
Indian Geotechnical Journal, 38(2), 2008, 119-139 

A Fuzzy Meshless Method for Beams on  
Elastic Foundation 

N. V. Sunitha*, G. R. Dodagoudar** and B. N. Rao*** 

Introduction 

ainly there are two basic types of elastic foundations. The first type is 
furnished by the elastic solid, which represents the case of complete 
continuity in the supporting medium. This type of elastic support can be 

provided in the form of a load-bearing medium such as soil, distributed 
continuously along the length of the beam. The second type is characterized by 
the fact that the pressure on the foundation is proportional at every point to the 
deflection occurring at that point and is independent of deflections produced 
elsewhere in the foundation which is in contrast with the first type. Second type 
of supports can be found in a variety of engineering problems, for example in 
the case of actual foundations or in the case of railroad track. Apart from the 
diversity of technical applications, there is a considerable variation possible in 
the fundamental aspects of this approach. The flexural rigidity of the beam or 
the elasticity of the foundation may be a variable quantity; the axis of the beam 
may be straight or curved or the character of the applied loading may be axial, 
transverse, or torsional, in addition to a combination of end conditions to which 
any of these beams may be subjected. All these problems are closely related in 
their mathematical formulation (Hetenyi 1958). A primary difficulty in the analysis 
of soil foundation interaction lies in the determination of the contact pressure. 
Strictly speaking any of the constitutive models may be used for simulating the 
action of the soil media. Some models are so complicated that they find limited 
practical applications (Cheung and Tham 1993). 

M 

Meshfree (meshless) methods have become attractive alternatives for 
problems in computational solid mechanics, as they do not require a mesh to 
discretize the problem domain. The approximate solution is constructed entirely 
in terms of a set of scattered nodes. In the traditional meshless analysis, system 
parameters such as mass, geometry and material properties are assumed to be 
known precisely and defined in exact terms. When such design model contains 
uncertain physical properties for which no objective statistical data is available, a 
probabilistic analysis leads to subjective and misleading conclusions, and it is 
therefore not reliable for objective design validation purposes. An alternative 
method to describe these uncertainties is provided by the concept of fuzzy 
numbers, which has led to the development of Fuzzy Meshless Method. The 
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meshless method is a new concept which can be used to overcome difficulties 
of the finite element method used for analyzing soil-structure interaction 
problems. The use of a mesh (be it domain or boundary one) is a basic 
characteristic of the traditional approaches for the solution of partial differential 
equations. Recent developments using the Element Free Galerkin Method 
(EFGM) as a meshless computational method for solving various kinds of partial 
and integral equations have been quite successful (Liu 2003). It has been 
proposed in this paper to use EFGM, which is simple but sufficiently accurate 
model for beams on elastic foundations (Sunitha 2007). 

In the present paper, a beginning has been made to explore the 
possibility of using meshless techniques for analysing beams on elastic 
foundations considering uncertain variables such as subgrade modulus and 
applied load. A meshless formulation using EFGM is provided for the governing 
equation of the beams on elastic foundation, in which the soil medium is treated 
in the form of springs. Later on, the uncertainties involved in the analysis are 
treated as fuzzy variables and are propagated in the EFGM using vertex method 
of function approximation. The EFGM employs moving least square 
approximants to approximate the function. Results of the proposed method are 
compared with analytical solutions. Numerical Example 1 and Example 2 are 
used to study the accuracy and convergence of the EFGM in which subgrade 
modulus and applied load are treated as fuzzy variables.  
 

Element Free Galerkin Method 

The element free Galerkin method is one of the meshfree methods 
developed by Belytschko et al. (1994) based on the diffuse elements method 
(DEM) originated by Nayroles et al. (1992). In the original EFGM (Belytschko et 
al. 1994; Lu et al. 1994; Lu et al. 1995), the meshless shape functions do not 
represent interpolation functions. Hence, the essential boundary conditions 
cannot be imposed exactly due to loss of delta function property. Initially, 
Belytschko et al. (1994) employed the general Lagrange multipliers approach to 
impose the boundary conditions.  This requires solution of the Lagrange 
multipliers in addition to the discrete field variables. This leads to a larger size of 
the system matrix, loss of the bandedness of the system matrix, and an 
awkward linear equation structure.  The matrix, which has to be inverted, 
possesses zeroes in the diagonal elements and thus may require special 
solvers that cannot utilize the positive-definiteness of the system matrix. 
Subsequently, Lu et al. (1994) proposed a modified variational principle in which 
Lagrange multipliers are replaced by their physical meaning. Although this leads 
to banded set of equations, (but not necessarily positive-definite matrices), the 
results are not as accurate when compared with those by the Lagrange 
multipliers approach. Another approach proposed by Krongauz and Belytschko 
(1996) is to necklace the EFGM domain with the FEM domain and apply the 
boundary conditions to the finite element nodes. This coupling technique 
dramatically simplifies the enforcement of boundary conditions, but 
compromises the salient features of the EFGM (Liu 2000). Kaljevic and Saigal 
(1995) introduced a singular weight function into the moving least-squares 
approximation to reproduce the Kronecker-delta properties. This technique thus 
allows the enforcement of essential boundary conditions more efficiently. 
Methods based on penalty functions and alternative definitions of discrete norm 
have also been reported (Atluri 1998; Sukumar 2001; Shepard 1968). Rao and 
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Rahman (2000) have used the transformation method for the imposition of 
essential boundary conditions in the EFGM. 

The major features of the EFGM used in the present paper are as 
follows: 

1. Generalized moving least square approximation is employed for the 
construction of the shape function. 

2. Galerkin weak form is employed to develop the discretized system of 
equations. 

3. Cells of the background mesh for integration are required to carry out 
the integration to calculate system matrices. 

It should be noted that the moving least squares approximation is based 
only on the information of the values (fictitious values) of the variables at some 
scattered points (Atluri and Zhu 1998).  However, information concerning the 
derivatives of variables at some scattered points may be meaningful in some 
physical cases, and if they are used in an approximation procedure, it may give 
a better approximation result than the procedure that does not use the derivative 
information. From this point of view, the EFGM is presented in this paper which 
employs the generalized moving least square approximants to approximate the 
function and the transformation matrix for imposing the essential boundary 
conditions. 

Generalized Moving Least Squares Approximation 

Generalized Moving Least Squares (GMLS) (Atluri et. al. 1999) approximations 
are used to construct the EFGM shape functions.  Consider a function, u(x) over 

a domain, , where K = 1, 2, or 3.  Let 
Kℜ⊆Ω Ω⊆Ω x

Kℜ
u

 denote a sub-domain 

describing the neighbourhood of a point, located in Ω.   According to 

the generalized moving least squares the approximation,  of u(x) is 

∈x
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are respectively the mth  order vectors of complete basis functions and derivative 

of basis functions with respect to x, and { })(,),(),()( 21 xxxxa maaa L=  is a 
vector of unknown parameters that depend on x.   The basis functions should 

satisfy the following properties:  (1) p1(x) = 1, (2) ,  

where is a set of functions that have continuous derivatives up to order s 

on Ω, and (3) 

)()( Ω∈ s
i Cp x 1, 2,= ,i m

)(ΩsC

( ) 1 2xip , i , , ,m= L  constitute a linearly independent set.  For 
example in one dimension, the (m−1)th order polynomial basis and its derivative 
with respect to x has the following form  
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( ) { }2 1T m−

( )

1x , x, x , , x=p L  (2) 

( ){ }20 1 2 1T m, , x, , m x −= −p xx L  (3) 

and the vector of undetermined coefficients has the following form in one 
dimension. 

( ) ( ) ( ) ( ){ }1 2 1mx a x ,a x , ,a x−=a L  (4) 

In Equation (1), the coefficient vector, a(x) in one dimension is 
determined by minimizing a weighted discrete  norm, defined as 2L
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where Ix  denotes the coordinates of node I, Iû  and Iθ̂  denote ( )Iu x , 

and ( )Iu x
x

∂
∂

, respectively,  denotes the weight function associated with 

node 

)(xIw

I  such that  for all 0≥)(xIw x  in the support xΩ  of ( )Iw x  and zero 

otherwise, n is the number of nodes in xΩ  for which ( ) 0>Iw x .  Note that 
Iû  

and 
Iθ̂  represent the nodal parameters (not the nodal values of ( )hu x  and 

( )hu x
x

∂
∂

T

 respectively, in one dimension) for node I.  Using the matrix notation, 

Equation (5) can be rewritten as 

( ) ( ) ( ) ( ) ( )

( ) ( )
0

0

T

x x

T

x x

ˆ ˆˆ ˆJ

ˆ ˆ
ˆ ˆ

⎡ ⎤ ⎡= − − + − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎤⎣ ⎦ ⎣

⎡ ⎤ ⎡ ⎤⎧ ⎫ ⎧ ⎫⎧ ⎫ ⎧ ⎫⎡ ⎤⎪ ⎪ ⎪ ⎪= − −⎢ ⎥ ⎢ ⎥⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎣ ⎦⎢ ⎥ ⎢ ⎥⎩ ⎭ ⎩ ⎭⎩ ⎭ ⎩ ⎭⎣ ⎦ ⎣ ⎦

x Pa x u W Pa x u P a x θ W P a x θ

u uP PW
a x a x

P PWθ θ

⎦
 (6) 

where [ ]1 2

TT
n

ˆ ˆ ˆ ˆu ,u , ,u= Lu ,
1 2

T
T

n
ˆ ˆ ˆ ˆ, , ,⎡ ⎤= θ θ θ⎣ ⎦Lθ ,   

W x x= diag w w wN1 2( ), ( ), , ( )L x

(

,  

)
( )

( )

(
1

2
T

n m

T
n

x
x

x

⎡ ⎤
⎢ ⎥
⎢ ⎥= ∈ ℜ ×
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

p
p

P

p
M

L )

T

ℜ
 (7) 

and 
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The stationarity of ( )J x  with respect to ( )xa  yields 
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Solving  from Equation (9) and then substituting it in Equation (1) 
gives 

)(xa
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representing the shape function of the GMLS approximation of ( )hu x  and 

( )hu x
x

∂
∂

 respectively, corresponding to node I. The partial derivatives of ( )uI xφ  

and ( )I xθφ  can be obtained as follows 



INDIAN GEOTECHNICAL JOURNAL 124 

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( )

1

1

1 1

1

1

1 1

T
m mj jIuI T

jjIj j

T
m m xj jII T

x jjIj j

xp xx
x p x

x x x
xp xx

x p x
x x x

−

−

= =

−

θ −

= =

∂ ⎡ ⎤∂∂φ ⎣ ⎦= +⎡ ⎤∑ ∑⎣ ⎦∂ ∂ ∂
∂ ⎡ ⎤∂∂φ ⎣ ⎦= +⎡ ⎤∑ ∑⎣ ⎦∂ ∂ ∂

A P W
A P W

A P W
A P W

 (16) 

 

where  

-1
,

-1-1
, AAAA ii −=  (17) 

in which ( ) ( )
i

i x∂
∂

=,
. 

Weight Function 

An important ingredient of the EFGM or other meshless methods is the 
weight function, w(x).  The choice of the weight function can affect the MLS 
approximation of  (Rao and Rahaman 2000). In this work, weight function 
based on the student's t-distribution is adopted (Rao and Rahaman 2000).  It is 
given by 
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where β is the parameter controlling the shape of the weight function, 

I Iz || x x ||= −  is the distance from a sampling point, x  to a node ,  is 

the domain of influence of node 
Ix mIz

I  such that 

cImI zzz max=  (19) 

in which  is a the characteristic nodal spacing distance which is 
chosen such that the node 

cIz
I  has enough number of neighbours sufficient to 

guarantee a non-singular matrix in Equation (9) (which is used to 

determine the GMLS approximation), and  is a scaling parameter.  

)(xA
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Variational Formulation and Discretization 
A governing equation for beam on an elastic foundation is given by the 

following 4th order differential equation, 

( ) ( ) ( )in 0,xxxx sEIu k x u q x ,L+ = Ω=  (20) 
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where u is transverse displacement, EI is flexural rigidity, ks is the 
foundation stiffness, and q(x) is distributed load over the beam. The boundary 
conditions are given at the global boundary, Γ, as 
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To obtain the discrete equations it is first necessary to use a weak form of 
the equilibrium equation and boundary conditions.  The variational or weak form 
of Equations (20) and (21) is 
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Equations (23) and (24) can be rewritten in a matrix form as  
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Equations (26) can be written for all nodes as 
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is the nodal displacement vector,  
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û x
ˆ x
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is the transformation matrix. Therefore the GMLS approximation of ( )u x , 
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, can be rewritten respectively, as follows 



MESHLESS METHOD FOR BEAMS ON ELASTIC FOUNDATION 127 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ } ( ) 1
1 1 2 2

h T T
I u u uN N

I

ˆu x x x x x x x x x −
θ θ θ= = φ φ φ φ φ φ =∑Ψ d d Ψ dL L

  (31) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 1
h T T

u u uN N
I

I

u x x x x x x x x x ˆ
x x x x x x x x x

θ θ θ −∂ ∂ ⎧∂φ ∂φ ∂φ ∂φ ∂φ ∂φ ⎫ ∂
= = =∑ ⎨ ⎬

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎩ ⎭

Ψ Ψ
d dL L d  (32) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2 2 2 2
1 1 2 2 1

2 2 2 2 2 2 2 2 2

T Th
u u uN N

I
I

u x x x x x x x x x ˆ
x x x x x x x x x

θ θ θ −∂ ∂ ∂ φ ∂ φ ∂ φ ∂ φ ∂ φ ∂ φ ∂⎧ ⎫⎪ ⎪= = =∑ ⎨ ⎬
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎪ ⎪⎩ ⎭

Ψ Ψ
d dL L d

 (33) 
Similarly, 

( ) ( ) 1h T − ˆv x x=Ψ vL  (34) 

( ) ( ) 1v x x ˆ
h T

x x
−∂ ∂

=
∂ ∂

Ψ
vL  (35) 

( ) ( )2 2h T
1

2 2

v x x ˆ
x x

−∂ ∂
=

∂ ∂
Ψ

vL  (36) 

where  is the discretized nodal test function vector similar to the nodal 
displacement vector . 

v̂
d̂

Using Equations (31) − (36) into the discretization of Equation (22) gives  

ˆ ˆˆ =Kd f  (37) 
 
where  

(
11 12 1

21 22 2 1 2 2

1 2

N
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N N NN
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⎢ ⎥
⎣ ⎦

k k k
k k k

K Λ Λ

k k k

L

L

M M M M

L

L )N Nℜ ×ℜ

)×ℜ

 (38) 

is the stiffness matrix with 

( 2 2T T
IJ I J I s JEI d k d

Ω Ω

⌠ ⌠
⎮ ⎮
⌡ ⌡

= Ω + Ω ∈ ℜk B B Ψ Ψ L  (39) 

representing the contributions of Jth node at node I with  

( )

( )

2

2

2

2

uI

T
I

I

x
x

x
x
θ

∂ φ⎧ ⎫
⎪ ⎪⎪ ⎪∂= ⎨ ⎬
∂ φ⎪ ⎪

⎪ ⎪∂⎩ ⎭

B  and ( )
( )

uIT
I

I

x
xθ

φ⎧ ⎫⎪ ⎪= ⎨ ⎬φ⎪ ⎪⎩ ⎭
Ψ , 2Tˆ − N= ∈ℜf Λ f  (40) 

is the force vector with 



INDIAN GEOTECHNICAL JOURNAL 128 

( ) ( 2 2

0
0 0

T
T T I
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x

q x dx EIu EIu
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=

⌠
⎮
⌡

∂⎡ ⎤= + − ∈ ℜ⎡ ⎤⎣ ⎦ ⎢ ⎥∂⎣ ⎦
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×ℜ  (41) 

with 
( )

( )

uI
T

I

I

x
x

x x
x

θ

∂φ⎧ ⎫
⎪ ⎪∂ ⎪ ⎪∂= ⎨ ⎬∂ ∂φ⎪ ⎪
⎪ ⎪∂⎩ ⎭

Ψ   

Noting that  in Equation (37) is the nodal displacement vector, the 
discretized linear equation system in Equation (37) can be solved for the 
unknown nodal displacements uI and rotations θI and the internal forces after 
applying appropriate essential boundary conditions by adopting the procedures 
similar to that in finite element analysis. The proposed method of applying 
essential boundary conditions using the transformation matrix avoids some of 
the drawbacks of Lagrange multiplier technique and modified variational 
principle approach (Belytschko et al. 1996) such as larger size of the system 
matrix, loss of the bandedness of the system matrix in case of Lagrange 
multiplier technique and non-positive definite matrices in case of modified 
variational principle approach. 

d̂

 

Interval Analysis Using Vertex Method 

Traditionally, probability theory has been the primary tool for representing 
uncertainty in geotechnical engineering. Because of this, all uncertainty 
associated with geotechnical engineering problems was assumed to follow the 
characteristics of random uncertainty. However, not all uncertainty is random 
and hence nonrandom uncertainty is not suited to modelling by probability 
theory. Fuzzy set theory provides a means for representing nonrandom 
uncertainties associated with vagueness, with imprecision and/or with a lack of 
information regarding a particular element of the problem under investigation 
(Zadeh 1965). 

The extension principle, introduced by Zadeh (1978), is one of the most 
important tools of fuzzy set theory. This principle allows the generalization of 
crisp mathematical concepts to the fuzzy set framework and extends point-to-
point mappings to mappings for fuzzy sets. It provides a means for any function 
f that maps an n-tuple (x1, x2,..., xn) in the crisp set X to a point in the crisp set Y 
to be generalized to mapping n fuzzy subsets in X to a fuzzy set in Y. Hence, 
any mathematical relationships between nonfuzzy elements can be extended to 
deal with fuzzy entities. Vertex method greatly simplifies the manipulations of 
the extension principle for continuous-valued fuzzy variables such as fuzzy 
numbers defined on the real line. The method is based on the combination of 
the λ- cut concept and standard interval analysis. Vertex method can prevent 
the abnormality in the output membership function due to the application of 
discretization technique on the fuzzy variables domain, and it can prevent the 
widening of the resulting function value set due to multiple occurrences of 
variables in the functional expression by conventional interval analysis methods 
(Dong and Shah 1987). The algorithm is very easy to implement and works as 
follows. The algorithm works. Any continuous membership function can be 
represented by a continuous sweep of λ- cut from λ = 0+ to λ = 1. Figure 1 
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shows a typical membership function with an interval associated with a specific 
value of λ.  

 

 

 

 

 

 
                 

Fig. 1 Interval Corresponding to a λ- Cut Level on Fuzzy Set  A
%

 
Suppose there is a single-input mapping given by ( )y f x= that is to be 

extended for the fuzzy sets, or ( )B f A=
% %

,and needs to decompose A
%

 in to a 

series of  λ- cut intervals, say Iλ. When the function ( )f x is a continuous and 

monotonic on [ ],I a bλ = , the interval represented B
%

 at a particular value of λ, 

say Bλ , can be obtained by 

[ ]( ) min( ( ), ( )), max( ( ), ( ))B f I f a f b f a f bλ λ= =                 (42) 

Equation (42) has reduced the interval analysis problem for a functional 
mapping to a simple procedure dealing only with the endpoints of the interval. 
When the mapping is given by n inputs, i.e.,

1 2( , ,..., )ny f x x x= , then the input 
space can be represented by an n-dimensional Cartesian region. Each of the 
input variables can be described by an interval, say Iiλ , at a specific λ- cut, 
where 

[ ], 1, 2,...,i i iI a b iλ = = n        (43) 

The endpoint pairs of each interval given in Equation (42) intersect in the 
2D space and form the vertex of the Cartesian space. The coordinates of these 
vertices are the values used in the vertex method when determining the output 
interval for each λ- cut. The number of vertices, N, is a quantity equal to N = 2n, 
where n is the number of fuzzy input variables. When the mapping 

1 2( , ,..., )ny f x x x=  is continuous in the n-dimensional Cartesian region and 
when also there is no extreme point in this region, the value of the interval 
function for a particular λ- cut can be obtained by 

1 2( , ,..., ) min( ( )),max( ( )) 1,2,...,n j jj j
B f I I I f c f c j nλ λ λ λ

⎡ ⎤= = =⎢ ⎥⎣ ⎦
  (44) 

~
A
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λ 
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Iλ

b     a               b                        X 



INDIAN GEOTECHNICAL JOURNAL 130 

The vertex method is accurate only when the conditions of continuity and 
no extreme point are satisfied. When extreme points of the function 

 exist in the n-dimensional Cartesian region of the input 
parameters, the vertex method will miss certain parts of the interval that should 
be included in the output interval value, Bλ. Extreme points can be missed, for 
example, in certain mappings treated as additional vertices, Ek, in the Cartesian 
space and Equation (44) becomes, because the continuity property still holds, 

1 2( , ,..., )ny f x x x=

, ,
min( ( ), ( )),max( ( ), ( ))j k j kj k j k

B f c f E f c f Eλ
⎡= ⎢ ⎥⎣ ⎦

⎤    (45) 

where  1,2,..., and 1,2,...,j N k m= =  for m extreme points in the region. 

Numerical Example 1: Validation 
This example is used to validate the computer program developed for 

fuzzy meshless analysis of beams on elastic foundation. In this case, a 
deterministic analysis is carried out with four different values of 2L such that μL 

= 1, 2, 3, and 4 where 4

4
sk

EI
μ = . A third order polynomial basis function and β 

= 4 are used in all the numerical examples. Due to symmetry, only half of the 
beam is analyzed. The domain of the beam is divided into cells with their nodes 
coinciding with the meshless nodes solely for numerical integration. For 
numerical integration, a 8-point Gauss quadrature rule is used for all the cells of 
the background mesh. Validation example considers a finite beam with central 
point load P = 1000 kN as depicted in Figure 2. Parameters considered in 
analysis are: length 2L of the beam, flexural rigidity EI of the beam =  22360.68 
kN–m2 and foundation stiffness ks = 36000 kN/m3. 

 
P

L
 x 

L

 

 

 

 
              

 

 

 

Fig. 2  Beam on Elastic Foundation with Central Point Load 

          
The proposed EFGM is used to obtain the normalized displacement and 

the normalized bending moment along the length of the beam (2L). The 
numerical results obtained by the proposed method (Figures 3 and 4) are 
compared with the analytical solutions available in the literature (Hetenyi 1958). 
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Fig. 3 Normalized Displacement along the Length of Beam with  
Central Point Load 
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Fig. 4 Normalized Bending Moment along the Length of Beam  
with Central Point Load Nu      

 

Numerical Example 2:  
Finite beam with two point loads at a distance from the centre 

This numerical example involves a beam with two point loads placed at 
distance of 4 m on either side of the centre as depicted in Figure 5. Due to 
symmetry of the geometry and loading, only half of the beam is analyzed. In the 
analysis, the subgrade modulus and applied point load are considered as fuzzy 
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variables and are propagated in the analysis using vertex method. In this 
example, length of the beam is L (20 m), flexural rigidity EI of the beam is 
22360.68 kN–m2 and the fuzzy variables − subgrade modulus ks is varying from 
24000 to 48000 kN/m3 and applied load is varying from 400 to 1600 kN. A 
concept of λ-cut along with vertex method are used to evaluate the uncertainty 
in the output variables.  

 

 O 

 P/2  P/ 2 

 A   D   B C

 L 

 a a 2c 

 

 

 

 

 

Fig. 5 Beam Subjected to Two Point Loads at a Distance from the Centre              
The proposed EFGM is used to obtain the displacement, slope and 

moment along the length of the beam with four different discretizations 
consisting of 6, 11, 21 and 41 uniformly spaced meshless nodes over the half 
length of the beam (L/2). Analytical expressions for the evaluation of 
displacement, slope and moment under the load (i.e. points C and D) are given 
as below (Hetenyi 1958): 

Deflection under the load: 
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Slope under the load: 
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Bending moment under the load: 
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Similar analytical expressions for displacements, slopes and moments at 
the end and at the center are given by Hetenyi (1958).  

When compared with these analytical solutions for the displacement, 
slope and moment at the load points, at the end and at the center of the beam, 
the predicted values from the EFGM are matching very well. This ensures the 
accurate formulation of the EFGM for the beams on elastic foundation. 

Figures 6 to 8 show respectively the plots of the displacement, y, the 
slope, dy dx and the moment M obtained using the deterministic meshless 
analysis. It is depicted from the plots that as the number of nodes in the EFGM 
is increased the solutions converged towards the analytical solutions. 
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Fig. 6 Displacement along the Length of Beam with  
Point Loads at a Distance from Center 
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Fig. 7 Slope along the length of Beam with  
Point loads at Distance from Center 
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Fig. 8 Bending Moment along the Length of Beam with  
Point loads at a Distance from Center 

 
The subgrade modulus and applied load are considered as fuzzy 

variables and their fuzzy sets are constructed using symmetric triangular 
membership functions. Figures 9 and 10 show the input fuzzy sets for subgrade 
modulus and applied load respectively. This numerical example is solved using 
four λ-cut levels namely λ = 0, 1/3, 2/3 and 1. Table 1 gives the results for 
displacements under the load in the form of fuzzy intervals at each of the λ-cut 
levels.  

Table 1: Displacements at Each λ - Cut Level 

λ-cut 
level 

Subgrade 
modulus (ks)

(kN/m3) 

Applied load 
(kN) 

Displacement 
(mm) 

Fuzzy interval for 
displacement at 
each λ- cut level 

0 24000 400 2.8 

 24000 1600 12 

 48000 400 1.786 

 48000 1600 7.14 

12 − 1.786 

1/3 28000 600 4 

 28000 1400 2.86 

 44000 600 9.36 

 44000 1400 6.67 

9.36 − 2.86 

2/3 32000 800 4.84 

 32000 1200 7.265 

 40000 800 4.096 

 40000 1200 6.14 

7.265 − 4.096 

1 36000 1000 5.542 5.542 – 5.542 
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Fig. 9 Input Fuzzy Set for Subgrade Modulus 

 
 

 

 

 

 

 

Fig. 10 Input Fuzzy Set for Applied Load 

 
Combinatorial optimization is then performed on the input fuzzy variables 

to determine the binary combinations of the variables that result in extreme 
displacements at each λ-cut level using the EFGM. Since, one cannot report the 
displacement as a fuzzy set, a defuzzification has to be carried out on the 
displacement output fuzzy set. Defuzzification is the conversion of a fuzzy 
quantity to a precise quantity. There are several methods for defuzzifying fuzzy 
output functions in the literature that have been proposed by investigators in 
recent years (Hellendoorn and Thomas 1993; Dodagoudar and Venkatachalam 
2000a; 2000b). For this example, only a displacement output fuzzy set for 
extreme displacements is shown in Figure 11.  

 

 

 

 

 

 

Fig. 11 Output Fuzzy Set for Displacement under the Load 
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Similarly the output fuzzy sets can be obtained for the slope and bending 
moment. In this study, centroid method is used to defuzzify all the output fuzzy 
sets (i.e. displacement, slope and bending moment). The defuzzified value for 
the displacement output fuzzy set is 5.5942 mm (Table 2). 
      

Table 2: Results for Displacement, Slope and Bending Moment 
Numerical Example 2 

                          Approaches 
       Response 
       Quantities 

 
Analytical 

Meshless 
Method 

Fuzzy 
Meshless 
Method 

Displacement at end (mm) 0. 025 0.025 0.021 

Slope at end (rad) 0.00016 0.00016 0.000158 

Bending moment at end (kN-m) 0 0 0 

Displacement under the load (mm) 5.542 5.542 5.594 

Slope under the load (rad) 0 0 0 

Bending moment under the load (kN-m) 157.191 157.191 158.836 

Displacement at center (mm) -0.477 -0.477 -0.489 

Slope at center (rad) 0 0 0 

Bending moment at center (kN-m) -12.386 -12.386 -13.507 

 

Comparison of the results for displacements, slopes and bending 
moments at the end, at the center and under the load for the beam with point 
loads placed at a distance of 4 m from the center are presented in Table 2. The 
slope obtained is zero under the load and at the center of the beam for the 
analytical as well as meshless methods. As expected, the settlement and 
bending moment are maximum under the load and their corresponding values 
are 5.5942 mm and 158.836 kN-m. 

Discussion 

Numerical example 2 is presented to study the applicability of the 
proposed fuzzy meshless method. An attempt has been made to investigate the 
performance of the proposed method by carrying out convergence study with 
the increase of number of meshless nodes. As the number of nodes increased, 
say 21 meshless nodes, the solution is converged towards the exact solution 
obtained using analytical expressions given in Hetenyi (1958) for the cases of 
displacement, slope and bending moment along the beam (Figures 6 to 8). An 
interval meshless analysis is performed using the vertex method in order to 
study the influence of fuzzy uncertainty associated with the loading and modulus 
of subgrade reaction of the soil on the displacement, slope and bending 
moment. A good comparison is obtained between the results of the EFGM and 
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analytical solutions for all the above quantities. It is noted from the results that 
the variation in the input fuzzy variables is small; therefore the uncertainty 
associated with the resulting quantities evaluated using fuzzy meshless method 
is small and are almost similar with those evaluated using the deterministic 
meshless method. In case a significant variation in the input fuzzy uncertainty 
exists, the resulting quantities will have higher uncertainty in their magnitudes 
(Sunitha 2007). This information will be used effectively in the design of beams 
on elastic foundation catering for the input uncertainty.  

Summary and Conclusions 

The study has demonstrated the applicability of fuzzy meshless method 
for soil-structure interaction problems such as beams on elastic foundation with 
uncertain input parameters. The uncertain input parameters are modelled using 
triangular membership functions and are propagated in the meshless analysis 
through vertex method of function approximation. In the present study, a 
systematic methodology has been evolved to combine the EFGM and fuzzy sets 
approach in the treatment of input fuzzy uncertainty. Displacements are taken 
as field variables and slope and bending moments are also evaluated as part of 
the analysis. Unlike the finite element method, the meshless method requires no 
structured mesh; only a scattered set of nodal points is required in the domain of 
interest. A numerical example of beam on elastic foundation with point loads 
placed at equal distance from the center is presented to examine the accuracy 
and convergence of the meshless method by finding the displacements, slopes 
and bending moments along the beam. A good agreement is observed between 
the results of the EFGM and analytical method. This ensures proper formulation 
of the proposed method for analysing the beams on elastic foundation. Since 
mesh generation for complex structures is far more time-consuming and costly 
effort than the solution of a discrete set of equations; the current fuzzy meshless 
method provides an attractive alternative to finite element method for solving 
soil-structure interaction problems incorporating cognitive uncertainties. The 
proposed fuzzy meshless method with some modifications to account for 
dynamic and wave propagation effects has greater potential for providing 
solutions to more complex soil-structure interaction problems such as analysis 
of structures founded on unbounded media including the seismic source effects 
and path geology in a more comprehensive way. Further work on these lines is 
currently under investigation for seismic soil structure interaction analysis of 
nuclear power plant structures. 
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