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Introduction 

ince the development of Mononobe and Okabe’s (M-O) method for 
evaluation of the dynamic earth pressure under earthquake forces in 
1920’s (Mononobe and Matsuo 1929), a number of research works have 

been carried out till date to ameliorate the same and further evaluate its 
adequacy. These include the work of Wood (1973), Seed and Whitman (1970), 
Whitman and Christian (1990), Whitman (1990; 1991), Richard and Elms 
(1979), Matsuzawa et al. (1984), only to name a few. All these methods are 
extensions of M-O method and are pseudo-static in nature and calculate the 
forces based on the maximum ground acceleration without taking into 
cognizance the time period of the system. Strictly speaking M-O method is valid 
for gravity type of retaining walls, where the wall itself has a very high structural 
stiffness and is expected to undergo large movements under seismic forces 
when the active failure wedge behind the wall is mobilized. The first pseudo-
dynamic method of analysis was proposed by Steedman and Zeng (1990), 
where the pressure was computed based on the natural frequency of the soil 
medium. 

S 

 
Chowdhury and Dasgupta (2003; 2004) proposed a method, where 

dynamic moments and shears for cantilever and counterfort retaining walls may 
be calculated adapting an improved Rayleigh Ritz technique. The solutions 
however will be valid only when the wall is flexible enough to mobilize the failure 
wedge behind the wall and shall not be applicable for the problems where the 
wall is unyielding. However, it has been shown that when the wall is flexible, the 
time period of the system plays a significant role and the results can have 
significant variation with the results obtained by using the M-O method.  
 

Some recent observations on field data reported by Ostadan and White 
(1997) and back checking the same based on Finite Element Analysis (Lysmer 
et al. 2000), it has been found that the pressures induced on such rigid walls are 
significantly different in comparison to M-O method. This has prompted United 
States Nuclear Regulatory Committee (NRC) to abandon M-O and M-O based 
methods for designing of their nuclear facilities. 
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While SASSI (Lysmer et al. 2000), based on FEM, are available to 
correctly predict the dynamic pressure on rigid walls but these are too elaborate 
and exhaustive to be used for day-to-day practice in design offices. Based on 
his exhaustive experimental observations and analysis, Ostadan has proposed 
a pressure equation based on least square fitted curve (Ostadan 2004), which 
may be used for the evaluation of dynamic pressures and is being adapted by 
NEHRP (NEHRP 2001) in design offices. However, the use of this curve would 
still require the use of softwares like SHAKE (Schnabel et al. 1972) or SASSI 
and is valid for soils having shear modulus invariant with depth. 
 

In the present paper, a method has been proposed where users not 
having the access to softwares like SHAKE, SASSI can still arrive at a dynamic 
pressure, which is in close agreement to what has been proposed by NEHRP 
and takes into cognizance the linear and parabolic distribution of shear modulus 
with depth. 

THE PROPOSED METHOD 

Shown in Figure 1 is a basement of a building where the basement can 
be considered as rigid. Since in many cases the building basements consists of 
different levels with floor slabs catering to sundry building services like car 
parks, HVAC floors, pump rooms etc. it is quite justified to assume such 
basement walls to be quite rigid and unyielding. In such cases as the wall does 
not yield, one can design the wall for static loading under earth pressure at-rest 
condition. Under dynamic loading such unyielding walls, as the active failure 
wedge does not get mobilized, the soil may be assumed to continue in its state 
of plane strain condition under both static and earthquake forces. 
 

The objective is to find out the dynamic pressure on the wall of the 
basement due to earthquake waves propagating through the soil medium. The 
soil medium and the basement are assumed to be resting on stiff soil 
considered as the bedrock, the level from which the ground acceleration 
propagates. 
 

 

Fig. 1 Sketch of the Building with Basement Wall 

Let the depth of the basement be H and the soil medium in the horizontal 
direction has been considered having a finite dimension a, where in reality lim a 

. Having defined the problem with basic conditions one can argue that for 
shear waves propagating through the soil medium, the wave propagation 
equation can be represented by 

∞→
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where Vs = shear wave velocity of the soil medium; u(x, z, t) = the displacement 
function and can be considered as u = H(x)Q(z)P(t) [ H, Q, P are the three 
independent functions of x, z and t respectively]. 
 

Without getting into the details it can be shown (Kreyszig 1969) that 
Equation (1) may be reduced to three independent ordinary differential 
equations of second order given by 

2
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where p, l  and k are related through 2 2 2p k= −l .   

 
The solutions of Equations (3) and (4) are given by 

kxBkxAxH sincos)( +=           (5) 

pzDpzCzQ sincos)( +=           (6) 

Imposing the boundary conditions  
 

At x = 0, u = 0  H (x) = 0, which implies A = 0.  
 
At x = a (where a may be very large), u = 0,  H (a) = 0, which implies H (a) = 

 and 0sin =kaB

a
mk π

= , and hence 
a

xmxH m
πsin)( =            (7) 

 
At the free surface i.e. the superstructure-base interface, the boundary 

conditions are 

At z = 0, shear strain, 0=
∂
∂
z
u

 or 0)(
=

dz
zdQ

 which implies D = 0. 

 
At z = H, displacement 0=u , i.e. 0)( =HQ . 
 
It implies that 
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and hence 
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Thus, the eigenvectors, Φ of the problem can be established as 

(2 1)( , ) ( ) ( ) sin cos
2

m x n zx z H x Q z
a H
π π−

Φ = = , 

where, m, n =1,2,3…          (10) 

 
Again, from the description of Equations (2) and (3) 

2 2
SV p kλ = +  

Substituting the value of p and k from Equations (7) and (8), one can 
have 

2 2

2 2

(2 1)
4S

m nV
a H

λ π −
= +         (11) 

For the fundamental mode [m, n = 1] and lim a ∞→ , the value of λ 
reduces to  

2

10
4SV
H

λ ω π= = + , implying 
2
Vs
H

πω =        (12) 

The period, T can be derived from Equation (12) as 4 sT H V=  which 
is basically the free field time period in one dimension for the site. 

 
For limit a ∞→ , the first term of eigen function (in the x direction) can 

be dropped from Equation (11) and to determine the displacement and pressure 
at the wall face and hence the eigen function φ can be computed as 

(2 1)( ) cos
2

n zz
H

πϕ −
=           (13) 

Based on the modal response technique (Clough and Penzien 1975), the 
maximum amplitude function can be defined as 

2
d aS S ω=            (14) 

where Sd = maximum displacement; Sa = acceleration which is a function of the 
time period, 4H/Vs, and can be read off from the normalized response given in 
Codes. 
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Considering (2 )ZI Rβ = =  the code factor, u(z) may be written as 

)()( 2 zSazu i φ
ω

βκ=  in which,  Z = zone coefficient; I = importance factor; R 

= response reduction or ductility factor. 
 
Now, the modal mass participation factor may be written as 

=iκ  = 2
i i i im mφ φ∑ ∑  

Substituting the value of ω from Equation (12), the displacement u(z) can 
be expressed as 

2
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in which G = ρVs2 ; Sγ =  bulk density of soil ; g  =  acceleration due to gravity. 
 
The modal participation factor can be computed as  

=iκ 2 2

0 0

cos cos
2

H H

i i i i
z zm m z z
H 2H

π πφ φ γ γ=∑ ∑ ∫ ∫     (16a) 

Using integration by parts, iκ is expressed as 

8 ( 2)iκ π= +          (16b) 

The strain within the soil body is given by 
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The constitutive stress-strain relationship under plane strain condition is 
given by 
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resulting in zzxxxx
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dynamic pressure on the wall may be obtained from 
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The negative sign above indicates that the pressure is acting towards the 

wall. Equation (19) can be rewritten as 

H
z

g
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)2(

32 πγ
βψ

ππ ν+
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where . v /(1 2 )ψ = ν − ν
 

The pressure coefficients as obtained in Equation (20) may be compared 
with the pressure equation proposed in the literature. The dynamic pressure 
(Ostadan 2004), as adapted by NEHRP is given by 

5432 14.859.2425.2884.1505.50015.0)( zzzzzzp +−+−+−=  

The results obtained using Equation (20) and the one proposed by 
Ostadan (2004) have been compared and presented in Figure 2. 
 

 
Fig. 2 Comparison of Normalized Pressure on the Wall 

It can be observed that the pressure coefficient as proposed in Equation 
(20) is in close agreement with Ostadan’s solution. Equation (20) can be further 
simplified to 

g
HS

Coeffzp sa
dyn

γ
βν−=)(          (21) 

where the coefficients may be read off for different values of Poisson’s ratios 
(0.25, 0.3 and 0.4) as shown in Figure 3. 
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Fig. 3 Variation of Dynamic Pressure Coefficient with Depth for Different Poisson’s 

Ratios 

Dynamic Pressure on Wall When Shear Modulus Varies With Depth 
Equation (20) is valid when the dynamic shear modulus is invariant 

with depth; however there could be cases when shear modulus varies with 
depth based on the expression: 

α

⎟
⎠
⎞

⎜
⎝
⎛=′

H
zGG            (22) 

where  α = 0 when G is invariant with depth, 
               = 1 when G varies linearly with depth, and  
               = 2 when G varies as parabolic with depth.  
 

The use of Equation (22) for solving the partial differential equation 
expressed in Equation (1), makes the solution complicated and accordingly the 
following approach will be followed. 
 
The strain energy equation of a soil body, in general, is given by  

( ) ( )222222
2

22 xzyzxyzyx
GGeV γγγεεελ

++++++=      (23) 

where V= strain energy density of the soil body; λ = 2G /(1 2 )ν − ν ; G = 

dynamic shear modulus of the soil medium and ν  its Poisson’s ratio; e = εx + 
εy+ εz; εx, εy and εz are strains, respectively in the x, y and z directions and γxy, 
γyz and γzx are shear strains in the xy, yz and zx planes, respectively. 
 

With reference to Figure 1 and assuming the condition of plane strain, 
Equation (23) can be rewritten as 

( ) ( ) ( )2222

221 xzzxzx
GGGV γεεεε

ν
ν

++++
−

=       (24) 

For impulsive seismic excitation, εz = 0 which reduces Equation (24) 
further to 
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Considering u(x,z) = Ν(x,z), q(t) one can have 
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where 
( , )N x z = Generalized shape function with respect to x and z co-ordinate, and 

q(t) = Displacement function with respect to time in generalized co-ordinate. 
 
That is 
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From which it can be proved (Hurty and Rubenstein 1967) that the 
stiffness and mass matrix can be expressed as 
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in which K = stiffness matrix of the soil medium; M = mass matrix of the soil 
medium; i and r subscripts indicate different modes 1, 2, 3, . . . .  
 

The K and M for the fundamental mode (r = 1, i = 1) are given by 
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It was shown earlier that when limit a ∞→ , the first term can be 
dropped and Equations (29) and (30) reduce to 

2

11
0

H NK G
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Considering the shape function as given in Equation (13) as 

H
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2
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=  and substituting it in Equations (31) and (32) for a 

constant G value (i.e. when α = 0) and by integrating one can have 
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Considering 2T Mπ= K substituting Equations (33) and (34) one 

can arrive at 4 ST H V=  the same expression derived earlier. This shows 
that the stiffness and mass matrix formulation as represented here is correct. 
When G varies linearly with depth, the stiffness matrix equation in Equation (31) 
it gets modified to 
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Substituting Equation (13) in Equation (36) and considering z Hξ = , 
Equation (36) can be rewritten as 
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which on integration by parts gives  
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The mass expression remaining the same as Equation (34) and the 

period reduces to 
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which is the expression for the time period using a linearly varying dynamic 
shear modulus. 
 

Obtaining the value Sa/g from the above time period and proceeding in 
the same manner as in Equations (14) through (19), one can obtain the dynamic 
pressure on the wall for linearly varying soil modulus G as 
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When the dynamic shear modulus varies parabolically with depth, the 

stiffness equation becomes 
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Equation (42) on integration by parts gives 

( )2
11 3 (12 )K G Hπ= −          (43) 

The mass expression remains the same as Equation (34) and the period 
may be computed as 
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Again, obtaining the value of Sa/g based on Equation (44) and 

proceeding through Equations (14) to (19), the expression for pdyn using 
parabolic shear modulus variation can be obtained as 
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where 
ν

νψ
21−

=v  

Figure 4 shows the variation of dynamic pressure on the wall for varying G. 
 
 

Dynamic pressure coefficient on unyielding wall
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Fig. 4 Variation of Dynamic Pressure Coefficient for Varying Shear Modulus 

Solution of the Problem 

To evaluate how the computed dynamic pressures on the wall compare 
for a real life problem, the results of a 30 ft (9.14 m) deep rigid wall located in 
earthquake zone IV in India, are obtained. The shear wave velocity of soil is 
taken as 1000 ft/sec (305 m/s) (assumed constant over the depth) and unit 
weight of soil is 125 pcf (20 kN/m3). The angle of friction of soil is φ = 15o. 
Poisson’s ratio of soil is ν = 0.3. The zone factor considered is Z = 0.24 as per 
IS 1893 - 2002, I = 1.2 and R = 2.0. The values of dynamic pressure generated 
on the wall are as shown in Figure 5 [the results have been presented using the 
conventional fps units, as was used there]. 
 

It can be observed in Figure 5 that while M-O method gives significantly 
lower value for this particular case, Ostadan (2004) and the proposed analytical 
method give results where the variation is not significant and well within an 
acceptable tolerance limit. 
 

Comparison of Dynamic pressure on walls

-200

0

200

400

600

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Depth Ratio(z/H)

Pr
es

su
re

 (l
bs

/ft
2) Mononobe and

Okabe

Ostadan

Analytical

 

Fig. 5 Comparison of DynamicPressure on wall by M-O and other Methods 



INDIAN GEOTECHNICAL JOURNAL 92 

Conclusions 

An analytical model for the dynamic pressure on rigid wall under the 
earthquake forces has been presented and is in close agreement with the 
results proposed in NEHRP. The NEHRP expression advocates the use of 
computer programs like SHAKE or SASSI which may not be accessible to all 
the engineers across the industry around the world. The present analysis gives 
comparable results as those proposed in NEHRP. The analysis also addresses 
the case of varying property of soil –which NEHRP method does not cater to. 
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