Slope Stability Coefficients for Steep Homogeneous Soil Slopes

Sitaram Nayak* and G. Padmaja"

Introduction

Many civil engineering projects such as earthen dams, railway cuttings, embankments etc. requires knowledge of slope stability analysis. Failure of slopes may lead to loss of human life as well as economical loss. Various procedures of stability analysis are, in general, divided into two major classes: (i) Mass procedure: In this case, the mass of the soil above the surface of sliding is taken as a unit. This procedure is useful when the soil that forms the slope is assumed to be homogeneous, although this is not the case in most of the natural slopes. (ii) Method of slices: In this procedure, the soil above the surface of sliding is divided into a number of vertical parallel slices. The stability of each slice is calculated separately. This is a versatile technique in which the nonhomogenity of the soils and pore water pressure can be taken into consideration. It also accounts for the variation of the normal stress along the potential failure surface. Extensions to the generalized method of slices (that is commonly used in slope stability analysis) were suggested by Chen and Morgenstern (1983). In addition a numerical procedure has been developed for exploring formally the bounds of the factor of safety within the limits of physical admissibility. Chen and Shao (1988) studied the feasibility of using the optimization methods to search for the minimum factor of safety in slope stability analysis. Davidon-Fletcher-Powel (DFP) method was employed to determine the minimum factor of safety and its associated critical slip surface. Dov Leshchinsky and Huang (1992) proposed a generalized variational slope stability analysis, which is an efficient method. No guessing of a force related function is needed in this method. An alternative slope analysis based on the discrete element method was proposed by Chang (1992) to avoid the assumptions regarding the inclination and location of the interslice forces. The expressions for the factor of safety were presented in a manner that allows most of the current limit equilibrium based method of slices to be studied within a single framework. Bhattacharya and Basudhar (1999) proposed a new method of solution, in which the limit equilibrium formulation has been cast as a nonlinear programming problem and solved by using the sequential unconstrained minimization technique also known as the penalty function method. This method does not force to satisfy conditions like the force and the moment equilibrium conditions at each step during the process of minimization. Bhattacharya and Basudhar (2000) modified their earlier approach by avoiding

[^0]the assumption on the shape of failure surface. From these slope stability analysis methods, values of factor of safety are not readily available for the practising engineers. Each method invites running of the program for the specific case and thereby obtains the factor of safety. In this work, Bishop and Morgenstern method (1960) has been used to determine the stability coefficients for different values of $\mathrm{c} / \gamma \mathrm{H}, \phi$ and i , which can be readily used by the practicing engineers to calculate the factor of safety.

Bishop and Morgenstern Method

Bishop and Morgenstern (1960) provided tables based on Bishop method (1955), for the calculation of factor of safety (FS) for few specific cases. They covered $\mathrm{c} / \gamma \mathrm{H}$ up to 0.10 and slope angle i up to 26.57°. But in actual cases slope angle steeper than 26.57° are quite common and hence the approach is used to establish slope stability coefficients for steep slope angles.

Consider a slope $A B$ of vertical height H as shown in Figure 1. A trial slip circle $A C$ has centre at O and has radius r. The forces acting on nth slice are shown in Figure 2. From moment equilibrium and force equilibrium in vertical direction Bishop (1955) derived expression for the factor of safety (FS) as
$F S=\frac{\sum_{n=1}^{n=1}\left(c b_{n}+\left(W_{n}-u_{n} b_{n}\right) \tan \phi\right) \frac{1}{m_{\alpha(n)}}}{\sum_{\mu=1}^{n=1} W_{n} \sin \alpha_{n}}$
where $m_{\alpha(n)}=\cos \alpha+\frac{\tan \phi \sin \alpha_{n}}{F S}$
$W_{n}=\gamma b_{n} z_{n}$
where
$z_{n}=$ average height of the nth slice
$\mathrm{b}_{\mathrm{n}}=$ width of nth slice
$\alpha_{\mathrm{n}}=$ Angle made by the tangent with the horizontal at the base of nth slice
$u_{n}=h_{n} \gamma_{w}$
The pore pressure ratio
$r_{u}=\frac{u_{n}}{\gamma_{n}}=\frac{h_{n} \gamma_{w}}{\gamma z_{n}}$
Substituting Equations (2) and (3) into Equation (1) and simplifying

$$
\begin{equation*}
F S=\left[\frac{1}{\sum_{n=1}^{n=p} \frac{b_{n}}{H} \frac{z_{\mu}}{H} \sin \alpha_{\mu}}\right] \times \sum_{n=1}^{n=p}\left\{\frac{\frac{c}{2 H} \frac{b_{\mu}}{H}+\frac{b_{\mu}}{H} \frac{z_{n}}{H}\left[1-r_{n}\right] \tan \phi}{m_{\alpha(n)}}\right\} \tag{4}
\end{equation*}
$$

The factor of safety based on the above equation was expressed in the form

$$
\begin{equation*}
\mathrm{FS}=\mathrm{m}^{\prime}-\mathrm{n}^{\prime} \mathrm{r}_{\mathrm{u}} \tag{5}
\end{equation*}
$$

where m^{\prime}, n^{\prime} are stability coefficients and are given by

and
$n^{\prime}=\frac{\sum\left\{\frac{b_{n} z_{n} \tan \phi / H^{2}}{m_{\alpha(n)}}\right\}}{\sum \frac{b_{n} z_{n} \sin \alpha_{n}}{H^{2}}}$
Bishop and Morgenstern developed design tables (values of m^{\prime} and n^{\prime}) for $\mathrm{c} / \gamma \mathrm{H}=0.025,0.05,0.075$ and 0.1 and $\mathrm{i}=11.31^{\circ}(5 \mathrm{H}: 1 \mathrm{~V}), 14.04^{\circ}(4 \mathrm{H}: 1 \mathrm{~V})$, $18.26^{\circ}(3 \mathrm{H}: 1 \mathrm{~V})$ and $26.57^{\circ}(2 \mathrm{H}: 1 \mathrm{~V})$. But in actual practice, slopes steeper than 26.57° are quite common and range of $\mathrm{c} / \gamma \mathrm{H}$ from 0.025 to 0.1 will not be sufficient. Hence there is a need for developing tables of m^{\prime} and n^{\prime} values for all practical cases of $\mathrm{c} / \gamma \mathrm{H}, \mathrm{i}$ and ϕ. Range of $\mathrm{c} / \gamma \mathrm{H}, \mathrm{i}$ and ϕ considered in this study are $\mathrm{c} / \mathrm{\gamma H}=0.0,0.025,0.05,0.075,0.1,0.3,0.5,0.75$ and $1.0 ; \mathrm{i}=26.57^{\circ}, 45^{\circ}$, 60° and 75° and $0^{\circ} \leq \phi \leq 40^{\circ}$. A program has been developed in C language to determine the stability coefficients, namely, m^{\prime} and n^{\prime} and also the failure surface details.

Results and Discussion

Values of m^{\prime} and n^{\prime} for different values $\mathrm{c} / \mathrm{\gamma} \mathrm{H}$, for different ϕ values and slope angle, i were found out and typical values are presented in Tables 1 to 5. Table1 represents the values of m^{\prime} and n^{\prime} when $\mathrm{c} / \mathrm{yH}=0.0$ and $\mathrm{i}=26.57^{\circ}, 45^{\circ}$, 60° and 75° for $0^{\circ} \leq \phi \leq 40^{\circ}$. Similarly Tables $2,3,4$ and 5 represent the values of m^{\prime} and n^{\prime} for $\mathrm{i}=26.57^{\circ}, 45^{\circ}, 60^{\circ}$ and 75°, when $0^{\circ} \leq \phi \leq 40^{\circ}$ for $\mathrm{c} / \mathrm{\gamma H}=0.05$, $0.1,0.5$ and 1.0 respectively. The values of m^{\prime} and n^{\prime} for $\phi=0^{\circ}$ correspond to base failure for $\mathrm{i}=26.57^{\circ}$ and 45°, whereas for $\mathrm{i}>53^{\circ}$, toe failure takes place even if $\phi=0^{\circ}$ (Terzaghi and Peck 1967; Das 1998).

Fig. 1 Trial Failure Surface For Analysis

Fig. 2 Forces Acting on the nth Slice

Variation of m^{\prime} and n^{\prime} with $\mathrm{c} / \boldsymbol{\gamma} \boldsymbol{H}$

Variation of m^{\prime} and n ' with $c / \gamma H$ for different ϕ values (slope angle, $i=60^{\circ}$) has been presented in Figures 3 and 4. From Figure 3, we can conclude that variation of m^{\prime} with c / yH is linear. As $\mathrm{c} / \gamma \mathrm{H}$ increases, m^{\prime} increases and also m^{\prime} increases with increase in ϕ value. From Figure 4, it is found that n^{\prime} increases with increase in $c / \gamma H$ and it also increases with ϕ value, but increase is in nonlinear fashion.

Variation of m^{\prime} and n^{\prime} with slope angle, i

Variation of m^{\prime} versus i and n^{\prime} versus $\mathrm{i}(\mathrm{c} / \gamma \mathrm{H}=0.5)$ considering various values of ϕ are presented in Figures 5 and 6. It is found that m^{\prime} decreases with increase in the slope angle, i and it increases with increase in ϕ value. Similarly n^{\prime} also decreases with increase in i and increases with increase in ϕ.

Factor of Safety

Results (m^{\prime} and n^{\prime} values) have been presented in the form of tables (Tables 1 to 5) from which the factor of safety can be calculated directly using Equation (5). From Tables 1 to 5, corresponding to the field conditions, the values of m^{\prime} and n^{\prime} can be taken directly and the factor of safety can be calculated using Equation (5). Two illustrative problems given below highlight the same.

Fig. 3 Variation of m^{\prime} with $\mathrm{c} / \boldsymbol{\gamma H}$ for $\mathrm{i}=\mathbf{6 0}{ }^{\circ}$

Fig. 4 Variation of n^{\prime} with $c / \boldsymbol{y} H$ for $i=60^{\circ}$

Failure Surface

Extent of failure surface at the top of the slope is denoted by x_{e} (Figure 7). For various conditions, extent of failure surface is represented in the non
dimensional form (with respect to height of the slope) and is provided as x_{e} / H in Tables 1 to 5 . For $\phi=0^{\circ}$ and $\mathrm{i}<53^{\circ}$, base failure occurs (Terzaghi and Peck 1967; Das 1998). For $\mathrm{i}=26.57^{\circ}$ and $\phi=0^{\circ}$, extent of failure surface at the top of the slope is expressed in terms of x_{e} / H and it is found to be 1.138. x_{e} / H for $i=$ 45° and $\phi=0^{\circ}$ is found to be 1.389. These details are of great use in deciding the extent of failure and knowing the soil mass involved in the failure. Precautions can be taken not to apply any surcharge load (at the top of the slope) within this failure zone. Also high slopes can be divided into 2-3 small slopes by providing horizontal projections (berms/benches) in between them. Extent of failure surface details help in deciding the minimum width of horizontal projection required in between the slopes ($=x_{e}$), so as to make each slope to behave independently. Surcharge load effect is not considered in the entire analysis. In addition to gravity loads, if the slopes are also subjected to surcharge loads, stability coefficients reported in Tables 1 to 5 shall not be used.

Fig. 5 Variation of m^{\prime} with ifor $\mathrm{c} / \boldsymbol{\mathrm { H }} \mathrm{H}=\mathbf{0 . 5}$

Fig. 6 Variation of n^{\prime} with i for $\mathrm{c} / \boldsymbol{\gamma} \mathrm{H}=0.5$

Fig. 7 Reference Figure for Toe Failure
TABLE 1: Slope Stability Coefficients m^{\prime} and n^{\prime} for $c / \boldsymbol{\gamma}_{\mathrm{H}}=0.0$

	$\begin{aligned} & 2557^{\circ} \\ & 2 \mathrm{H} \quad \mathrm{~V}) \end{aligned}$			$\begin{gathered} 45^{\circ} \\ (1 \mathrm{H} \cdot \mathrm{~V}) \end{gathered}$			$\begin{gathered} 60^{\circ} \\ (0.58 \mathrm{H}-1 \mathrm{~V}) \end{gathered}$			$\begin{gathered} 75^{\circ} \\ \text { (0.27H:1V) } \end{gathered}$		
ϕ	m	n	x, H	m	n	x_{0} / H	m	ก'	$\mathrm{x}_{\mathrm{e}} \mathrm{H}$	m	ก	${ }^{8} \mathrm{~s}^{\text {H }}$
5.	0242	0.201	0.369	0137	0.110	0.295	0.094	0080	0.215	0065	0.060	0.285
10^{*}	0.438	0.392	0.213	0.246	0.241	0.185	0.177	0.151	0.169	1) 131	0.125	0.226
15°	0.831	0.581	0.160	0.351	0.342	0.135	0.256	0.245	0.119	0200	0.190	0.190
$20:$	0.823	0.742	0.139	0.462	0.435	0.130	0.336	0.322	0.124	0268	0.251	0.161
22.5.	0.931	0.820	0128	0.514	0.490	0.120	0.380	0.360	0.116	0292	0.291	0.118
25 :	1.038	0.970	0.109	0.573	0.550	0.101	0.416	0.413	0096	0340	0.325	0.094
$27.5{ }^{\circ}$	1.145	1.080	0.101	0830	0.615	0.098	0.461	0.461	0.090	0379	0.365	0.088
30°	1.258	1190	0.095	0696	0.675	0091	0.502	0.510	0.085	0.420	0.410	0.081
$32.5{ }^{\circ}$	1.375	1.310	0.091	0.763	0.72	0.087	0.558	0.551	0.080	0462	0.445	0.078
$35^{\text {\% }}$	1.501	1.439	0.088	0828	0.802	0.082	0.602	0.612	0.078	0.505	0.505	0.074
40^{2}	1.779	1.700	0.082	0880	0.950	0079	0.714	0.685	0.075	0.603	0590	0.071

TABLE 2: Slope Stability Coefficients m^{\prime} and n^{\prime} for $c / \boldsymbol{\gamma} H=0.050$

	$\begin{aligned} & 26.57^{\circ} \\ & 2 \mathrm{H} .1 \mathrm{~V}) \end{aligned}$			$\begin{gathered} 45^{\circ} \\ (1 \mathrm{H}: 1 \mathrm{~V}) \end{gathered}$			$\begin{gathered} 60^{\circ} \\ (0.53 \mathrm{H}: 1 \mathrm{~V}) \end{gathered}$			$\begin{gathered} 75^{\circ} \\ (027 \mathrm{H} \cdot 1 \mathrm{~V} \end{gathered}$		
ϕ	m	n	${ }_{\sim}{ }^{2} \mathrm{H}$	m	${ }^{\prime}$	x. $/ \mathrm{H}$	m'	${ }^{\prime}$	$x_{2} \mathrm{H}$	m'	${ }^{\prime}$	$x_{2}{ }^{\text {HiH}}$
$0=$	0.314	0.000	1.138	0.288	0.000	1.389	0.262	0.000	0.833	0.228	0.000	0.860
5	0622	0.294	0.566	0.458	0.197	0.400	0.363	0.158	0.360	0281	0.129	0.357
10^{2}	0868	0.522	0.421	0.598	0.340	0.320	0.451	0.268	0.266	0.350	0.215	0.276
15°	1101	0738	0344	0732	0.470	0.280	0.567	0.369	0.220	0.420	0.293	0.239
20°	1.334	0957	0.316	0.364	0.597	0.240	0.652	0.453	0.176	0.484	0.370	0.209
$22.5{ }^{\text {* }}$	1.452	1.062	0.280	0.932	0.662	0.240	0.701	0.511	0.164	0.532	0.410	0.199
25°	1.874	1.181	0.282	1.000	0.728	0210	0.750	0.561	0.153	0.572	0.449	0.187
$27.5{ }^{-}$	1.699	1275	0.245	1.071	0.796	0.210	0.802	0.611	0.141	0612	0.491	0179
$30^{\text { }}$	1828	1421	0.248	1.143	0.864	0200	0.855	0.662	0.143	0635	0.534	0172
$32.5{ }^{\text {\% }}$	1.963	1.544	0.225	1218	0.936	0.180	0.909	0.716	0.139	0700	0.579	0.161
35:	2.104	1579	0.214	1297	1.013	0.178	0968	0.774	0.145	0.747	0.627	0.158
40:	2410	1.968	0.190	1.467	1.174	0.169	1.093	0.894	0.142	0.850	0.730	0144

TABLE 3: Slope Stability Coefficients m^{\prime} and n^{\prime} for $c / \boldsymbol{\gamma} H=0.1$

	$\begin{aligned} & 28.57^{\circ} \\ & (2 \mathrm{H} .1 \mathrm{~V}) \end{aligned}$			$\begin{gathered} 45^{\circ} \\ (1+1 \mathrm{~V}) \end{gathered}$			$\begin{gathered} 60^{\circ} \\ (0.58 \mathrm{H}: 1 \mathrm{~V}) \end{gathered}$			$\begin{gathered} 75^{\circ} \\ (0.27 \mathrm{H}: 1 \mathrm{~V}) \end{gathered}$		
\$	m	n^{\prime}	$\mathrm{X}_{1} \mathrm{H}$	m	${ }^{\text {n }}$	x_{7} / H	m	-	$x_{4}{ }^{2} \mathrm{H}$	mi	n^{*}	${ }_{4}{ }^{\text {a }} \mathrm{H}$
0 -	0527	0.000	1163	0576	0000	1389	0.525	0000	0833	0457	0000	0.862
5.	0.973	0.328	0.682	0.761	0229	0421	0.623	0.183	0.432	0.499	0.153	0.421
$10:$	1.243	0.581	0571	0.919	0399	0328	0.727	0.318	0.356	0.564	0.250	0.358
15°	1.507	0.831	0470	1.067	0.550	0342	0.829	0.436	0298	0.834	0.352	0.314
$20 \cdot$	1765	1072	0431	1.215	0.597	0321	0933	0548	0.255	0709	0.440	0.280
$22.5 *$	1.293	1189	0388	1289	0768	0296	0.986	0.806	0249	0748	0483	0.262
25°	2028	1314	0392	1.365	0344	0289	1040	0.661	0225	0798	0.528	0.249
275°	2162	1.437	0349	1.442	0.918	0.278	1097	0721	0.220	0.830	0.573	0247
$30 \cdot$	2.304	1.573	0353	1.523	0.996	0271	1154	0777	0.204	0.873	0.619	0230
32.5*	2.448	1.704	0312	1.605	1076	0253	1.214	0.837	0193	0.919	0.668	0.220
35:	2.502	1.851	0.313	1.592	1159	0.249	1276	0899	0.182	0.967	0.718	0220
40:	2.929	2.153	0.278	1.878	1.340	0235	1411	1031	0.158	1.073	1.073	0197

TABLE 4: Slope Stability Coefficients m^{\prime} and n^{\prime} for $\mathrm{c} / \boldsymbol{\gamma} \mathrm{H}=0.5$

	$\begin{aligned} & 26.57^{\circ} \\ & \{2 \mathrm{H} .1 \mathrm{j}\} \\ & \hline \end{aligned}$			$\begin{gathered} 45^{\circ} \\ (1 \mathrm{H} 1 \mathrm{~V}) \end{gathered}$			$\begin{gathered} 50^{\circ} \\ (0.58 \mathrm{H}: 1 \mathrm{~V}) \end{gathered}$			$\begin{gathered} 75^{\circ} \\ (0.27 \mathrm{H}: 1 \mathrm{i}) \end{gathered}$		
9	m	n	$\times . / \mathrm{H}$	m	${ }^{\prime}$	$\mathrm{x}_{\mathbf{2}} / \mathrm{H}$	m'	n^{\prime}	$\mathrm{x}_{5} \mathrm{H}$	m'	${ }^{\prime}$	\times x ${ }^{\text {H }}$
$0=$	2331	0.000	1.138	2.785	0.000	1.389	2.624	0.000	0.833	2.283	0.000	0.867
5	3528	0.394	0.948	3.124	0.261	0.764	2.742	0.214	0.707	2.328	0. 196	0.552
10^{2}	3963	0745	0843	3308	0508	0.512	2.822	0.426	0513	2.343	0364	$050{ }^{\circ}$
15°	4293	1081	0.789	3.486	0.752	0.477	2.920	0.610	0.476	2.387	0.520	0.476
$20=$	4624	1409	0765	3659	0.979	0.443	3.030	0.788	0452	2.444	0.583	0.446
22.5	4736	1.569	0.699	3.768	1.098	0.443	3.089	0.877	0.442	2.476	0.733	0.432
25°	4960	1.731	0.638	3.860	1.206	0.409	3.149	0.965	0.425	2.512	0.806	0.416
273	5136	1.311	0.677	3.964	1.325	0.409	3.213	1.054	0.408	2.551	0.878	0.416
30°	5313	2073	0.635	4.062	1.430	0.376	3.280	1.143	0.402	2.592	0.949	0.403
32.5	5501	2255	0.625	4.170	1.544	0.376	3349	1234	0.393	2.635	1020	0.390
35°	5697	2.443	0.614	4277	1.651	0.344	3.423	1329	0.378	2.680	1092	0.374
$40:$	6113	2.835	0.566	4.524	1.924	0.3.44	3.584	1.528	0.360	2.786	1.254	0.362

TABLE 5: Slope Stability Coefficients m^{\prime} and n^{\prime} for $c \boldsymbol{\gamma} H=1.0$

	$\begin{aligned} & 25.57^{\circ} \\ & 2 \mathrm{H} 1 \mathrm{~V}) \end{aligned}$			$\begin{gathered} 45^{\circ} \\ (1 \mathrm{H} \cdot 1 \mathrm{~V}) \end{gathered}$			$\begin{gathered} 60^{\circ} \\ (0.58 \mathrm{H} 1 \mathrm{~V}) \end{gathered}$			$\begin{gathered} 75^{\circ} \\ (0.27 \mathrm{H}: 1 \mathrm{~V}) \end{gathered}$		
	m	n'	$\mathrm{Xe}_{0} \mathrm{H}$	m	n'		18	n'	$x_{0}{ }^{\text {d }} \mathrm{H}$	m	π	$\mathrm{X}_{\sim} \mathrm{H}$
$0 \cdot$	5862	0000	1138	5.571	0.000	1.389	5249	0.000	0.833	4.567	0.000	0851
5.	6.909	0.410	1.005	6064	0.270	0.814	5370	0.220	0763	4637	0.192	0.768
10:	7.281	0.795	0.93 ?	6251	0527	0.727	5486	0.447	0.530	4656	0.396	0.535
15^{*}	7.513	1167	0.843	6.441	0.781	0.512	5561	0.664	0.513	4.664	0.574	0.506
20:	7.968	1.53?	0.843	6538	1047	0.477	5.656	0.877	0.486	4.692	0.747	0.482
22.5 :	3. 152	1.724	0.764	6.737	1.185	0.477	5.709	0.979	0.476	4.711	0.834	0.478
25:	8341	1.918	0.767	6.840	1.337	0.477	5.764	1.083	0.458	4.737	0.925	0.465
$275{ }^{\text {\% }}$	8 E31	2.103	0.767	6943	1.462	0.443	5.822	1.189	0.452	4.756	1015	0.453
30^{2}	8.728	2.305	0.738	7054	1612	0.443	5.886	1.298	0.452	4.798	1.105	0.440
325°	8.934	2.505	0.690	7.172	1.768	0.409	5.955	1413	0.440	4.833	1. 195	0.427
35:	9153	2719	0689	7284	1.890	0.409	6028	1.527	0.425	4871	1.286	0.417
40 ?	9.609	3.159	0.863	7545	2.205	0.376	6190	1.771	0.402	4.950	1481	0.408

Illustrative Examples

Problem 1: A homogeneous soil slope of 8 m height makes an angle of 60° with the horizontal. The soil properties are: $\mathrm{c}=15 \mathrm{kN} / \mathrm{m}^{2}, \phi=25^{\circ}, \gamma=18.75 \mathrm{kN} / \mathrm{m}^{2}$. Pore pressure ratio is 0.15 . Estimate the factor of safety and extent of critical failure surface.
Solution: $\mathrm{i}=60^{\circ}, \mathrm{H}=8 \mathrm{~m}, \mathrm{r}_{\mathrm{u}}=0.15, \mathrm{c}=15 \mathrm{kN} / \mathrm{m}^{2}, \phi=25^{\circ}, \gamma=18.75 \mathrm{kN} / \mathrm{m}^{2}$. c $/(\gamma H)=15 /(18.75 \times 8)=0.1$

For c $/(\mathrm{yH})=0.1$ and $\phi=25^{\circ}$, referring Table 3
$\mathrm{m}^{\prime}=1.040, \mathrm{n}^{\prime}=0.661$ and $\mathrm{x}_{\mathrm{e}} / \mathrm{H}=0.225$
Therefore, Factor of safety, FS = $m^{\prime}-\mathrm{n}^{\prime} \mathrm{r}_{u}$

$$
\begin{aligned}
& =1.040-0.661 \times 0.15 \\
& =0.941 \text { (unsafe) }
\end{aligned}
$$

Extent of failure surface, $x_{e}=0.225 \mathrm{H}$

$$
\begin{aligned}
& =0.225 \times 8 \\
& =1.80 \mathrm{~m} \text { (from top edge of the slope) }
\end{aligned}
$$

Problem 2: A homogeneous soil slope of 5 m height makes an angle of 45° with the horizontal. The soil properties are: $\mathrm{c}=30 \mathrm{kN} / \mathrm{m}^{2}, \phi=20^{\circ}, \gamma=20 \mathrm{kN} / \mathrm{m}^{2}$. Pore pressure ratio is 0.20 . Estimate the factor of safety and extent of critical failure surface.
Solution: $\mathrm{i}=45^{\circ}, \mathrm{H}=5 \mathrm{~m}, \mathrm{r}_{\mathrm{u}}=0.20, \mathrm{c}=50 \mathrm{kN} / \mathrm{m}^{2}, \phi=20^{\circ}, \gamma=20 \mathrm{kN} / \mathrm{m}^{2}$.

$$
c /(y H)=50 /(20 \times 5)=0.5
$$

For c $/(\gamma \mathrm{H})=0.5$ and $\phi=20^{\circ}$, referring Table 4
$\mathrm{m}^{\prime}=3.669, \mathrm{n}^{\prime}=0.979$ and $\mathrm{x}_{\mathrm{e}} / \mathrm{H}=0.443$
Therefore, Factor of safety, FS $=m^{\prime}-n^{\prime} r_{u}$

$$
\begin{aligned}
& =3.669-0.979 \times 0.20 \\
& =3.473 \text { (safe) }
\end{aligned}
$$

Extent of failure surface, $x_{e}=0.443 \mathrm{H}$

$$
\begin{aligned}
& =0.443 \times 5 \\
& =2.215 \mathrm{~m} \text { (from top edge of the slope) }
\end{aligned}
$$

Conclusions

Slope stability analysis by Bishop and Morgenstern method has been carried out considering $\mathrm{c} / \gamma \mathrm{H}=0.0,0.025,0.05,0.075,0.1,0.3,0.5,0.75$ and $1.0 ; \mathrm{i}=26.57^{\circ}, 45^{\circ}, 60^{\circ}$ and 75° and $\phi=0^{\circ}, 5^{\circ}, 10^{\circ}, 15^{\circ}, 20^{\circ}, 22.5^{\circ}, 25^{\circ}, 27.5^{\circ}$, $30^{\circ}, 32.5^{\circ}, 35^{\circ}$ and 40°. Based on the work presented in this paper, the following conclusions are drawn:

1) Stability coefficients m^{\prime} and n^{\prime} and extent of failure surface are provided in Tables 1 to 5 for various conditions, which can be directly made use for finding out factor of safety and extent of failure surface for the field conditions.
2) Stability coefficient m^{\prime} increases linearly with increase in $\mathrm{c} / \gamma \mathrm{H}$ values. As ϕ increases, the stability coefficient m^{\prime} increases.
3) Stability coefficient n^{\prime} increases nonlinearly with increase in $c / \gamma H$ values. As ϕ increases, the stability coefficient n^{\prime} also increases.
4) As the slope angle i increases, the stability coefficients m^{\prime} and n^{\prime} decrease.
5) Extent of failure surface decreases with increase in ϕ and increases with increase in $\mathrm{c} / \mathrm{y} \mathrm{H}$.

References

Bhattacharya, G. and Basudhar, P. K. (1999): "A New Approach of Solving the Stability Equations of General Slip Surfaces", Indian Geotechnical Journal, 29, pp. 322-338.

Bhattacharya, G. and Basudhar, P. K. (2000): "Slope Stability Computations in Nonhomogeneous and Anisotropic Soils", Indian Geotechnical Journal, 30, pp. 385-399.

Bishop, A. W. (1955): "The Use of the Slip Circle in the Stability Analysis of Slopes", Geotechnique, 5, pp. 7-17.

Bishop, A. W. and Morgenstern, N. R. (1960): "Stability Coefficients for Earth Slopes", Geotechnique, 10, pp. 129-147.

Chen, Z.-Y. and Morgenstern, N. R. (1983): "Extensions to the Generalized Method of Slices for Stability Analysis", Canadian Geotechnical Journal, 20, pp. 104-119.

Chen, Z.-Y. and Shao, C.-M. (1988): "Evaluation of Minimum Factor of Safety", Canadian Geotechnical Journal, 25, pp. 735-748.

Chang, C. S. (1992): "Discrete Element Method for Slope Stability Analysis", Journal of Geotechnical Engineering, ASCE, 118, pp. 1889-1906.

Das, B. M. (1998): Principles of Geotechnical Engineering, $4^{\text {th }}$ Edition, PWS Publishing Company, Boston.

Leshchinsky, D. and Huang, C.-C. (1992): "Generalized Slope Stability Analysis: Interpretation, Modification and Comparison", Journal of Geotechnical Engineering, ASCE, 118, pp. 1559-1576.

Terzaghi, K. and Peck, R. B. (1967): Soil Mechanics in Engineering Practice, $2^{\text {nd }}$ Ed., John Wiley and Sons, New York.

Notations

The following notations are used in this paper.
$a_{n} \quad=$ Angle made by the horizontal with the tangent at the base of nth slice
$b_{n} \quad=$ Width of nth slice
c = Unit cohesion
$\gamma \quad=$ Unit weight of soil
H = Vertical height of the slope
i = Angle made by the slope angle with the horizontal
$m, n=$ stability coefficients
$\phi \quad=$ Angle of internal friction
$r_{n} \quad=$ Pore pressure ratio for the nth slice
$r_{u} \quad=$ Pore pressure ratio
$W_{n} \quad=$ Weight of the nth slice
$z_{n} \quad=$ average height of the nth slice.

[^0]: * Assistant Professor, Dept. of Civil Engg., National Institute of Technology, Surathkal, Karnataka - 575025.
 ** Formerly Post Graduate Student, Dept. of Civil Engg., National Institute of Technology, Surathkal, Karnataka - 575025.

