus of elasticity Ed = 3 × 107 kN/m2  
3

the modulus of dam as considered in th
e mass density of the founda
 dam. The 1967 Koyna earth
alysis. 

 The maximum displacements at dam crest for different foundation 
material has been calculated in time domain and presented in Table 2. The 
comparison of the results obtained by the present model and Yazdchi et. al. 
(1999) confirm

Table 2 Validation of Present Model with Yazdchi et. al. 1999 Model 

Flexible base for different 
E /E

 
 
                    Dam with 

0.5 1.0 2.0 4.0 

Maximum displacement at crest (mm) 
resent model) 

8  
(P

.6 4.6 4.5 3.9

Maximum displacement at crest (mm) 
Yazdchi et. al. (1999) 

7.53 4.41 3.70 3.9 

% of deviation 12 4 13 5 
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Fig. 5 Koyna - Longitudinal Earthquake Motion (1967) 

Analysis of Dam-Foundation Coupled System

been chosen in the present study for the extensive 
t technique. The tallest non-overflow monolith of 

height
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Analysis of Dam-Foundation Coupled System
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t technique. The tallest non-overflow monolith of 
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Statement of the Problem Statement of the Problem 

The Koyna dam has 
analysis using finite elemen

The Koyna dam has 
analysis using finite elemen

 103 m, width at the top of the dam 14.8 m and at the base 70.0 m is 
considered for the present study. The two-dimensional finite element idealization 
for this monolith is shown in Figure 6.  
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Fig. 6 FE Discretization of Dam-foundation System with Absorbing Boundary Fig. 6 FE Discretization of Dam-foundation System with Absorbing Boundary 
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The eight nodded, isoparametric finite elements have been used for the 
discre

The dam is analyzed to get the response subjected to the seismic 
accele

Selection of Size of Foundation Domain 

med to be in a state of plane-strain 
conditi

In the first step, the foundation length in horizontal direction is taken 
arbitra

From the table it is observed that the time periods of dam with different 
founda

Variation of Time Periods and Frequencies  
iods as well as corresponding 

fundam

tization of the structure and foundation domain throughout the present 
analysis. The mass concrete in the dam is assumed to be homogeneous, 
isotropic, linear elastic solid with the following properties. Modulus of elasticity 
(Ed) =3×107 kN/m2; Poisson’s ratio = 0.2 and mass density = 2400 kg/m3. The 
material properties of the foundation is: Modulus of elasticity (Ef) =2.5×107 

kN/m2; Poisson’s ratio = 0.33 and mass density = 2400 kg/m3.  

rations of 1940 El-Centro (N-S component) earthquake. The entire 
solution has been done in time domain with application of Direct Method of soil-
structure interaction. 

The dam and its foundation are assu
on. A convergence study is carried out in order to arrive at a suitable 

foundation domain of finite dimension by varying horizontal and vertical extent of 
the foundation. The time periods and the maximum displacement at the crest 
have been calculated and compared for the convergence study. The material 
properties of dam and foundation are considered as stated in section 5.1. 

rily equal to 1.5 times the width of dam (b) at its base, and the foundation 
length in vertical direction equal to half the width of dam at its base. By keeping 
height of foundation in vertical direction as constant, the length in horizontal 
direction is increased by 0.5 times the base width of dam (b), till the results are 
converged. It is observed that in between the foundation widths of 1.5b and 2b 
the variation in displacements of two models is negligible. Therefore, the 
horizontal length of the foundation is fixed as 2b. In the second step, length of 
foundation in vertical direction is increased by keeping horizontal length as 
constant. It is observed that in between the foundation depths of 0.5b and b the 
variation in displacements of two models is negligible. So the vertical length of 
foundation is fixed as b. Thus, the size of the foundation domain may be 
considered for further analysis as 2b× b (Figure 6) where the results are 
converging sufficiently. Some of the results of the convergence study are shown 
in Table 3. The above conclusions are made with an assumption that no 
incoming waves propagating from infinity towards the structure exist at the 
boundary i.e., there is no energy associated with the waves may radiate from 
the infinity into this truncated area. The displacements at the edges of the 
foundation are taken care by the absorbing boundary conditions that are 
incorporated. 

tion models are increased compared to that of the dam with fixed base 
condition. Similarly displacement at crest of dam is also increased in case of 
coupled system when compared to fixed base system. These results clearly 
show the importance of foundation flexibility to be taken into consideration 
during the analysis.  

Table 4 shows the comparison of time per
ental frequencies of rigid base and the flexible base system for different 

modes. It is observed that the frequencies of the dam are significantly reduced 
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when the dam-foundation interaction effect is taken into account. The time 
periods of the coupled system are elongated with the introduction of foundation 
flexibility.  

Table 3 Effect of Foundation Size on the Response of Koyna Dam 

Time Period Direct and Shear stress 

(Ef/Ed=0.833) 

(Sec) values at heel (kN/m2) Dam With 
Mode 2 

Max. 
D  

Crest (m) (1 Mode
isp. at

σxx) (σzz)  (σxz)  

Rigid foundation 0.032 3  1  20.358 0.132 15.38 756.47 07.77 
Foundation size 
1.5 b × 0.5 b 

0.393 0.157 0.042 913.87 2596.79 451.05 

e 
0.397 0.161 0.043 1033.78 2697.52 495.99 

e 
0.391 0.157 0.042 819.38 2605.31 435.02 

e 
0.40 0.167 0.045 1093.48 2829.61 520.91 

e 
0.402 0.169 0.047 1186.39 2906.15 593.02 

e 
0.402 0.169 0.045 1027.22 2719.67 511.38 

e 
0.403 0.172 0.049 1060.09 2895.72 543.3 

e 
0.405 0.177 0.049 1162.54 2867.84 592.13 

e 
0.406 0.180 0.049 1161.12 2822.23 582.95 

Foundation siz
1.5 b × 1.0 b 
Foundation siz
2.0 b × 0.5 b 
Foundation siz
2.0 b × 1.0 b 
Foundation siz
2.5 b × 1.0 b 
Foundation siz
2.0 b × 1.5 b 
Foundation siz
3.0 b × 1.0 b 
Foundation siz
3.0 b × 1.5 b 
Foundation siz
3.0 b × 2.0 b             
Variation of Displacements and Stresses 

as elasto-plastic (Wen 1976) the 
corres

Table 6 shows the variation of crest displacement, direct and shear 
stress

case is more than that of rigid case.  

By considering foundation material 
ponding variation in displacements are shown in Table 5 for different 

nonlinear parameters (i.e., yield force and stiffness ratio). From the tabular data 
it is observed that for higher yield forces and stiffness ratios, the displacements 
become almost constant (37 mm in this case). Selection of these nonlinear 
parameters depends on the foundation material properties and one can get 
these values from experimental data. For the present case, these parameters 
have been considered on the basis of works done by Park et.al. (1986).  

es for rigid and nonlinear foundation material properties. The material 
nonlinearity for foundation is accounted for by incorporating an advanced 
plasticity-based soil model called Bouc-Wen elasto-plastic modal (Sections 3.2.1 
and 3.2.2). The results show that the maximum crest displacement in nonlinear 
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Table 4 Variation of Frequencies and Time Periods 

Rigid-Base System Flexible System 
 

Mode 
) 

0.  17.55 0.40 15.688 

T Ω T Ω 
(Sec.) (rad/sec.) (Sec.) (rad/sec.

1 358

2 0.132 47.373 0.167 37.665 

3 0.087 72.304 0.127 49.396 

4 0.065 96.811 0.092 68.092 

5 0.043 147.27 0.071 88.215 

6 0.041 153.26 0.065 96.573 

7 0.031 206.12 0.054 115.79 

8 0.027 233.22 0.048 130.97 

9 0.025 250.72 0.047 131.79 

10 0.024 254.44 0.044 141.37 

11 0.022 289.81 0.040 155.43 

12 0.021 290.81 0.038 164.70 

Table 5 Effect of orc iffness Ratio on ents  Yield F e and St  Displacem

Displacement at crest (mm)  
for stiffness ratio of 

Yield 
force 
( kN) 0.05 0.1 0.15 0.2 

2×102 40 39 39 39 
2×103 38 37 37 37 
2×104 37 37 37 37 
2×105 37 37 37 37 

Table 6 Re  of Da ith Non ar Fou  Ma l Properties sponse m w line ndation teria

Direct and shear stress values at 
heel (kN/m2) Dam with Max. disp. at  

crest (mm) 
(σxx)  (σzz) (σxz) 

Rig n 315.38 207.77 id foundatio 32 1756.47 
Nonlinear foundation 
m  40 4 2  4  aterial properties 91.04 778.55 00.84

                
he cres placeme  co the on 

s rigid and flexible. Due to the flexibility effect of the foundation, the 
splacement amplitudes are increased compared to that of the rigid base.  

Figure 7 shows t t dis nt of dam nsidering  foundati
a
di
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Fig. 7 Variation of crest displacement under El-Centro excitation 

Effect of Modulus of Elasticity of Foundation  

Th 5 to 5.0 
mes the modulus of elasticity of dam to study the influence of the foundation 

. The variation of horizontal 
ss values at heel for different 

E /E  r

Time Period Direct and Shear stress 
values at heel (kN/m2) 

          

e modulus of elasticity of the foundation is varied from 0.2
ti
material properties on the response of the dam
displacements at the crest, direct and shear stre

f d atio are shown in Table 7. It is observed from the tabular data that with 
the increase of foundation stiffness, the crest displacements, stresses and the 
vibration periods of the coupled system decrease significantly. This indicates 
that with the increase in stiffness of the unbounded foundation media, the 
system behaves like a structure on a rigid foundation. From Table 7, it is 
observed that the maximum crest displacement for the case of Ef/Ed = 5.0 is 36 
mm, while for cases Ef/Ed = 0.5 and Ef/Ed = 0.25 is 45 mm and 56 mm, 
respectively. This indicates that there is about 25% and 56% increase in the 
magnitude with decrease of the rigidity of the foundation material. This indicates 
that assumption of a rigid base of the dam can underestimate the displacements 
in the dam when compared to dam with flexible base. Similarly the maximum 
direct stress value for the case of Ef/Ed = 5.0 is 2061.35 kN/m2, while for cases 
of Ef/Ed = 0.5 and Ef/Ed = 0.25 is 2684.92 kN/m2and 3596.64 kN/m2 respectively. 
This indicates that there is about 30% and 74% increase in the magnitude of the 
stress value.  

Table 7  Response of Dam for Different Ef/Ed Ratio 

(Sec) Ef/Ed ratio
Max. Crest 

xx zz σxy) Mode 1 Mode 2 

Displ. 
(mm) (σ ) (σ ) (

0.25 0 9  .468 0.215 56 93.71 3596.64 802.77
0.5 0.42 83 64 4 
1.0 4  2  3  

 0.1 45 8.22 2684.92 539.5
0.395 0.162 39 64.95 250.71 49.72

2.0 0.383 0.149 37 393.88 2123.4 254.99 
3.0 0.378 0.144 36 372.09 2096.65 231.07 
4.0 0.376 0.141 36 369.24 2076.42 219.4 
5.0 0.375 0.140 36 366.84 2061.35 214.6 

0 2 4 6 8 10

Rigid base
Flexible base (Nonlinear)

) 

Time (Sec) 

H
or

iz
on

ta
l  

em
en

t (
m

D
is

pl
ac
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In general, it may luded that by in th f on 
flexibil  the , lacem and t  n i dy 
of the dam wi gn  diffe he h io ess 
should nclu he se an of d n  a  in 
results

Fig. 8 Variation of Displacement for Different Ef/Ed Ratio (Nonlinear Analysis) 

Base Shear and Base Moment  
-

m) for first three fundamental modes with different Ef/Ed ratio along with the rigid 
nitudes of base shear and base moments 

del are much higher than that of the elastic 
base. 

.  

Ef/Ed = 0.25 Ef/Ed =1.0 Ef/Ed =5.0 Rigid base 

be conc cluding e effects o  foundati
ity in analysis

ll be si
the disp
ificantly

ent 
rent. T

he stress
refore, t

distributio
e foundat

n the bo
n stiffn

 be i ded in t  respon alysis ams to i crease the ccuracy
. Figure 8 shows the variation of crest displacement with time for Ef/Ed 

ratio of 0.25 and 5.0. 
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Table 8 shows the comparison of base shear (kN) and base moment (kN

base. It is observed that the mag
obtained from the rigid base mo

Consideration of flexibility of the supporting foundation reduces the 
magnitude of the base shear and base moment of the dam.  

It is observed that the magnitudes of base shear and base moments get 
reduced as Ef/Ed ratio reduces. Incorporation of dam-foundation interaction 
effects has the direct result of reducing the base shear applied to the structure, 
and consequently the lateral forces and overturning moments

Table 8 Comparison of Base Shear (kN) and Moment (kN-m) for Different 
Ef/Ed Ratios  

M

shear moment shear ar moment shear moment 

ode 
base base base base 

moment 
base 
she

base base base 

1 11  12 4 12 0 1  093 16641 849 1927 960 1944 3922 20883

2 47140 70710 86495 129743 99683 49524 99902 149853 

3 68593 102890 140442 210664 191227 286839 179771 269656 
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C c s

c s
gravity dam is investigated using the method described above. The proposed 
algorithm has been validated with the results available in the literature. The 

il-structure system with absorbing boundary indicate that the 
t energy is absorbed at the truncation boundary. By the use 

of absorpti

e 
Engineering and Structural Dynamics, Vol.19,  pp. 1197-1208.  

96): ‘Finite Element Procedures in Engineering Analysis’, 
Englewood Cliffs, NJ: Prentice-Hall. 

s and 
Structures, Vol. 80,  pp.1579-1594.  

 Hesham (2002): ‘Effect of Non-Linear Soil-
Structure Interaction on Seismic Response of Tall Slender Structures’, Soil 

. (2004): ‘Effect of Nonlinear Soil Behavior 
on Inelastic Seismic Response of a Structure’, International Journal of 

Applied Mathematical Modeling Vol. 24, pp. 607-635. 

crete Gravity Dam’, International  Journal  of 

dom Vibration of 

Coupled BEM/FEM Approach for 
Nonlinear Soil Structure Interaction’ Engineering Analysis with Boundary 
Elements, Vol. 24, pp. 715-725. 

on lusion  

The effe t of foundation flexibility on the sei mic response of concrete 

responses of the so
most of the inciden

on boundary for the finite element analysis of unbounded foundation 
domain, a base size of 2b × b will produce sufficiently accurate results compare 
to the large foundation size. The parametric study shows that the consideration 
of foundation flexibility may alter the response of the dam significantly. The 
magnitude of base shear and base moment reduces with the increase of 
foundation flexibility. The results show that the fundamental time period of the 
coupled system is being elongated if the foundation becomes more flexible. The 
magnitude of the displacements and stresses on dam under seismic excitation 
becomes less if the foundation becomes rock type in nature. Consideration of 
soil-structure interaction effect is necessary if the dam is founded on soft soil. 
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