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Vibration of an Elastic Halfspace under Rectangular
Loading

S.P. Dasgupta* and Srikanth Kallam**

Introduction

The literature of soil dynamics is quite diversified and it encompasses as
diversified fields as earthquake engineering, machine foundation and
protective structures such as radar installation. It is well known that the

vibration,whether originating as impulse from a forgehammer or repeated vibrations
from reciprocating engines are transmitted as waves through the ground. These
waves in turn excite other structures distant from the source as well as the foundation
from which vibrating energy is emanating. The mathematical aspects of vibrations,
namely wave propagation and ground motion, natural frequency, response and

settlement, cannot be treated out of context to the whole of discipline of soil
dynamics to which it belongs. The design of a footing subjected to dynamic loading
requires not only the consideration of the mathematical aspects of vibrations, but

also of the art aspect, based onfield observations, of wave propagation, resonance,
particle motion, settlement, and changes in behavior of soils when subjected to both

impulseandcyclic loading.

J

Thomson and Kobori (1962, 1963), using Fourier theorem, presented
solutions of the dynamic response of rectangular footing on an elastic half space and
subjected to uniformly distributed dynamic load. Compliance functions were
obtained at the centre of the footing for different frequency, length to width ratios and

for a particular Poisson ratio,v = 1 /4.Elorduy,Nieto and Szekely (1967) reported an

extensive study on the dynamic response of a rigid rectangular footing under the

action of vertical periodic loading, resting on the surface of an elastic homogeneous

halfspace.Wong and Luco (1976) proposed anapproximatenumericalprocedure for

calculating harmonic force-displacement relationship for a rigid foundation of
arbitrary shape placed on an elastic halfspace. These results include the coupling
compliances between the horizontal and rocking motions. Dasgupta and I
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4 Thomson and Kobori (1962, 1963), using Fourier theorem, presented
solutionsof thedynamic response of rectangular footing on an elastic half space and
subjected to uniformly distributed dynamic load. Compliance functions were
obtained at the centre of the footing for different frequency, length to width ratios and
fora particular Poisson ratio, = 1 / 4.Elorduy,Nieto and Szekely (1967) reported an
extensive study on the dynamic response of a rigid rectangular footing under the
action of vertical periodic loading, resting on the surface of an elastic homogeneous

Dynamic behaviour of buildings and other foundation structures depends on
the relative stiffness of the ground and that of the structure. If the stiffness of the
structure is small in comparison to that of the ground, influence of the ground on the
dynamic behavior of the structure is negligible and an infinitely rigid base can be
assumed. The dynamic stiffness of the ground is measured by the ground
compliance displacement produced by the loadingof the structure.It dependsonthe
elastic properties of the ground, the shape of the loading area and the frequency of
the load.

Six co-ordinates comprising two orthogonal horizontal translations, a vertical
translation, rocking about two mutually perpendicular horizontal axes and torsion
about the vertical axis, can describe the motion of a footing block. The vertical
translation mode and rotational modeoccur as uncoupled motions when a complete
symmetry exists.

Thepurposeof this study is topresenta method that will permit theevaluation
of force-displacement relationship and thereby to find the compliance functions for
only three modes of vibration (vertical, horizontal and rocking). The approach is
restricted to the case of rectangular foundations placed on the surface of elastic
medium. Displacements have been computed for any point on the surface. These
are useful for experimental studies,as measurements are made at any point on the
surface,andmaybeuseful for studies related to different contact stressconditions.

Analysis

The problem of establishing the dynamic stiffness of the ground has been of
interest to those designing foundations for machines with oscillatory forces. In
mathematical terms it is known as halfspace problem and Reissner (1936) initiated
the solution. His study considered the loading under the circular foundation to be
uniform, and found the displacement at the centre to be linearly proportional to the
load with amplitude and phase varying with non-dimensional frequency factor a0.
Many authors studied the phenomena independently and made extensions to the
above work. In all these studies, the average displacement at the center of the
circular slab is expressed in terms of non-dimensional frequency factor a0.Normally
a circular slab has been chosen since its mathematical analysis, although
complicated,yields results capable ofanalyticaland numerical solution.Thesolution
procedure followed hereinwas initiated by ThomsonandKobori(1962).

*
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For a Homogenous isotropic elastic body (Fig. 1), the displacement vector

satisfies the followingequation:

Fig.1 Rectangular Footing on an Elastic Halfspace

, . ,[ 3A 3A 9Al d2

|+ pW 2 {«, v, w} = p —j{«, v.w ] (D

where, A =—+—+— = dilatation; V2 = -^-r + = Laplacian operator,

dx Dy dz ox ov dz

By eliminating the displacement components u, v and w, the wave equation

for the dilatation is obtained as i(2)

where c, = yJ( A+ 2 ju ) / p - dilalational wave velocity.
To solve eqn. (2), a triple Fourier Transform of A on x, y and t has been

introduced as follows
J

fy-j J J JA(X,.V, Z, t ) e~l { P'’ r' *"" ]dxdydt = A (3)
/J ( A) =

Its inverse is then given by f 3 ( A) — A . \r\ addition, it can be shown that

( / V T "r "t ( 3‘A D!& 32A 'i
V 2/r j _ __ _ _ v dy2 D/ ~ J

dxdydt = -[ p2 , f ,ar ) A( p, y. z.co ) (4)i [ fix* yy+M )

So the tripleFourierTransformofeqn.(2)becomes

d 2

- { { P2 + r2 )- h2 } A =0 (5)

dz2 -1'

t
with the solution

(6)
A= Ae-a' : + A'e+a‘ !
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4
where (X 2 = fl 2 + y2 — h2 ; h2 = CO2 / c 2 .

In eqn. (6), in order to eliminate the physically inconsistent solution for an
exponentially increasing A with z,onehas to set A' = 0 . Thus, the solutionof eqn.

(6) reduces to

A = Aea‘ z

Inverting eqn. (7)

A( x,y,z,i )= .r ,( Ae-tt‘’ ) =

(7)

dpdydca (8 )-a,:+i { ftx+yy+roi )

If one introduces the multiple Fourier Transform of the displacement components u,
vandwineqn. (1)andmakesuseof the solution foreqn. (8),eqn. (1)becomes

~ [ P2 +f ) j(«. v- w )= jAe"* ( ip, iy, a,) 0)

where

= - shear wave velocity.k 2 CO2A+ ju

V c 2 C,2U

Using , CX.2 = P + y" — k" , u, V and vt' in eqn. (9) are given by

( u,v ,w ) = ( ij3, iy,al )-^e-a' z + ( B,C, D )e-

+ ( B,C, D )e-a’: j

a2 - (10)

where, and their inverse can be written as

{ u,v,w ) = /''|( ip, iy,a, ) -jre
-n,: (11)

The general solution for displacements is then expressed by

( /3B+ yC )( u,v,w )= f ~3|( i Ip, iy,a,) ^ (12)B.C.—a2

where A, B and C must be determined from the boundary conditions.

Assuming that the boundary conditions are specified in terms of stresses that
are determined from the displacements of eqn. (12), the stresses may be obtained
as

I...,,=-vr '\( 2a:+ k ! )£ e-~ - 2i ( flB+ yC ) e a:}.

2ialP Ae~"‘‘ +
h:i

(13)^- Aear +

L
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Ground Compliance of a Rectangular Foundation

In a dynamic problem, the stress distribution under the foundation is not
known since it depends on the displacement which is yet unknown. Thus one has to
adopt the procedure, used by others, of assuming a stress distribution under the
foundationand solving for the correspondingdisplacement.

If one designates the stress distribution under the foundation
a s q j ( x, y , t ) where the subscript j defines the type loading, its Fourier Transformis
givenby

f\h (* y>' ) = <i j (Ar < °>) = ]] J<? ( l I.C ) e <1A'+w+mf ) (14)d q d i j d t;

Furthermore,by assuming the functionof the stress distribution to be separable, i.e.

q j (x, y , t ) = q . (x, y )Q { t ) . the Fourier Transform is

/

l vf [O(0]= (15)
2K

and the inverse isgiven by J
2n

(16)

Present attempt is to obtain dynamic compliance at any point of the
rectangular footings for only three modes of vibrations.The loadings considered are
of the type

Vertical loading;1.

2. Horizontal loading;

3. Loading produced by the rocking of the foundation about its centre-
line.

Vertical loading

Theboundary stresses are defined as

=°- rv;=°’ 0\ = qv { x, y )Q( t )
Taking triple Fourier Transform of the stresses given by eqn. (13) and

substituting them in eqns. (16) and (17), three equations involving the arbitrary
functionsA,B andC are

(17) I
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4

" +{iy +a^B+%c)2ia,p
e~"’: = 0 (18)

h2

(19)

Assuming qn { %, T] ) to be a uniform stress,~qn = constant, in which case the right
side of eqn.(20)becomes

q0QM i

2w i
Eqn. (20) can now be written as

jê d^ Je 'mdr/ =
4q0 sin fib sin yc —Q { a> ) (21)
2nn Py-c

{ 2a2 + k 2 )^e-°‘> - 2i { PB+ yC )e-°* =^Sin^in^Q( w ) (22)

Solving eqns. (18), (19) and (22), A, B and C are obtained as

sin Pb sinyc^ h \2 [ P + 72 ) ^ ]
A= ** Q { co)) F { P, y )py2 jzp

. 4q0 f sin pb sin yc ) 2a]azP —
B — —i Q { co) (23)

r { P, y )py2nfi

. 4q0 f sin Pb sin yc ) 2a,a2 y —
C — —i Q {°>)

F { P, Y )py2np

F( p, y ) = [ 2 ( p2 + y2 )- k 2 ]-4a,a2 ( p2 +f ).where

The compliance in the verticaldirection at the centre of the rectangular footing
canbe determined fromeqn. (12)as

cc,e-a‘l i { PB+ yC )-3 e-«2 Z (24)W — / h2 a2

Forz=0

jW*+ rc )-3
W = f (25)

h2 cc2

1 - f f f wei{ Px+ry+<m )dydpdco
{ 2x )> —~

w — (26)
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Again

4q0
( sin fib sin yc ) 2a,a2 /3 —

2nnl py Q { a> )fiB+ yC = /3 -i
F ( P> r )

4q0
( sin Pb sinyc } 2a,a2 y —

2m K Py <2 { a>)+y -i

I ~r ~t ~t 4q„ ( sin fibsin a,k 2

W =^lir^{

(27)

which results in

(28)

Q(a)y{ /’" r"" tdydf}da)and (29)Jr F { P.Y )

Omitting eim 4

-1 “r”f ai^ 2 s‘n Pb sinycw nz=n cos y3x cos yydPd y (30)
pvQ { t ) n2bc/i o 0 F ( p, y ) Py

The ground compliance for vertical dynamic load obtained was in terms of double
infinite integrals and for numerical evaluation of this integral some simplification is
necessary and this can be achieved by the transformation of coordinates to reduce
one of the infinite integral to finite one and render the integrals ina formmore suitable
for computation.OmittingQ(f),eqn.(30)canbe written in the form

wcju _ I ”r“r a,k 2 sin Pb sinyc

Pv K2b ]]F ( p, y ) Py
cos PxcosyydPdy (31)

defining p= r' cosO; y = r sin0; P2 +f = r'2 ; dpdy = r'dr'dd and substituting

h =(o/ c,=( c2 /c,) {(o/c2 )= nk ; where, n=^( I-2 v ) j( 2( l -v ) ) , the finite integral form of
eqn.(31)canbeobtainedas

Ik 2 slr' 2 - n2k 2 sin { r'bcos0) sin( r'csind )1wcfl \\ r' 2 sin6cos9*
2b l l F ( r' ,k ) (32)Py

[cos(r'xcosd )cos(r'y sin <9)]r'dOdr'
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4 substituting r' - rk and ((ob)/c2 = bk - a0 ,eqn. (32)becomes

sin [ raocos0) sin^ r ^a0 sin9 ^j_/_ Vrl Vr2 -n2

n2b
WC/J. f j F ( r ) r sin6cos9P, 0 0 (33)

F { r )= (2r 2 -if -4r 2\l7 V̂ 47̂ 1.where

Eqn. (33) can be computed from the evaluation of the Cauchy principal value
of the integral.The zero in the denominator occurs whenr=z„ which corresponds to

Eqn. (33) can be computed from the evaluation of the Cauchy principal value
of the integral.The zero in the denominator occurs when r = z0 which corresponds to
the simple poles of the Rayleigh functionF(r). In order to avoid standing waves, or to
insure that only outgoing wavesare present,it isnecessary to subtract one half of the

f sin(z„aB cos9 ) sin ^ z„ C
~a„ sin0 j—i 2

naa J F' ( z„ )
Horizontal Loading

In this case a horizontal shear load PH is applied to the foundation in the
direction of X, leading to theboundary conditions

=0; Tv. =0; Txz = qH { x, y , t ) =~q0Q{ t )
Assuming again that the distributionof shear stress under the foundation is to

beuniformandis equal to -q0 andproceedingas in the vertical case, the quantitiesA,
B and C are

(34)> dO .
Z„ sin0cos9

, _ . 4q!L{ sin fib sinyc\2 pa2h
2 -

A-
2W { fiy ) F ( fi, yf ( ’
4g„ ( sin fib sinyA{ 2<*22 + k 2 )( f +a/ )-4a,a2 / -
2X/J { fiy ) a2 F ( fi, y )

r _ 4q„ ( sin fib sin yc") { 2ai + k‘ ~ 4aia’)-, ,
2m{ Hr ) cc2F { fi, y) ]

B

The compliance in the horizontal direction can be found out by substituting
values of A, B and C in eqn. (12) and solving the equation similarly as in the vertical
case.The final expression for the ground compliance in the horizontal case is given
by
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F ( p, y ) - p* [ k* ~ 4a, («,-« )]'“L 1
PHQ{ ) n!bcfi // a:F ( p, r )

(35)
s-‘n cos pxcos yy jdfldy

Making the substitutions similarly as in the vertical case to convert the infinite
integral to finite one, the simplified expression for ground compliance for horizontal
case thenbecomes

“jJF { r )sin* 8- ( r* -/Jco/ fll H rC-a0 sinO
UCM _ 1 r r
PH n2aa \\ J?~

IF ( r ) r sin6cos6
(36)

j^cw cos0 jcos^ r
yc a„ sin 0 \drd0
c b

While evaluating the numerical values singularities will occur due to nature of
the Rayleigh function one at the Rayleigh pole and the other at r =1. Following the
similar arguments given for the vertical case, to avoiderror due to these singularities,
the aboveequationshouldbeadded to the followingquantity ),

2r (l -i)sin* 0 Jz„* -1f cos* eJ~
2 /'( *»)

sin(z„a„cos8 ) sin ^ z„^a„sinff
'j (37)

£% cos8 jcos^ z„~a0 sin 8 j d8., a \

Z„sin0cos0

Rocking loading

In this case foundation is assumed to undergo rotation about the x axis.The
shear stress under the foundation is assumed to be zero as in the case (a) and the
normal stress is assumed to increase linearly with y, the boundary conditions for the
shear is same as vertical loading andadditionalboundary condition is givenby

Substituting these boundary conditions in eqn. (13), the values of A, B and C
can be foundout.Substituting the values ofA,B andCin eqn.(24)andproceedingas
in the vertical case, the final expression for vertical compliance at any point can be
obtainedas

— and the totalmoment MR is MR — — q0bc2
.

c 3

q„Q{t ) i "r ~r a,k2 sin pb f sin yc ccosyc \ Afx̂ ) AaA^w ~ ~
x' nc p { f r ) p Y (38)
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4 On simplification, the above equation reduces to

a'kl sin Phsin yy \ l̂ull _ ccos yc cosBxdBdy
jc2pbc2 By [ y 7 cospxapay

Making similar substitutions as in the vertical case to make the infinite integral
to finite one, the simplified expression for vertical ground compliance at any point in
the rockingmode of vibrations is givenby

(39)w =

n2a„ H F ( r ) \^a„rsinej~ COS

~ anr sin6
(40)

sin (a0rcosO )sin anrsin8
'^ cos^̂ a0rcos8 ĵ

drdO
r sin BcosG

and rotation (f) is obtained as

w ]
Z=0,y=c,x=0<P =)

c
sin^ĵ anrsin

'Jr 2 — n2 ^~a„rsin 0j<t>pc2 _ 3 Vr
MR ft ao n n

-cos
F ( r ) — aBrsin6

(41)

sin [ a„rcosd )sin [^ anrsin £? j
drdd.

r sin 6cos6

While evaluating the numerical values singularities will occur due to the
nature of the Rayleigh function at the Rayleigh pole. Following the similar arguments
given for the vertical case, to avoid error due to these singularities, the above
equationshould be added to the following quantity

sin^ j- a0zu sin8 j
\ j -OgZoSinej-cos

7a„Zu sin6
o

(42)

sin (a0z0 cos8 )sin {^ a0 z0 sin 0 !
d8.

z0 sin 8cos8
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Zero Frequency (Static) Displacement

The above-derived equations are not suitable for zero frequency case a0=0,

thus limitingcaselim is solved and a closed form solutionis presentedhereunder.
ty->0

Vertical loading

As <*>/c2 = k,when <u->0 ;k->0 Hence ineqn. (32) for k —> 0

k 2 sjr' 2 - n2k 2 1
lim

2r' ( n2 - /)F ( r',k )k —*0

Eqn.(32)willbecome

1 "rV /

TL=

*bl\.
2( n’ - l )

sin ( r'bcosff ) sin( r'csind )wcfl
r' 2 sin 6 cos 9 (43)

[ cos ( r'xcos6)cos ( r'ysin9 )^d6dr'

A simplified form may be written as

/wcfl [ l l + l2 + l3 + l4 ]
1 6 7t { n2 -l )P

(o=0

in which
( x >

/±-

b\ c ) l o o s e l b ) l
dd be=tan 1

cos0
c y

<
b\ c ) l cos 0 V b ) l cox &

e=tan 1

i± y
c

Horizontal Loading

The limiting value for the static case will be

F ( r',k )- / 2 cos2 d\4r’7 -3k 2 -Wr' 2 - k 2 -Jr' 2 - n2 k ]
l i m
A ->0 F ( r' , k ) y j r' 2 — k 2

cos2 d { 2n2 - /)1 I -
2 { n2 - ! )
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The expression for zero frequency displacement then reduces to

1 Vf cos2 d ( 2n2 -l) sin ( r'bcos8 )sin ( r'csin 8 )
7t~b •J 2(n2 - /) r' 2 sin0cos6

uc/J

PH (44)(0=0

[cos( r'xcosO)cos ( r'y sin 6 )]dr'dd

On simplification as in vertical case the aboveequation canbewritten as

2n2 -1 2n2 -1WCjU 1,- h (45)
-1) 8K ( n2-7)PH 4n

(0=0

in which
x \l ±

=£(/±zVf^_,
b\ c J •cos0

b; 8=1an
i± y

c /r
/±-^

“5)7 d6 h'2 = 9=tan
• cos6’ y1±

c

( r 1l ±->
1,= — \̂ 1+ —

''jsin 0+^1±^jcos0; 0=tan' I
i± y

c
Rocking Loading

Form eqn. (42),by applying limits the finalequation for rockingwill be

^ rsin # jsin ( rcos6 )sin ^^ rsinsin
3 JJ r 3 sin' 9cos62*

2 l { n2 - l ) 0 0

(46)

^j- r sin6 jsin ( r cos0 )sin^r sincos
drdd.

r‘ sin9cos 0

Computation of Response

The procedure outlined by Elorduy et al. (1967) has been followed for the
evaluation of response. A rigid rectangular footing with sides 2b (width) and 2c
(length) resting on the elastic halfspace ( Fig. 1) is assumed. Solutions given by
eqns. (33)+(34), (36)+(37) and (41)+(42) were taken as the response of the footing
under vertical,horizontal and rocking modes of vibration, respectively.
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Vertical and Horizontal Modes:

The following scheme has been adopted for the computation:

1. Let theforce at any instant t is givenby

P = Po COS (®t "VP P R)

Where P0 is the amplitude,m the circular frequency of the exciting force and «v„
is thephase between the force and the reactionR of the halfspace.

Dynamicresponse(displacement)of the base at any instant t is

w=—(f ] cos OX - /2 sin (Ot )
2 .

Me
Amplitude of displacement, A and reaction, R of the halfspace respectively

are:
3.

ff +fl = AA=SL M , (47)
\ (/ +ZVo//) + [hlaof2 )Mc [1C

whereMiscalled the response factor.

OoR =

+ + ( bJaof2 )
(48)

Phase angles
-I fl

BetweenR andw: <Pp_w = tan
fl

blapf2—I
BetweenPandR: (Pp_ p - tan

1+ Zblaofl
~f2-1= tanBetween P and w: C? Dr — Vy Zfl + ôW +f )

Input power:

L=-̂ o_
2bCy[Jjp

4.

a0f2
2 2

[ l + Xbia20fl ) + [ blaof2 )
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*. In the above

b,= Mass ratio =
,n® ; a„ = Frequency factor = where Cj is the shear

pcb2

wave velocity of the halfspace and X = -1 for the vertical and = 1 for the
horizontal response.

^2

Rocking Mode

The following schemehasbeenadopted for the computation:

1. Let the force at any instant t is givenby

M„ = MRO COSH+V„,)

Where Mm is the amplitude,co the circular frequency of the exciting force and ¥> PJ1

is the phase between the force and the reaction R of the halfspace.
Dynamic response (rotation with respect to the x-axis, Fig. 1) of the base at
any instant t is

2.

R
3

( fj cosax - /2 sinojt )\ [ic

3. Amplitude of displacement, A« and reaction, R of the halfspace respectively
are:

ihll= MRO _ MR0Ae M , (49)
juc3

\ [ l~blaofl ) + [blaof2) pc3

where Miscalled the response factor.
MR0R =

J(' - h/ a0fl ) + [b,a20f2) (50)

Phase angles

BetweenR and <PR-<t>

Between and R: V M R-R
y

Between MR and 4>:
R~(j)

Xfl +b,a20 { f? +fl )
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4. Input power:

L= MR0 ^0/2
2c34MP ( l- bja2f jf +(bja2f2f

In the above
(Ob10b,=Mass ratio = —J-J ;a0=Frequency factor=

p t b Z
inertia about the base with respect to the rocking axis( x-axis) and c2 is the

shear wave velocity of thehalfspace.

Resonant values

If it is assumed that an is the frequency factor at which the response is the maximum,

the relation for resonant condition ( Dasgupta and Kameswara Rao, 1978) may be
writtenas

; l0 is the mass moment of
c2

f,+blaUfl2 +f22 )=0 (51)

an approximate relation,but the accuracy is within 2%. 1

Computational Scheme

General

The equations to be evaluated are complex functions and require special

consideration. In evaluating the integral, it is necessary to use 96 points Gaussian

quadrature because of the complexity of the sine and cosine fluctuations. The

integration has been tested for other possible Gauss points and conclusion is that a

96-point Gauss quadrature leads to a stable converging solution since a closer

interval is needed to account for the sharp variation of sine and cosine functions. In
addition, the entire interval is divided into five parts to account for the nature of

function F(r), namely

(0 to 0.5)-*•real;

(0.5 topn)-*real;
(pn to 1) -complex;

[1 to Z0(root of equation F(r) ] -»positive real;

and ( Zoto°o) ->negative real.
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4 The Dynamic Case

1. Suitable values of Poisson's ratio, frequency ratio and also x/b, y/c, c/b
valuesareselected.

Numerical values of the function F(r) its derivative and F "(r) are computed.
The compliance functions have been evaluated by Gaussian double
integration scheme.
A 96-Gauss-point Gauss quadrature has been used for evaluating the
integral.
While evaluating the integral, the interval should be divided into parts to
account for the complexities in the evaluation of functionF( r).
The intervals are (0 to 0.5), (0.5 to pn), (pn to 1), [1 to Z0 (root of equation F(r)

= 0]and ( £o to °o).
The interval ( Z0 to oo) can be evaluated by substituting instead 1 r
instead ofr in the integral.
The value thus obtained should be subtracted to account for singularities
/standing waves occur due to the nature of the Rayleigh function F(r).

The static case

2 .

3.

4.

5.

6.

7.

8 .

I

Solutions are available in the literature, for vertical and horizontal cases.
However, these are now simplified to a single integral form where numerical
values have been found by integrating the terms and applying the limits.
To find numerical values in rotational case Gaussian double integration
method

1.

2.

2awas used with a substitution r = -a . where «=1(/+*.)
Results and Discussion

Equations have been derived for all three modes of vibrations (vertical,
horizontal, rotational) at any point of a rectangular footing as described in the
previous chapter. Numerical evaluation of the equations was performed using
standard techniques discussed in the preceding.

Comparison of results with the previous calculations indicates the results
obtained from our study are in good agreement with the other. Present results have
been compared with Holzlhner (1969) solutions for different length to width ratio.
These comparisons are as shown in Fig. 2(a) to 2(c). The values are slightly greater
than the Holzlhner (1969) results, which are expected according to the clarifications
given by him.
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Fig. 2.Comparison of Non-dimensional Vertical Compliance Vs.
Frequency Factors for Poisson’s Ratio 0.25 at Center of the Footing.
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4 Compliance functions at centre of the rectangular footing are obtained for
vertical mode of vibration and are plotted against frequency ratio for different length
to width ratio and Poisson's ratio. These results are shown in Figs. 2(d) to 3(f). As
expected, the real part of the compliance is negative and is decreases with a0.
However, the imaginarypart of thecompliance ispositiveand increasesuptocertain
value of a0 and then becomes almost constant. These compliance values are
considerably changing with length to width ratio of the footing and Poisson's ratio.As
expected, for constant frequency ratio the compliance functions are getting
decreased as the Poisson's ratio increases. This is because as the soil stiffens the
compliance values are becoming lesser and lesser.
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Fig. 3 Non Dimensional Vertical Compliance Vs. Frequency
Factors for Different Poisson's Ratio at Center of the Footing

Comparisons have been made for vertical mode of vibrations and values
away fromthe centre of the footing as shown inFig.3(a) and 3(b).

I

Plots are also made,as shown in Fig. 4(a) and 4(b), for compliance functions
against the distance away from the centre of the footing. As expected these values
are decreasing as the distance fromthe centre is increasing.
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Fig. 4 Comparison of Vertical Compliance Away
from Center of Footing for Poisson’s Ratio v = 0.25.I

Compliance functions at the centre of the rectangular footing for horizontal
mode of vibrations are plotted against frequency ratio for different length to width
ratio and Poisson's ratios. These are as shown in Fig. 5(a) to 5(d). Real part of the

compliance is positive and is decreasing with the frequency ratio. And also,

imaginary part of the compliance is decreasing with increase in frequency ratio. Plots
are also made as shown in Fig. 6(a) and 6(d) for compliance functions against the

distance away from centre of the footing, as expected these values are decreasing

as the distance from the center is increasing.
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Fig. 5 Non-dimensional Horizontal Compliance vs. Frequency
Factors for Poisson's Ratio v = 0.25 at Center of the Footing.
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Fig. 6 Horizontal Compliance Away from Center
of Footing forpoisson's Ratio v = 0.25.

Compliance functions for rotation mode of vibrations are plottedas inFig. 7(a)
to 7(d) real part of the compliance is negative and is decreasing with frequency ratio.
The imaginary part of the compliance is increasing with increase in frequency ratio.
Non-dimensional static displacement factors are also obtained and are presented
Fig. 8 to 10(b).
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Fig. 7 Non-dimensional Rotational Compliance
vs. Frequency Factors for Poisson’s Ratio v = 0.25.
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Response factor (M)has beencalculated for different frequency ratios and for
the different mass ratio of 0, 5 and 10 varying with length to width ratio of the footing.
These are shown inFig.11(a) to 11(c).
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Fig. 11. Response Factor vs. Frequency Factors At Center of a
Rectangular Footing for Vertical Mode of Vibrations for v = 0.25
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Fig. 12 Mass ratio Vs. frequency ratio at resonance frequency at center of
a rectangular footing for vertical mode of vibrations for v = 0.25.
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r

In Figs. 12 and 13 plots have been made between mass ratio against
frequency ratio and mass ratio against the response factor at resonant frequency
from where resonanceamplitude canbe found out.
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Conclusions

A numerical solution has been presented for three modes of vibrations of a
rectangular footing resting on semi-infinite, homogeneous and isotropic elastic
medium. Solutions were obtained for vertical, horizontal, and rotational modes of
vibrations. The expressions for zero frequency displacements i.e. static non-
dimensional displacements are also obtained by applying limits to the above derived
equations.Fourier triple integration technique was used to solve the aboveproblem.

Compliance functions and hence the displacements, at any point on the soil
surface have been obtained for three modes of vibrations by solving the integral
expressions using Gaussian qudrature.

For demonstration purpose, as is the standard procedure, compliance
functions/; andf2 at centre of the footing were drawnagainst frequency ratio for all
three modes of vibrations. Plots are also made for compliance functions against the
distance away from centre of the footing. Non-dimensional static displacement
factors are alsobeenobtained and are presentedagainst variousc/b ratios.

Response factor (M) has been calculated for different frequency factors, for
the mass ratios of 0, 5 and 10 and for various lengths to with ratio of the footing (c/b).
Plots are also made between mass ratio against frequency ratio and mass ratio
against response factor at resonant frequency. Comparisons are also made with the
existing solutions. These comparisons shows that the results obtained from the
present study are in good agreement with theprevious studies.
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Notations

AmplitudeofdynamicdisplacementA —
Amplitude of dynamic rotationA,
Dimensionless frequency factorao
Width and length of the rectangular footing2b, 2c —

b, Massratio

Dilatational wave velocityC,
Shear wave velocityC2

Modulus of elasticity of soilE

fi andf2
Compliancefunctions

Shear modulus of soil=G

Aparameter which is the ratio ofh

Aparameter which is the ratio ofk

Response factorM

Moment produceddue to rockingMH
Amplitude of moment due to rockingMROy
Velocity ratio which is the ratio of=n
Dynamichorizontal loadappliedon the footingPH —
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PH Dynamic horizontal load applied on the footing

Pv Dynamic vertical load applied on the footing

Q(X, Y, Z, t) = Surface traction
q» Uniform stress produced due to the applicationof dynamic loads

t Time

W, u Vertical and horizontal displacement amplitudes respectively

Rayleigh pole

Poisson's ratioV

P Mass density of soil

Lame'sconstant/1
P Shear modulus of elasticity

\Vertical stress

Shear stresses acting perpendicular to z- axis along x and y
directions respectively

Circular frequency of vibrationsCO

0 Rotation

Phase angle<P

<P Rotationdue torocking.

I
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