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Dynamic Response of Piles
Under Vertical Loads

Indrajit Chowdhury * and Shambhu.P.Dasgupta **

Introduction

Based on the analytical solution of Baranov (1967), Novak (1974) proposed a
method for evaluating the vertical response of piles under dynamic loading.
Many researchers namely, Wolf and Von Arx (1978), Waas (1981), Kausel

and Kaynia (1982), Banerjee and Sen (1987) have advanced their solutions to this
problem, yet Novak's method Is mostly preferred, particularly in design offices.
Solution of pile and pile-group based on the method proposed by Banerjee and Sen
(1985, 1987) is based on Boundary Element Method and has been found to give
accurate results but it is computationally too exhaustive to find applications in a day-
to-day design office work.I t

i

The Finite Element Method has been used where the pile is being modeled
as beam elements and the soil being modeled as Winkler springs. Such models
have, however, yielded good results either when the piles are single or the distance
between piles is significant (>5d,d being the diameter of thepile) where the pile-soil
interactioncanbe neglected.

Novak's solution is mostly based on charts and it furnishes stiffness and
damping of a pile and the solution is addressed to the fundamental degree of
freedom.

However,

The solutiondoesnot take intoaccount for the inertial effect of thepile;a)

b) Interpolation is required when the design data are outof range of the chart;
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c) Charts are available only for RCC or timber piles, whether these charts are 'A
applicable to the casesof steelpiles',there isnoclear-cut guideline;

e) The charts donot address to the issues where a pile is partially embedded;

0 It is also not clear if the charts are applicable for varying dynamic soil
modulus.
In certain cases when the piles are supporting reciprocating compressors, it

becomes essential to check the design for higher frequencies of the foundations to
ensure that they are not matching with the second or third harmonics, when the
machine at harmonic other than the first may induce the higher forces. In such cases
one has no other options but to resort to an elaborate and expensive three-
dimensional Finite Element based soil-pile foundation model to arrive at an answer
to this problem and in number of cases uncertainties present in such results are
many.

i

The results provided in the present paper are for the fundamental mode
only and the solutions have been worked out for the first three modes.

Proposed Method
*

In the present paper an approach has been outlined where the pile stiffness
and damping may be computed for any type of pile material like concrete, steel or
timber and it takes into account for the variation of elastic modulus of soil, if any, and
alsothe inertialandstiffness effect of pilecap have been incorporated.

Most of the work relating to dynamic stiffness of pile is based on Baranov's
(1967) theory on the response of a soil embedded foundation. The present
formulation is based on Novak and Beredugo's (1972) approach on embedded
foundation.

Vibration of Piles in the Vertical Direction

Vibration of Friction Piles

Stiffness of the Pile: For this case the pile is assumed providing the resistance both
through bearing as well as friction as shown in Fig.1. K, represents the frictional
stiffness of the pile and the pile tip bearing stiffness is taken as K„. The longitudinal
vibration of such beams having only the frictional stiffness may be represented by
the expression.

T7 A , v t \^uEA-^j + Kfu = m( z) -^- d)
A ,Sz

’This is an important issue for many real life projects specially in Arctic condition (like North
Siberia) or very arid region (like Sudan, Algeria ) due to extreme low temperature or absence of
water makes concreting hazardous and almost all the structures and foundations are built on
steelpiles.
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in which, E = Young's modulus of pile; A = area of pile; K,= dynamic frictional
stiffness of soil having dimension (F/L) and u(z,t) = dynamic amplitude of pile =
</>( z )q( t ) ;andm(z)=mass ofelement dz.

One of the solutions of eqn. (1) isgiven by

q(t )=C3 sino)t +C4 cos cot

With the definition of u and using eqn. (2), eqn. (1) may be written as

EA^ ^<
2
Z> + Kftpiz ) = mU )ctr^( z )

(2)

(3)
dz

TilZ
i ii <

Kf

L

t
4 k

T Kb

Fig.1 Pile Embedded in Ground up to a Depth L and its Mathematical Model

The aboveequationcan further be simplified to

+ p2</>( z )= 0

p 2 = ( mco2 - Kf ) /E A .

d 2<t>( z ) (4)
dz1

where

Eqn. (4) suggests that the presence of frictional stiffness K, does not affect the

basic shape function of the pile and would remain same for the case had the pile

would not have been embedded. However, the bearing stiffness K„ connected at

the end of pile would affect the shape function depending on the appropriate

boundary condition. For computing the correct shape function of the system, one

has to start with themodelas shown inFig.1. The general solution for theproblem

is givenby (Humar,1990)



INDIAN GEOTECHNICAL JOURNAL 118

>*(/>{ z ) =(C, cos pz +C2 sin pz ){C\ sin ox +C4 cos ft?) (5)

in which, C„ C2, C3 and C4 are the integration constants to be determined from the

appropriateboundary conditions.

The pile has at the freehead,

Z = 0, EA — =0 , whichgives

I

dz

£Ap[-C,sin pz +C2 cos pz][C,sinryf +C4 coscyf ]=0^C2 =0. (6)

andat the tip,
du

Z-L,EA — =-Kh u( z ):=l , which gives
dz

pL pLtan pL- KhL/ ( EA )EAp[-Ct sin pL] = —KhCl
in which K„ = G„r0Cb

(7)cos

(8)

where, Gb = dynamic shear modulus of the soil at pile tip; r0 = radius of the pile; C„= a
frequency independent dimensionless constant as suggested by Novak and
Beredugo (1972) and is given inTable2.

;
Combining eqns. (7) and(8),onecanhave

_ GbCbL
Enr0

It will beobserved that the righthandside of eqn. (9) is a dimensionless quantity.

—-— = [ — ——
'j/l;where\ = slenderness ratio of thepile,

eqn.(9)canberepresentedas pL tan pL — 7] = 0 .

pL tan pL (9)

If 77 =
E n

(10)

Eqn. (10) is a transcendental equation in pL and can be solved numerically. The
values of pLfor various values of for the firstmodeare showninTable 1.

TABLE 1: Roots of Equation pL tan(pL) - T)= 0 for the First or Fundamental Mode

l » il >lP in pi - n nn
1.473
1 496

1.077 15
I 142 20
1 192 25
1.232 30
1.265 35
I 314 40
1.429 50

0.75 20.02 0.7
0 1 0 322 0 8
0 2 0 433 0 9
0.3 0.522 1
0.4 0.593 1.25
0 5 0 653 15
0.6 0.705 1.75

0

\0 791 2 5
0 828 3 {1 51

1.520.86 3.5
1.527
1 533

0.931 4
0 988 5
1.036 10 1.54
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Writing, pL= P ,thearbitrary shape functionof theproblemisgivenby

<t>( z )= cos
The potential energy dTl of an element of depth dz, shown in Fig.1, is given by

(ShamesandDym,1995)

(11)

dU = (12)2 dz 2

where, E = Young's modulus of pile; A= area of pile; K,= dynamic stiffness of soil
having dimension kN/m; w = displacement of pile in the z direction and may be
writtenas<|)(z) q(t).

Eqn.(12), (^consists of twoparts, namely,

1) the bearingmodulus atpile tip,and

2) the frictionmodulus along the shaft.

For a rigid circular embedded footing with embedment D„ the stiffness of the

footingmay be expressed(Novak,1974) asf
(13)Kv — Ghr0Ch +GDfS ]

where, K,= foundation stiffness in the vertical direction; G = dynamic shear
modulus of the soil along the pile length; G„ = dynamic shear modulus of the soil at
the pile base;r0 = radius of the foundation;C„ and S,= dimensionless constant which
arebasically frequency dependent.

However it has been shown by Novak and Beredugo (1972) that considering
C6 and S, as frequency independent, no accuracy is lost for practical design
problems and the analysis becomes quite simplified for rigid circular embedded
footing.The frequency independent values of C„and S,are as givenbelow inTable 2.

TABLE 2: Suggested Frequency Independent Values Suggested by Novak and
Beredugo (1972) for Embedded Footing

C SPoisson s ratio

P' 3.9 2.70.0

5.2 2.70.25

2.77.50.5
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>'However, it should be remembered that an embedded circular footing is usually
considered tobe rigidhaving infinite structural stiffness. On thecontrary, a pile will be
far more flexible member whose structural stiffness will be much lower, thus the
above recommended value may be valid for certain pile geometry but may not be
valid for others. Comparing the stiffness data of piles obtained by Novak (1974) and
Dobry and Gazetas (1988), to make S, independent of frequency it is proposed that
the following value of S,beused for dynamic analysis of piles in the vertical direction.
This is similar to the techniqueused earlier by Lysmer and Richart (1966) for deriving
equivalent stiffness and damping of circular footings for Lysmer’s analog from the
solutions of a similar solution based on elastic half space theory proposed by Bycroft
(1956).

9.553(1 -t- v) (14)5, =
^jO.333

where V= Poisson’s ratio of the soil;and X= slenderness ratio of thepile.

The value C„ may be taken as suggested in Table 2 for it has no bearing on
the flexibility of pile and is a function of the base area only. Considering pile base
area is much smaller in comparison to a footing, its contribution is only marginal.
Moreover in most of the practical cases its effect does not come into consideration
(as will be shown subsequently) for analysis of such piles are either considered as
bearingpile i.e.having infinitebase stiffness or floatinghavingno base effects.

1
'

The first term in eqn. (13) represents the contribution of base resistance,
while the second term, the embedment effect of the foundation. Substituting eqn.
(13) in eqn. (12) for an element dz, dfl may be written as

EA\du~[ Ghr0C] , GSfdz 2dU = + -- - u - + ——u (15)
22 dz 2

and the total potential energy over the total length of the pile (L) is given by

n= — J T—T
2 J [ dz J

, GS, \dz + L 1\u -dz + f̂ ±u - (16)
2 o

Considering u(z, t) = <t> (z) q(t), it can be proved ( Hurty and Rubenstein,1967 ) that J
L L

Klf = EAjti( z )4>'i ( z )dz +GS, jV,(c)0,(z)<fc +GhrllCJ, ( L )<pi ( L)
0 «

(17)
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where the shape functionof the problem isgiven by eqn.(11).
The first derivativeof the above with respect to z is givenby

=-~( s\n /3^- ) (18)
L L

Using i / L = 4 implying dz = Ld% . and converting the shape function as
furnished ineqn. (11) from local to generalizedco-ordinates, the limits of the problem
getconverted to1to zero.

F (4) = cos P4 (19)

=-£(si"#) , and (20)

FA£A lFiX4)F’(4)d4+GS,L ]F,(4)Fi (4 )d4+Ghr0ChFimFj (\ ) .
L 0 0

(21)

For the fundamental mode i= j=1andeqn. (21) reduces to

~~ jF;(4)2 d4 +GS,L\Ff (4 ): d4 + Ghr„ChF,(l)2

L 0 0

(22)*, =
t

Eqn.(22)can be rewritten as

-y- J(sin P4f ci4 + GS , L j(cosP4f d4 + G„raCh (cosP )
^ 0 0

(23)

Eqn.(23)on integrationand after some simplificationmaybe expressed as

K, = /. + / 2 + / ,

• U- u , EAP‘ r 1 *' n 2Pinwh(ch

Finally, K| Can be written as

^^(l+ cos 2/J) (24)I sin 2P \ .;/,=GS,ZJ -+
4P J

{ EA02 CS , L G„r„C k ) ( GS,L EAp\
[

G„ruCh
l 2L 2 2 J i, 4/J 4/. I' ^ 2

cos 2/? (25)*. =

which may be further simplified to

X, = X , + X 2 sin 2/3 + X,cos 2/? (26)

[ g4^2 GS,L G.r.CA =
G>’

r«C>’GS ,L EAP (27)in which * , 2 — 24fl 4L2 221
Eqn. (27) gives a complete derivation of stiffness of the pile for the vertical

mode, without any limitation to slenderness ratio,E/G or the material type.
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Mass of the Pile: For a conservative system, if T is the kinetic energy of the system
thenat any timet, theenergy equationsmay be writtenas

ih, , ,rtMz.oi j- J «(2) -3— dz2 0 L * J

Using,M(Z,/)= ]T 0,U)<7,U)
i=I

where«(;,/)=displacement function; </>, ( z) = shape function ; <?,(/ ) =
generalized co-ordinate; m(z) = mass of element dz and substituting eqn. (29) in
eqn. (28), the energy equation may be written as

T (r ) = (28)

(29)

T { t )= z: \ "»(z) Z 0i( z )qi (t ) Z dz
20 L/=l JL7=1

(30)

\H
=z: Z Z <// (04 /(0 f m( z )</>i { z )</> j ( z )dz

21=1y=i Lo Ifrom which the mass matrix may be written as

r H
= Jm(z)$(z)0y (z)rfe for i,j =l, 2, 3

0

(31).nmij

Similarly the stiffness value with transformation from local to natural co-ordinate, the
mass contributionof thepilemay beobtained as

.r,—\F^)F^)d4
8 0

(32)% =

wereYp=bulk density of pile material; A = area of pile cross section; L = pile length

embedded in soil, andg= acceleration due to gravity.

For the fundamental mode,i = j = 1, and one can have
%

I

JFtffdS
0

(33)m, =
8

The above onexpansion results in

r „ AL j(cos PtY d£ (34)m, =
£ 0
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Integrationofeqn. (34) gives

r „ AL [ t sin 2 /5m, = —— 1+ (35)
2P2g

which is the contributory mass of the pile for the fundamental mode in the vertical
direction.

Damping of the Pile: The dampingof the pile embedded in soil will constitute of two
parts:

1)Materialdampingof thepile itself;and,

2)Radiationdampingof the soil.

It is obvious that the material damping of the pile will be much lower than that
of the soil radiation damping. As the first step for calculating the soil damping one
may ignore the material damping of the pile for the time being. Material damping of
soil also is part of the system vibration. However it has been found that for
translational vibration their effect is insignificant and may be neglected without any
significant effect. Else if one wishes, their values may be obtained from resonant
column test fromthe laboratory.t

For a rigid footing embedded in soil for a depth D„ Novak (1974) has

G: — roVPhG>, Gh + rn\jpG S2 DJ
where, r„ = radius of the foundation; Gb= dynamic shear modulus at
foundation base; G = dynamic shear modulus of soil in which the foundation
is embedded; D,= depth of embedment;Ck and S2 = frequency independent
constants as defined by Novak and furnished inTable3.

With reference to Fig.1 for a pile element of length dz, embedded in the soil, the
above equationmay expressed as

G- — r0 yjpkGh Ch + rJpG S2dz
For systems having continuous function, the damping is usually expressed as
(Pazz,1987)

(36)

(37)

(38)Cz =c(:) Ĵ .(z)^(z)rfz

For the present case,eqn. (38) canbe expressedas
L _

C. = ru yfpG S2 ( z )^ ( z )dz + r„ ~Jp„Gh ( L)^(L)
o

Considering ^(z) = cos /?^- . forthe fundamental mode, one canhave

(39)
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i

C- = roy[pGS2 Jcos; P^-dz + rnJphGhCh cos 2 Po L

i

c = raJpG S2L JCOS2 P̂ + rnyjphGh Cfccos2 /?
0

(40)
and hence,

(41)

Eqn. (41) on integration simplifies to

rn\lPlfib Q (42)sin 2/?+ cos 2P2

Eqn. (42) expresses the soil damping for a single pile under vertical mode of
vibration. Here the Factor^ andQare damping coefficients which are frequency
dependent. Fortunately the damping factor is required for calculation of the
amplitude when the eigen solution of the problem is already done vis-a-vis, the
dimensionless frequency factor «« = corIVt is known. Polynomial fit curve for 5,and
Ch are available in terms of ao which can be used to arrive at these parameters. The
damping constants are as given in Table 3.

TABLE 3: Values of Damping Coefficients Based on Novak and Beredugo (1972) Ic;Poisson’s ratio §2

3.438a0+0.5742a02-1.154a03+
0.7433a04

0.0 0.7022a„6.059a0 +
an +0.01616

0.25 5.06ao Do

7.414a0-2.986a02+4.324a03- 1 782a04 Do0.5

where ao= co.r/vs in which (0 =natural frequency of the system in rad/sec; r = radius of
the pile;v5= shear wave velocity of the soil.

Consideration of Material Damping of Pile: The structural stiffness contribution of
the pile is given by eqn. (25), while that of the mass is given in eqn. (35). Thus, if Cc
be the critical damping of the pile then it can be expressed asC, = where K
and mp are the stiffness and mass matrices of the pile.

Depending on the material used for pile like (RCC, steel etc) a suitable damping
ratio (C ) can be assumed.The damping(C) for thepilecanbe expressedas

CP = C Cc (43)
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* This, when added to the radiation damping, calculated earlier, gives the
complete damping quantity for the soil-pile system. It should be noted that for
perfectly floating piles structural contribution of pile vanishes, and the material
dampingof the pile mentioned in the precedingneed notbe considered.

Vibration Of Bearing Piles

The expressions derived so far give a general case when the load is
transferred from the pile to the soil both through friction and bearing. There will be
cases when the pile ispre-dominantly bearingin load transfer.

Using the above formulation when lim r j —> °°(i.e. G„ is very large compared to E),

pL(tanpL) = 00 .when P -» ^ , the pile reduces to a perfectlybearingpile (i.e. fixed at
the base), however for practical case when /7 —^ 50 , it will not be too erroneous to
assume , f t -» — when the stiffness of thepile reduces to

„ ( EAn1 GS,LK , = -TT-+ and (44)
8L 2

the damping may be expressed as
I

C^^ rJpGS.L (45)

and the mass is
ynAL (46)/n, =

2g

Vibration of Friction Piles

When Gb is very small the load is transferred mainly through pile friction. In
the above formulation when limn —> 0,p|_ tanpL=0, whenP -> 0, the pile becomes a
perfectly frictionpile.

Thus, for P-> 0 , thestiffness of pileisgivenby

(47)

The dampingmatrix may be expressed as

C( — 2
r(,VpG SM'dPfih

From eqn.(48) it should be noted that for a frictionpile, the damping factor increases,

while the stiffness term in eqn.(47) is less than the bearing case in eqn. (44).Asimilar
observationalso hasbeenmade byNovak (1974).

(48)
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AFor very poor soil, the term Gb in eqn.(48) may be ignored.However for cases when
piles located inmedium to stiff homogenous clayey soil where G=G„and yet the load
is basically transferred through friction, the last term cannot be ignored and would
further enhance the radiation damping. The mass matrix shall be same as stated in
eqn.(35).

Vertical Vibration of Partially Embedded Piles

In many instances, especially in the arctic condition, due to environmental
reasons, the steel piles are driven into the ground when they protrude about 2-3m
above the ground over which the pile cap and vibrating equipments as placed. In
such cases Novak's (1974, 1983)chart cannot be usedreadily.

Rotating Machine4

Pile Cap
Partially embedded piles

«
J L

G.L.
I V SL L,

Fig. 2 Schematic Diagram of Partially Embedded Piles

To evaluate the pile stiffness for such cases, the stiffness eqn. (21) is to be modified
as

L i,
K0 = EA^'( z )</>'J ( z )dz+GSl ^<fi, ( z )<pl ( z )dz +GhrnCh(l), ( L )<pi ( L )

0 0

(49)

where L, = partial depth of embedment of pile and L = total length of pile.
It is apparent from eqn. (49) that the first and last term remains unchanged

and the second term based on depth of embedment gets modified, where the
integration limits changes to (L,- 0) and the stiffness expression for the fundamental
modereduces to

|
G5.L,

|
C>roC^ | I'GS.L, EA/t

4p 4L

The damping of the pile-soil system is givenby

c, =~ r« -JfXJS,L, +
r^hh

The mass matrix remains the same as stated in eqn. (35).

It should be noted that for this case while calculating the value of S, [eqn.(14)], the
slenderness ratio is tobe calculated basedon the embedded length of the pile.

(50)sin 2/? +*. =l :21. 2

rovjPfi,,Cl: (51)cos 2/?sin 2/?+ >2
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* Stiffness of the Pile in Soil with Varying Elastic Property

In the previous section, the calculation of stiffness as well as the damping of
soil was based on the dynamic shear modulus of soil invariant with depth.While this
could be possible for clayey soils, there are many cases when the dynamic shear
modulus of the soil has been found to vary with depth. Generally this can be
expressedas

G' =G( z/ H )“ (52)

where a = a number varying from 0-2 [considered 0 when G is constant with depth ,
assumed1for linear variationand2forparabolicdistribution].

For instance for the soil with variableelasticproperty,eqn. (52)maybemodified to

G'= G£“ (53)

where £ = Z / H

For the cases mentioned above, Novak's chart (1976) is possibly not valid. To
accommodate theabove variation, the stiffness equationcanbemodified to

I
EAfi 21

L1
j|\F’{4)F](4)d^+GS,LJ<TF,(£)F,(<?)</£+G„rnChF,(L)FJ ( L)

Shear Modulus Having a Linear Variation
*„ = (54)

When the soilhas linear distribution with depth,the stiffness eqn. (54) may be
expressedas

/(sin d$+GS,L j<f(cosft )2 d$ +GbrnC„(cos0
^ 0 0

(55)

which on integration and subsequent simplification, gives rise to

It may be noted that while for bearing pile p = it/2, for friction pile (unlike
constant G case), p = 0 is an admissible function in this case.For the fundamental
mode the admissible function is P = x , which is the next higher mode.This is logical
also for the soil having stiffness increasing with depth and the pile will have a natural
tendency to wobble about itscentre rather thanmoving en-mass.

(56)

r
Thedampingmatrix in thiscase canbe expressedas

i

C. = ray[pGS2L jV?cos 2 + rJpbG„Ch cos2 0
0

(57)
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AThe integration of the first term in eqn.(57) being cyclic in nature and can be
solved approximately by expanding the cosine function in series. On integration,
eqn.(57)reduces to

C t = r0^GS2L 7 33 + 675^) +r°̂ 'Ci COS 2 P (58)

ShearModulus having a Parabolic Variation

When the soil modulus has a parabolic distribution with depth, the stiffness
equationmay beexpressed as

J(sin GS.LĴ MCOSK )1 d4 +G„r0Ch(cos0)1
L O 0

AT, = (59)

which on integrationand subsequent simplification reduces to

In this case, the first admissible function will be p = JC for a frictionpile and p=n/2 for
abearingpile.

«4 i
(60)ip ip'2L (

X
Themassmatrix forboth thecases remains sameas statedineqn. (35)while

the dampingmatrix canbe obtained fromthe expression

Cz = r„-JpGS2 L cos 2 p£d% + rnyfpfi^Ch cos2 p
0

(61)

which on integrationand simplification reduces to

..|'' JpfiS,. r„^ds,L ] t
r,J&StL

i 2 4 J *0
[ r^ -JpGSjL

|

40 2 (62)sin20+C,

Group Effect of Pile

The formulation given in the preceding is valid for single piles w,hichneeds to
be modified to consider the group effect when Ki,oup is not necessarily ZK« where n
=number ofpilesinagroup.For suchcases, themethodproposedbyPoulos (1968)
is possibly the best-suited technique and can well be used to modify the total
stiffness of a pilegrouphavingn numberofpiles.Accordingly

i=l / i=l
(63)K I f
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* wherea* are theinteractionfactorsprovidedby Poulos (1968).
Similarly the damping of the pile groupmaybeobtained fromthe expression

Ctt'oup S j^OC.j
i=l / !=l

(64)

Effect of Pile Cap on Pile Stiffness

The pile cap has been found to affect the response of footing significantly.
Before considering its effect within the proposed framework, it would be worthwhile
to recapitulate the practice invogue.

The sketch given inFig.3can represent apilegroup with cap.

H

r/-

t&km

1
, :

:
V, ,

mm i

Fig. 3. Schematic Diagram of Pile and Pile-cap with Embedment.

In such case usually the embedment stiffness GS,D,is added to the pile group
stiffness and the system is considered as a lumped mass single degree freedom
systemwhere

K +GfS fD j (65)group
CO =

M

where G,= dynamic shear modulus of the soil surrounding the pile cap;D, =
depth of embedment; S, = constant as suggested by Novak has been
furnished inTable 2; M=mass ofpile cap andmachine placedonit.

Itmay be noted that contributingeffectof thepile mass is ignored in the above
which could be significant for a pile grouphaving large number of piles.To overcome
the above limitation and also to derive a better response, a two-mass lumped model
hasbeenproposed andshown inFig. 4.
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AM2= Mass of pile cap + machine

K2=GrS|Df

M1= Mass of piles in group

K1— Kgroup

Fig. 4 Proposed Two-mass Lumped Model for the Pile and Pile Cap

The massand stiffness matrices for the above modelmay be written as

+GfSfDf ~GjSfD,'
GfSfDf

K grou/fK = (66) '-GfSfDf

M 0

o ny
"

AL sin 2/7and M = (67)1+
2P2g

wheren=number of piles in the pile group.

Since eqn. (66) is statically coupled, the damping matrix is given by

GKrmp +Cf -Cf
~Cf

c = (68)Cf
wherec. = r„JpGS;D , and D,is the embedment depth of pile cap. (69)

Once the stiffness, mass and damping matrices are established, the natural
frequencyof the systemmaybe obtained fromthe standardexpression

I[K]-[M] W 2 =0
leading to

(70)

{mpB+ MA )± yj [{m,,B+ MAf -4mpM [AB- B2)
2mpM

(71)2-1,2
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—“ a n d A = Kgroup + G,SfD, ;B = G,SA.

where, a>, and"2 = 3/̂ here o>i and <*>:are the natural frequency ofthe structure.

The damping matrix generated here is non-classical in nature and will not be
de-coupled on orthogonal transformation. However, since the degrees of freedom
considered here is two, the same can also be converted into an equivalent Rayleigh
damping (Chowdhury and Dasgupta, 2002) when the matrix will decouple and
standardmodal solution can be applied.

nyrALinwhich = l+2«

Solutions for Higher Modes

This case is usually not considered in design office practices and neither any
guidelines presently exists for the same except treating the pile as a beam and the
soil as Winkler springs and solving the same based on finite element method. Using
the proposed methodology, the stiffness, damping and mass matrices can be
computed for the higher modes.

Referring to eqn.(21), the stiffness matrix can be statedas

. -AVitf)2 AAf AA.JF,(£)/'„<£)
0

0

0

A,2 ta<f>2
o

00
I

h2 IF2 (4 )2

0

A# py ff3 <£> 2-f .

" 0

PnP\ \Fnti )F\ {£ )

'

F,(4)2 F,({ )f 2 (0
F2W )F,( fr F2 (<?)2

F3 i{ )F,g) Fj(f)F2(#) F,(f) 2

F, lt )F„l{ )

Fi (OF„ <4 )

F3(4)F„(4)+
GS \L

+2
.

IF„ ( 4 ) 2F„ (4 )F{ (4)
0

(72)Gbr0ChF,mF,(0) etc.
For first three modes this can simply be presented as

r

X Kn
[ 1̂=07=1.3 = ^21 ^22 ^23

?

(73)_^3 l ^32 ^33.
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where for i = j

= EAP; CS,L +GhraCb +2 fc 0 4p, 4L ^̂ cos 2/?,K> (74)sin ip, +2L

For i^ j we have

_[EAPiPj GS,L1sin(P, -PJ)

P. - P,
EAP,Pt GS , L sin(# + /?.)

K, 2L 2

+ ChraChcosP,Pl (75)P + P,2L 2

It should be noted at this point that there are no suggestive values available
for S,and C„ for higher modes either by Novak or any other research. However it may
be reasonably stated that for higher modes the dimensionless frequency a0 would be

1.0(or near 1.0 at worse) when the curve for S, becomes almost constant
(Novak,1974) and the values furnished inTable 2 maybe usedwithout much error.

The value of P for the fundamentalmode is already furnished inTable 1 for the
next twomodes the values of beta are furnished in Table 3 andTable 4.

5TABLE 3: Roots of Equation PI Tan(pl) - T|= 0 For Second Mode .
I-I I'l I'l I ' ln it n '13 14!
3.173
3 204
3.234
3 264
3.292
.3.320

070 3 348
3.374

2 3 644
3.689
3 732
3.809
3 876
3.935
4034

10 4 425
4.491
4 5.3.3
4.561
4 582
4.598
= 3^/ 2

0.1 0.8 2.25 20
0 2 09 3 4 25 25
0.3 3.426

3 486
3.542
3.595

1 3 0 30
04 1 25 35 35
0.5 1.5 4 40
0.6 1.75 5 50

TABLE 4: Roots of Equation PL Tan(pl) - T| = 0 for Third Mode

1*1 P1 I'l P1nii '1 '1 n
6.28 6.392

6.407
6.422
6.437
6.474
6.510
6.544

6.578 15 7.316
7.495

0 0.7 2
0.1 6 299

6.315
6.331
6.346
6.362

2.25 6.611 200.8
6.643
6.704
6.761
6.814

25 7.560.2 0.9 2.5
30 7.606

7.639
7.665
= 5TC12

0.3 3.01
0.4 1.25 3.5 35

1.5 400.5 4
6.910 506.377 1.75 50.6

Mass matrix is similarly given by
(

For i = j
I

r,AL sin 2/?
+ M cos 2 /?,1 + (76)=

2fl2g
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* where M= Mass of machine plus pile cap

For i * j

(77)

The damping matrix can be obtained as

For i = j

,Lr,fidS,L+lr,^Ch +i&± rJpfihc,, (78)sin ip. + cos 2/32
For i £ j

+ [c o s,p. + p . j
_

cos(p. _ p .)]sin(A + /?j) sin( /J, -Cy = (79)Pi - Pi

Comparison of Results

It is apparent that the dynamic analyses of piles with pile cap are standard
and the validity of the same would depend on how correctly the pile stiffness values
have been obtained. To this end, the pile stiffness as obtained by eqn. (44) and (47)

^ has been compared with Novak's chart (1974) and equation based on rigorous
analysis as proposed by Dobry and Gazetas (1988). It should be noted that the
analysis is valid for floating piles of length, say L, and embedded in an elastic half
space of length 2L. The results have been compared for a single pile of various
slenderness ratio(X varying from 20 to 100) and Ep/Gs value of soil varying from 250
to 10,000 for an RCC pile of diameter of 600 mm and having E„ = 30 GPa.Poisson's
ratiovalue for soil considered is0.4.

Here Ep = Young's modulus of pile material; Gs = dynamic shear modulus of
soil. The results for K^-̂ and K^^are shown in Figs.5 through 14 for various
slenderness ratios.

Pile stiffness L/r=20

4.00E+06
|3.50E+06

3 3.00E+06

“f 2.50E+06
* 2.00E+06
E 1.50E+06
» 1.00E+06

^ 5.00E+05

“ 0.00E+0O

Kpile(bearing)

Novak(1974, bearing)

Dobry and
Gazetas(1988)

250 500 1000 2500 10000
Ep/Gs

Fig.5. Comparison of Bearing Pile Stiffness for Slenderness Ratio =20.
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4
Stiffnes of pile for L/r =20

2.00E+06

|1.50E+06

g 1 00E+06

Kpile(friction)

NovaK(1974, friction)
u

Dobry and
Gazetas(1988)- 5.00E+0555

0.00E+00
250 500 1000 2500 10000

Ep/Gs

Fig. 6. Comparison of Friction Pile Stiffness for Slenderness Ratio =20.

Vertical stiffness for L/r=40_
5.0000E+06 -

J 4.0000E+06

~ 3.0000E+06
2.0000E+06

% 1 0000E+06
W

0.0000E+00

Kpile(bearing)

Novak(1974, bearing)u>
V )

iDobry and
Gazetas(1988)

Ep/Gs

Fig. 7. Comparison of Bearing Pile Stiffness for Slenderness Ratio =40.

Stiffness of pile for L/r=40

3.00E+06

^ 2.5QE+06
Z 2.00E+06

¥ 1.50E+06

5 1 00E+06
55 5.00E+05

Kpile(friction)

Novak(1974,friction)

Dobry and
Gazetas(1988)

;
i

0.00E+00 -Vt? ^%

Ep/Gs

Fig. 8. Comparison of Friction Pile Stiffness for Slenderness Ratio =40.

J
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«
Pile stiffness L/r=60

5 5 O000E+06
1, 4.0000E+06
« 3.0000E+06
|2.0000E+06
= 1 0000E+06
1 0.0000E+00

Kpile(bearing)

Novak(1974,bearing)

a.
Dobry ana
Gazetas(1988)

Fig. 9. Comparison of Bearing Pile Stiffness for Slenderness Ratio =60.

Pile stiffness for L/r=60

4.00E+06
3.50E+06
3.00E+06I2.50E+06

« 2.00E+06
|1.50E+06
5 1.00E+06m 5.00E+05

O.OOE+OO

Kpile(friction)

Novak(1974,friction)

Dobry and
Gazetas(1988)

250 500 1000 5000 10000

Ep/Gs

Fig. 10. Comparison of Friction Pile Stiffness for Slenderness Ratio =60.

Pile Stiffness L/r=80

E 6.0000E+06
5 5 0000E+06
m" 4 0000E+06
® 3.0000E+06
£ 2.0000E+06

1.0000E+06
= O.OOOOE+OOQ_

SI Kplle(bearing)

Novak(1974,bearing)

Dobry and
Gazetas(1988)# # ^Ep/Gs

Fig. 11. Comparison of Bearing Pile Stiffness for Slenderness Ratio =80.
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>
Pile stiffness for L/r=80

5.00E+06
4.50E+06-= 4.00E+06
3.50E+06

^ 3.00E+06
« 2.50E+06
g 2.00E+06
£ 1.50E+06
w 1.00E+06

5.00E+05
O.OOE+OO

Kpile(friction)

Novak(1974,friction)

Dobry and
Gazetas(1988)

# # ^ ^^Ep/Gs

Fig. 12. Comparison of Friction Pile Stiffness for Slenderness Ratio =80.

Pile stiffness L/r=100

f 6.0000E+06 -
5.0000E+06 -

£ 4.0000E+06 -
® 3.0000E+06 -
~ 2.0000E+06 -
« 1.0000E+06 -
E O.OOOOE+OO -

Kpile(bearing)
/

1s: Novak(1974,bearing)

Dobry and
Gazetas(1988)s

# <5?

Ep/Gs

Fig. 13. Comparison of Bearing Pile Stiffness for Slenderness Ratio =100.

Pile Stiffness for L/r=100

6 00E+06 -r
E 500E+06 Kpile(friction)
~ 4.00E+06

|3.00E+06

|2.00E+06
i1.00E+06

0.00E+00

Novak(1974,friction)

Dobry and
Gazetas(1988)

o. /1

Ep/Gs

Fig. 14. Comparison of Friction Pile Stiffness for Slenderness Ratio =100.
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4 Finally, the natural frequency of a real life centrifugal compressor foundation
supported on 9 RCC piles, 45 meter long having diameter of 950 mm, have been

compared. The piles are spaced at 3.0 m c/c. The size of pile cap is 7mX5mX2.0 m,
embedded to depth of 1.4 meter. The weight of the generator supported on it weighs
400 kN.The frequencies are again compared for a range of Ep/Gs varying from 250
to 10000.

The results based on Kp(bearing) and Kp(friction) has been compared to

Dobry and Gazetas'(1988) results and presented in Table-4. The results have not
been compared with Novak(1974) in this case for the charts are toocrude especially
in the range when the ratio of Ep/Gs= 2500-10000 and significant variationcan occur
based on eye estimate of stiffness function. Results have been found to be
excellently matchingparticularly for friction piles.

TABLE 4: Variation of Vertical Frequency for Compressor Foundation

Ep/Gs Freq(rad/sec) for Freq(rad/sec) As per Dobry and Gazetas
KpMe (bearing) forKpne (friction) (rad/sec)

SI
No

195 1971 250 196
139500 139 1382

99 98 983 1000
4 2500
5 5000
6 7500
7 10000

62 6264
47 44 44
39 36 36

313135

Experiments conducted by Novak and El-Shamouby (1983) and by Prakash and
Jadi (2001) in Laboratory and field (Bellie river USA) respectively shows good

agreement in sandy type soil but theoretical values (as derived by Novak) over

estimate by 15-20 for clayey soil was reported by Prakash and Jadi. This is attributed
to the thixotropic change in the soil which looses a part of its shear strength during

driving orboring of thepiles.

However Novak and Gazetas' pile stiffness has alsobeen successfully used

in Industry for design of machine foundations.

So long as the stiffness values derived is in close proximity to the above

should be acceptable for practical design.

Results and Discussions

As stated earlier, the results from eqn. (25)(with appropriate boundary

condition forbearingandfriction)havebeencomparedwith Novak's chart and Dobry

and Gazetas' expression. The results have been studied against both the bearing

and frictionpilecoefficients as suggestedbyNovak and El-Sharnouby (1983).

It will be observed in Figs. 5 through 14 that the frictional stiffness values

obtained are very close to the reportedresults inall thecases for variousL/rand
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AE/Gs values. For the bearing piles, the values obtained are slightly higher than the
reported values but the present solution matches very closely to the Novak's data
from Ep/Gs =500 onwards.This is expected.It was pointed out by Novak and others
that thebearingstiffnessofapile isslightlymore thanthatof frictionstiffness.

At L/r =20 the bearing values obtained are higher than that of the reported
values of Dobry and Gazetas (which is logical as the case considered is that of a
floating pile) but the difference reduces considerably from Ep/Gs =1000 onwards,
and this is therange in whichpiles are commonly used inpractice.The values,where
Ep/Gs is 1000 are actually far too stiff for any piles to be boredor driven.

Moreover, a pile with L/r = 20 is actually a fictitious values. For instance a
standard pile of length 30 meter, the diameter becomes 3.0 m, which in effect is
actually a cassion and not a pile. It is possibly in such cases, the axial stiffness is far
too high and this shows a significant higher stiffness in bearing compared to friction
piles for suchanunrealisticL/r ratio.For reallifeproblems, the values ofL/r isaround
50-100 and Ep/Gs >1000. It will be observed that the values obtained by the
proposedmethodare quiteclose to the reported resultsuseful for practical ranges of
application. As for the frequencies obtained for various Ep/Gs values the results in
Table 4 are extremely encouraging. r <\

%The major advantage with the proposed method is that instead of solving the
differential equation (especially when the boundary condition gets complicated with
cases like partial embedment or variable soil) the stiffness, damping and mass
matrices are directly derived from energy principles and the subsequent derivation
getsquitesimplified.

Finally, the formulation have been derived for a general case when pile can
act both as bearing and friction pile for which no direct solutions are available-and
this could be the reality in many cases when the pile is neither in full bearing or full
floating.Comparing the results it canbe well inferred that the method can be used for
practicaldesign office work without the limitations as stated at the outset.

Design Steps

Based on the derivations presented, the design steps may be summarized as
follows:

Determine the soil properties like G, Gb,G,and V (Poisson's ratio of the soil);
The parameters G, Gb,G,and v for sandy and clayey soil can be obtained as
mentionedhereunder: -f

Sandy soils. Though the processes of evaluation of dynamic shear modulus of both
loose and dense sandy soil are outlined, it should be pertinent to point out that for
dense sand (with Dr =35-65 andN=35-50),generally, piles willnot berequired.
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For cohesion-less soil, the dynamic shear modulus can be obtained in the field

employing seismic cross borehole test. This is a very standard procedure used in the
industry fordetermining thein-situdynamic shear modulusof soil.

This test can very well be made an integral part of the Standard Penetration Test
SPT) which is usually carried out for sandy soils where, the G value for various layers

canbe effectively evaluated.

«

Seismic cross borehole test can be effectively used for both loose and dense sand in

field.
For details of the test, reference may be made to Prakash (1981) or Kramer (1996).

Clayey Soil: For stiff clay which does not collapse on boring, the dynamic shear

moduluscanbe obtained infieldby seismic borehole test (Prakash,1981). However,
for very long piles some portion at the top may have to be provided with casing for the

prevention of collapse of the soilmass.

For soft clay susceptible to collapse one can either carry out seismic cross borehole

test or can collect undisturbed sample from the site at different depth and evaluate

the dynamic shear modulus of the soil in the laboratory by resonant column test.

Details of this test is available in the text book by Richart et al. (1970)

Alternatively theoretical correlation exists (Hardin and Drnevich, 1972) and are

appendedbelow:

Gma<— 1230
(2.973 — e)2

{OCR )k (cr0)°5 inpsi
d + e )

Where, e =void ratio; OCR = over consolidation ratio; <r0= mean effective stress in
psi; =0.333(o,+2oh); ov = vertical effective stress inpsi; oh= horizontal effective inpsi

= KoOv. K„ = earth pressure at rest ,and is a function of the plasticity index and the

over-consolidation ratio; k = is a function of the plasticity index of the soil and is
given as follows

kPlasticity Index

00
0.1820
0.3040
0.4160
0.4880
0.51>=100

The Poisson's ratio (v) for the soil usually varies from 0.25(Rock) to 0.45 (soft

organic clay). For all practical purpose a value of v= 0.4 will suffice (Dowrick, 1988).

Determine the pile properties like Length of pile L and diameter of pile (2r0)

and also the Young's Modulus E of the pile material;
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Determine the pile cap property like its mass and depth of embedment D,;
Determine the weight of machine supportedon the pile cap;

Obtain Novak's stiffness anddampingcoefficients C„ S, C,,S2 fromTable 2

andTable 3,eqn.(14)etc.;
Establish thedimensionless parameter n = ^ .
For the given value'1 determine the value of pLfromTable 1;

If thepile is bearing (knownpriori) p = TI/2;

Consider P = pL;

Determine K,andm0 from eqns.( 25) and (35) respectively;

Determine the embedment stiffness from the eqn.(56);

Formthe mass, stiffness;

Performeigen solution.
Findthe valueof the frequency andobtain the dimensionless

frequency number a0.

Find the valueof S2 fromNovak'sexpression as given inTable 3;

Determine the damping of the systembasedoneqn. (42,45,48);

Perform Modal analysis to obtain theamplitudeof vibration.

\

Conclusion

A comprehensive analytical method has been outlined for the design of piles
under vertical vibration, which is chart independent and not restricted to the type of
material to be used. It also takes into account for the variation of shear modulus with
depth as well as the partial embedment of piles for which no standard method is
available. The method can be easily programmed to standard design office software
using simple spreadsheets.
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Notations
A area of pie ,

integration constants to be determined from the
boundary condition;

a frequency independent constant;

constants which are basically frequency
dependent;

critical damping of the pile, C, = 2^Kmt, where mp
and K are the mass and stiffness of the pile;

damping of the pile group= /£a2, ;

frequency independent constants;

Ci through C4

Cb
f

Cb and Si f

Cgroup

Ch and S2

i=!

Cz soil damping;

depth of embedment for a rigid circular footing;

Young’s modulus of pile material;

Shape function in generalized co-ordinate;

dynamic shear modulus of soil in which the
foundation is embedded;

dynamic shear modulus at foundation base;

variation of G as per G’= G£“, where qi = a
number which varies from 0-2;

D,
Ep

F (4)

G

Gb
-fG’

dynamic shear modulus of the soil surrounding the
pile cap;

Gf

1
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4 Acceleration due to gravity;

dynamic shear modulus of the soil at pile base;
9

Gb

G dynamic shear modulus of the soil along pile
length;

dynamic shear modulus of the soil at pile tip;

the stiffness matrix for the fundamental mode;
Gb
K,
Kb end bearing stiffness of the pile;

dynamic frictional stiffness of soil having
dimension (F/L);

the stiffness matrix;

K,
K.i

foundation stiffness in the vertical direction;
stiffness of the pile g r o u p , where a2i

are the interaction factors;
length of the pile;

Kv
Kgroup

L

pile length embedded in soil;

mass of pile cap and machine placed on it;

the mass matrix for the fundamental mode;

L,* M

ml

the mass matrix;mii
generalized co-ordinate;9,(0

radius of the pile; r0 = radius of the foundation;

constant as suggested by Novak;

kinetic energy of the system;

displacement function;

to

S,
T

dynamic amplitude of pile =</>( z )q(tV,

displacement of pile in the z direction = cp(z) q(t);

bulk density of pile material;

shape function;

u(z,t)

w

YP

total potential energy of the system;

natural frequencies of the system.
n
U1. U>2




