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Sliding Complian~e Functions for Embedded 
Circular Footings in Horizontal Shearing 

Interaction 

P. Vijayan*, S. Chandrakarant and N. Ganesan! 

Introduction 

Solutions to the problem of foundation response to horizontal loads can 
be based either on the elastic half space theory or on the lumped 
parameter approach. Though the former is more rigorous and exact, its 

application is limited to a few cases where the boundary qonditions are 
simple. Even such common practical issues as embedment of foundation into 
the soil and layered nature of soil deposit make the method .highly unwieldy 
and complicated. On the other hand, the latter method can rather easily 
incorporate such features, and hence is more versatile for general applications. 
This point is further substantiated considering the fact that almost alt practical 
cases involve such complications, and there are only a few cases with simple 
boundary conditions. However, the accuracy of the results obtained from the 
latter method is highly dependent on the exactitude of the parameters 
involved, viz. stiffness and damping coefficients. Since the stiffness of a 
foundation-soil system is the major parameter influencing its response under 
load. evaluating the same correctly is essential for reliable solutions. This 
paper descrihcs an analytical method to formul ate closed-form expressions 
for compliance fuhctions in horizontal translation at any depth of embedment 
for a circular footing embedded into a homogeneous, isotropic and elastic 
half space. The corresponding stiffness can then be evaluated from the 
compliance function. The effects of the commonly encountered types 'of 
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contact pressure distributions under the footing, namely rigid-base, uniform 
and parabolic pressures are also considered in the analysis. 

Numerous solutions to the problem of horizontal vibration of non
embedded footings are reported in the literature. Analytical solutions were 
worked out by Arnold et al. (1955) for surface foundations subjected to pure 
horizontal vibrations, using elastic half space theory. Hall (1967) and Ratay 
( 1971) used these results for the analysis of coupled sliding and rocking of 
footings. Elastic half space theory being cumbersome, many investigators like 
Hsieh ( 1962), Lysmer and Richart (1966), etc. have used the concept of 
mass-spring-dashpot model with a single degree of freedom to represent the 
foundation-soil system. In this method, an equivalent stiffness and a damping 
coefficient were used to simplify the problem. Bycroft (1956) has given the 
expression for equivalent horizontal stiffness of a surface foundation resting 
on a semi-infinite elastic medium with rigid base pressure distribution 
underneath. Nagendra et al. ( 1981) have similarly derived the same for 
uniform and parabolic pressure distributions. Investigators like Anandakrishnan 
and Krishnaswamy ( 1973), Novak and Beredugo (1972) and Ramiah et al. 
( 1977) have dealt with embedment and its effects in vertical vibrations. 
Lysmer and Kuhlemeyer (1969) and Kaldjian (1969) used finite clement 
method for solution to vertical vibration problems. Yeletsos and Younan 
( 1995) analyzed the dynamic response o( deeply embedded cylindrical 
foundations to horizontal loads, modeling the soil medium by a series of 
elastically constrained thin horizontal layers with a circular hole at the centre. 
Chandrakaran (2001) evaluated the horizontal static stiffness of embedded 
circular foundations, assuming the problem as axi-symmetric for easy 
evaluation of the deformations. This assumption leads to erroneous results as 
the problem as a whole cannot be considered axi-symmetric. Thi s is because 
neither the load nor the horizontal deformation function is axi-symmetric, 
though the foundation geometry, being circular, is so. 

A careful study of the literature reveals that.. there are only very few 
investigations related to the effect of embedment on horizontal sliding 
stiffness of footings, and none reported so far which presents closed-form 
mathematical expressions for the same under horizontal static loads. This 
paper addresses the problem of evaluating horizontal sliding compliance 
function and hence the sliding stiffness of em.bedded footings under static 
loads using Mindlin's ( 1936) theory. It makes no simplifying assumption of 
axi-symmetry of the problem, and evaluates the integrals involved exactly, 
paying due regard to the radial and circumferential variation of the 
deformation function. Closed-form solutions are obtained for the static 
compliance functions in sliding mode. The proposed sliding compliance 
functions can be easily used for evaluating horizontal stiffness at all depths 
of embedment due to shearing interaction involving load transfer through 
base friction. Thus, the enhancement in horizontal stiffness can be predicted 
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(I) 

Since the footing can be considered as rigid in its own plane, the 
sliding deformation at all points on the same can be assumed to be equal , 
say cf. Let the horizontal stiffness mobilized under R hsb be Khsb and that 
under R 11, 1 be K hsl . Taking the horizontal stiffness of the embedded foundation 
as Khemb• for a given horizontal displacement cf of the foundation . 

Rhs = Kh•mbo 

R hsb = Khsbo (2) 
R hsl = K hslo 

Substituting Eqn.2 in Eqn. l , 

(3) 

From which, 

(4) 

lf we consider the load transfer to the soil through the bottom sides 
alone, Eqn.4 becomes 

K hemb = K hsb (5) 

The term K hsb is now referred to as the horizontal sliding stiffn ess. This 
stiffness is mobilized in shearing of soil· underneath through frictional load 
transfer between the same and bottom face of footing. Dropping the suffi x 
b, as the term with suffix I is no longer considered, Khsb may be denoted as 
Khs· Hence Eqn.5 is rewritten as 

(6) 

It is reported in the literature that this type of horizontal load transfer 
as considered above is governed by a horizontal stiffness, which increases as 
the depth of embedment increases. This increase in horizontal stiffness is 
tenned as the "trench effect" (Gazetas and Tassoulas, 1987). Experimental 
work on dry sand by Erden (1974) reveals that "even with no side contact 
of the footing along the embedment depth, the effect of embedment to reduce 
the displacements is not caused solely by an increase in shear modulus 
beneath the footing", indicating the presence of the trench effect. So the 
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FIGURE 2 Horizontal Displacement at Point S due to Point Load at T 
(Mindlin, 1936) 

present analysi.s can provide a theoretical interpretation to the trench effect 
by formulating closed-form mathematical expressions for the same. 

Evaluation of K 11s 

To evaluate Khs• we use of Mindlin 's (1936) theory for horizontal 
deformation at any point S(x, y, z) within a semi-infinite elastic medium due 
to a horizontal point load P at another point T(O, 0, h), i.e. at a depth or 
h from the free surface (Fig.2). The horizontal displacement !:l at the point 
S(x, y, z) is given by 

where 

p 
!:l = -----

16nG (1 - v) 

r2 x 2 + l 
G modulus of rigidity, and 

v = Poisson's ratio of the medium . 

(7) 



... 
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Equation 7 can be used for finding the horizontal deformation 
immediately under the centre of the footing consequent on the horizontal 
load transfer to the soil from the footing. Accordingly, consider a circular 
footing of radius r0, thickness d, embedded into a semi-infinite soil mass up 
to a depth of h and with an applied horizontal load Phs as shown in Fig.3a. 
Generally, Phs is less than the maximum sliding resistance f-lm.Q, where #m 
is the maximum coefficient of friction between footing base and soil, and Q 
is the vertical load on the footing. This is so because in all safe footings, the 
factor of safety against sliding is more than 1.5. Therefore, there is no 
slippage between the soil and the footing, and hence a linear relation exists 
between the load and the corresponding deformati"on. 

Let azz be the vertical stress under the footing· at any point located at 
a radial distance r from the centre of the footing as shown in Fig.3c. azz 
depends on the type of pressure distribution under the footing, viz. rigid
base, uniform or parabolic. The mathematical expression for azz under various 
pressure distributions are as follows (Baidya and Sridharan, 1994) 

(a) Vertical Section through Centre of the Footing 

y 

(b) Plan ofthe Footing 

;(J])'vzz 
r 

(c) Distribution of Ozz 

FIGURE 3 Embedded Circular Footing under Horizontal Load 
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(8a) 

(8b) 

(8c) 

On an elemental area dA shown in Fig.3b, the vertical reaction, dQ is 
given by 

(9) 

If ,tt is the coefficient of friction mobilized for the frictional load 
transfer (,tt < I'm• as the footing is safe in sliding), the elemental horizontal 
reaction, dRhs on the elemental area dA is 

(1 0) 

This load dRhs acts inside the soil as a horizontal point load. Therefore, 
substituting dRhs for P in Eqn.7, the elemental horizontal deformation dUhs 
at the bottom centre of the footing due to dRhs is given by 

dUhs = dRhs X = 
16..nG(l-v) ( 11) 

where X is the term within square brackets in Eqn.7. G is the modulus of 
rigidity and fJ- is the Poisson's ratio of the soil. 

Hence the total horizontal deformation at the centre of the footing due 
to shear load transfer to the soil over the entire base area A is obtained by 
integrating Eqn.ll over A. So we get 

( 12) 

On conversion to polar co-ordinates as shown m Fig.3b, 

'o 2n: 

uhs = ~ ) I I Xa'ZZ.rdrdO 
16..nG 1-v r=OB=o 

( 13) 
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In the problem being discussed, both the load and deformation are 
considered at points having the same z coordinate, i.e z = h. So, observing 
that z- h = 0 and z + h = 2h, R1, R2 and x in X of Eqn .7 are 

(14) 

( 15) 

x = rcosO (16) 

Substituting for the six terms of X as given in Eqn.7 using the values 
of R1, R2 and x, the integral in Eqn.l3 can be represented as the sum of six 
integrals 11, 12, .. . , 16 as 

'• 
2

" 3-4v 
I1 = J J --razz drdO 

r=OO=O r 

In other words, 

( 17a) 

( 17b) 

(17c) 

( 17d) 

( 17e) 

... {1 7f) 
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(18) 

The integrals 11 to 16 can be evaluated in closed-form by exact 
integration after a series of substitution and change of variables. Since the 
steps involved in their closed-form evaluation are very lengthy, not all the 
steps are presented here. However, in order to bring out the general nature 
of the result, the evaluation of one of the integrals is presented as an 
example. We choose the integral 12 as the typical example for the sake of 
elucidation. Substituting for azz from Eqn.8a to Eqn.8c, 12 is evaluated as 
given below for the three cases of base pressure distributions. 

In the case of rigid-base pressure distribution, 

(19a) 

or 

Q 'o 21l 1 - I I pdrde 
2.7rro r=Oli=O .Jr2 + 4h2 

O 
2 (19b) 

Simplifying, 

(19c) 

In the above expression, term e is called as the embedment ratio of the 
footing, and is equal to h/ r0 , the depth of embedment in a non-dimensional 
form. 

For uniform pressure distribution, 

'o 2n ] . Q 
J I 

2 2 
r - 2 drdtl 

r=O 6=0 .J r + 4 h .7l'ro · 
(20a) 
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or 

Simplifying, 

or 

12 = ~x2 {)1+ 4 (r0 /hf-2 (r0 /h)} 

~ ~ x 2 {v'I+4e
2 

-2e} 

Similarly for parabolic pressure distribution, 

Simplifying, 

12 = ~x~[{l+4(ro/hY J'
2 

- 8 (r0 / h f - 3(r0 / h)J 

= Q x~[{1 +4e2 Jf2 -8e3 - 3e] 
r0 3 

Equations 19c, 20c and 21 c may conveniently be rewritten as 

(20b) 

(20c) 

(2 1a) 

(2 I b) 

(21c) 

(22) 

In other words, the integral 12 is a function of the embedment ratio, e. 
In a similar way, all the other integrals can also be simplified into the above 
form. So, in general we can write 



or 
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Q 
l i = -Fjhs (e) , where j 

ro 

So Eqn.18 becomes 

1 to 6 

J.l Q {Fihs (e)+ F2hs (e)+ F3hs (e) } 
U hs = - --'-...,.....--

16.nG (1- v) r0 + F4 hs (e)+ Fshs (e)+ F6hs (e) 

= J.lQ F (e) 
16.nGro (1 - v) hs 

where Fh.(e) is g iven by 
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(23) 

(24) 

(25) 

Fhs (e) = Fths (e)+ F2hs (e)+ F3 hs (e)+ F4hs (e)+ Fshs (e)+ F6hs (e) (26) 

From horizontal equilibrium of the footing, vide Fig.3a, 

(27) 

Hence Eqn.25 is rewritten as 

(28) 

Here Uhs is the central deformation of the footing. Therefore, the 
horizontal stiffness, Khs in shearing interaction through base fri ction, as per 
central deformation criterion is given by 

(29) 

By definition, the reciprocal of stiffness function (or impedance 
function), Kh.(e) is called as the compliance function, Ch,(e). Therefore 

C 'e) = {K ' e)}- I = Fhs (e) 
hs \: hs \: 16.nGr

0 
(1-V) (30) 
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Equation 30 can be written as 

l6.1tGr0 (1-v} Chs (e) = Fhs (e) (31) 

Since the left hand side of Eqn.3 1 represents the sliding compliance 
function in a dimensionless form after multiplying with a constant 
!6.1tGr0 (1- v ) , the right hand side function Fh,(e), henceforth, will be called 
as the non-dimensional sliding compliance function in shear load transfer. It 
is representative of the sliding flexibility of the footing, and comprises of six 
terms as given in Eqn.26. Each of the six terms appearing in Eqn.26 is a 
result of closed-form integration of 11 to 16 as explained in Eqn.19 to Eqn.22 
for the typical case of 12. 

The constituent terms of the dimensionless sliding compliance function 
Fh,(e) are presented in Table I for the three commot:t. types of contact pressure 
distributions, namely rigid-base, uniform and parabolic distributions under the 
footing. It may be noted that each of the terms appearing in Column 2 of 
Table I is obtained by exactly integrating Eqns.l7a to 17f for the case of 
rigid base pressure distribution. Similarly, the terms in Column 3 and 
Column 4 of the same table can be obtained by exact integration of the 
above equations for uniform and parabolic pressure distributions, respectively. 

Since the above compliance functions are closed-form expressions, 
horizontal stiffness can readily be evaluated for any embedment ratio e from 
Eqn.28. Two extreme cases of e for stiffness calculation correspond to a 
surface (e = 0) and a very deeply embedded (e = oo) footings, so that the 
results can be compared with those available in the literature. At e = 0, 
Fh,(e) can be evaluated by direct substitution. However at e = oo, Fh,(e) is 
indeterminate. Hence it has to be evaluated using L'Hospital's Rule. These 
extreme stiffness values so evaluated for all the three types of pressure 
distributions are shown in Table 2. 

The variation of horizontal sliding stiffness Kl!ie) with embedment ratio 
e can now be studied. This variation can be best illustrated with the help of 
stiffness increase factor 1h,(e), defined as the ratio of the stiffness at any 
depth of embedment of the footing to the stiffness at soil surface of the 
same footing. It is nothing but the trench effect factor applicable to horizontal 
stiffness. Therefore, the stiffness increase factor is given by 

(32) 

Accordingly, introducing the suffixes r for rigid, u for uniform and 



TABLE 1 : Terms of Non-dimensional Sliding Compliance Function Fh,(e) in Horizontal Shearing Interaction 

Term Contact Pressure 
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TABLE 2 : Values of Kh,(e) at e = 0 and e = co. 

Horizontal Stiffness of Circular Footings at 

Soil Surface, Kh, (0) Infinite Embedment, Kh, ("') 

Rigid-base Uniform Parabolic Rigid-base Uniform Parabolic 

_ s _ Gr. 
2- v 0 ~Gr. 

2-v 0 
1.5n G 
2- v ro 

64(1- v) Gr. 
7 - 8v 0 
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32(1 - v ) G 8n(I - v) G 6H(I-v) 
7 - 8v 10 --- 10 ---Gr0 - - -7- 8v 7 -8v 

32(1- v) G 
--- 10 
7- 8v - - - - -

Proposed By 

Authors (Present Study) 
ro 

Bowles (1996), Wolf(l988), 
Sankaran et al. ( 1977) 

Nagendra et al. (1981) 

Bycroft ( 1956) 

N 
Vl 
00 

z 
S2 
> z 
0 

§ 
~ 
:I: z 
n 
> r 

0 c 
;;o 
z 
> r 



SLIDING COMPLIANCE FUNCTIONS 259 

p for parabolic contact pressures, the stiffness increase factors can be 
~ evaluated as given below. We make use of Eqn.29 and and the values of 

Kh,(O) given in Table 2 for this purpose. 

I 'e)= Kh,,(e) = 16.nGr0 (1-v)_,_ 8Gr0 = 2.n(l-v~(2)-v) (
33

) 
hsr\: Khsr(O) Fhsr(e) ·2-v Fhsr\e 

~) Khsu (e) 16.nGr0 (1-v). 2.nGr0 _ 8(1-v)(2-v) 
Ihsu e = Khsu (0) = Fhsu (e) ..,... 2-v - Fhsu (e) (34) 

16.nGr0 (I-v) _,_ 1.5.nGr0 

Fhsp (e) · 2-v 
32(1-v)(2-v) = --"---''-->----<-

3Fhsp (e) 

... (35) 

By definition, i.e. by . Eqn.32, the stiffness increase factor at infinite 
embedment is given by 

(36) 

Using the values of Kh,( oo) and Kh,(O) from Table 2, it is seen that 
Ih,( oo )works out to be the same for all contact pressures, and its value is 
given by 

8(1-v)(2-v) 
I I oo) = I I oo) = I I oo) = ___,_______,'--'--~ 
~\ ~\ ~\ 7-~ 

Discussion 

(37) 

The values of horizontal stiffness of circular surface footings as reported 
by previous investigators are presented in Table 2, along with those deduced 
by the authors based on the present method. On comparison of these values, 
it can be seen for the case of a rigid base pressure that there is a perfect 
agreement between the horizontal stiffness obtained by the present method 
and that available in Wolf ( 1988) and Bowles ( 1996), and used by Sankaran 
et al. (1977). For other cases of pressure distribution and embedment, nothing 
has been reported in the literature. On the other hand, the formulae for 
stiffness at very deep embedment, Kh,(oo) as per the present method is twice 
that reported for ground surface, Khs(O) by Nagendra et al. ( 1981) and 
Bycroft (1956). In other words, the difference is in terms of a multiplying 
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factor 2. This means that the sliding stiffness as per the present method for 
a very deeply embedded circular footing, Khs(oo) is twice that reported 1 
previously for the surface footing, Khs(O). However, the ratio of K11.( oo) to " 
Kh.(O) when calculated using the present theory is as given in Eqn.37, which 
ts a function of Poisson's ratio, v. 

The vanatton of horizontal sliding stiffness with embedment ratio can 
be studied indirectly from the graphs between stiffness increase factor lhs( e) 
and embedment ratio e, making use of the expressions in Eqns.33, 34 and 
35, after substituting for FhsrC e), etc. from Table 1. These graphs are presented 
for the following two sets of conditions 

(a) for a constant Poisson's ratio, varying the type of contact pressure 
(Figs.4, 5 and 6) 

(b) for a fixed contact pressure distribution, varying the Poisson's ratio 
(Figs.7, 8 and 9) 

Figure 4 represents the variation of sliding stiffness increase factor with 
embedment ratio for the three types of contact pressure distributions at a 
fixed value of Poisson's ratio, v = 0.0. The same kind of graph is plotted 
in Figs.5 and 6 for v = 0.3 and v = 0.5 respectively. It can be seen from ~-

these graphs that for a given Poisson's ratio, the stiffness increase factor is 
the highest in the case of parabolic pressure distribution and the least for the 
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5 
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10 

FIGURE 4 Sliding Stiffness Increase Factor vs. Embedment Ratio (v = 0.0) 
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FIGURE 9 Sliding Stiffness Increase Factor vs. Embedment Ratio (Parabolic 
Contact Pressure Distribution) 

rigid one, for normal range of embedment. However, for very large 
embedment ratios, stiffness increase factors have identical value for all types 
of contact pressures, as indicated in Eqn.37. The same type of variation 
prevails in the case of all the values of Poisson's ratios. 

It is also noticed that for a given type of contact pressure distributi on, 
the highest value of sti ffness increase factor corresponds to the lowest value 
of Poisson's ratio, viz v = 0.0. The lowest stiffness increase factor 
corresponds to the case of highest value of v = 0.5. These are elucidated in 
Figs.?, 8 and 9. These figures show the variation of stiffness increase factor 
with embedment ratio for rigid, uniform and parabolic pressure distributions 
respectively. The effect of Poisson's ratio as discussed above is clear from 
this graph. The trends observed in the case of all the three types of pressure 
distributions are identical. 

Conclusion 

Closed-form sliding compliance functions are greatly useful in solution 
of problems involving displacement of foundations in static or dynam ic 
conditions, because the stiffness coefficient can easily be determined from 
the same. In the case of embedded footings, stiffness increases with 
embedment for obvious reasons. Though this increase has been recognized in 
the past, as evident from the various related li terature, a closed-form 
representation of the same using exact mathematical expressions for horizontal 
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sliding motion is non-existent hitherto. This paper presents closed-form 
functions for the sliding compliance and thereby for stiffness of an embedded 
circular footing under shearing interaction with the soil. The variation of 
sliding stiffness with respect to depth of embedment can be easily obtained 
using these functions under the above mode of interaction between the 
footing and the soil. Any depth of embedment up to infinity can be 
considered. It is assumed that the soil is a homogeneous, isotropic and elastic 
half-space. Elasticity equations are used of for the purpose of analysis. The 
results obtained are compared with those presented in the literature, for non
embedded circular footings. It has been noticed that there is a good 
agreement between these results. 

References 

ANANDAKRISHNAN, M. and KRISHNASWAMY, N.R. (1973) : "Response of 
Embedded Footings to Vertical Vibrations", Journal of Soil Mechanics & 
Foundation Engineering Division, ASCE, Vo1.99, No.SM 10, pp.863-883. 

ARNOLD, R.N., BYCROFT, G.N. and WARBURTON, G.B. (1955) : "Forced 
Vibrations of a Body on an Infinite Elastic Solid", Journal of Applied Mechanics, 
Transactions of ASME, September 1955, pp.391-400. 

BAIDYA, O.K. and SRIDHARAN, A. ( 1994) : "Stiffness of the Foundations 
Embedded into Elastic Stratum", Indian Geotechnical Journal, Vol.24, No.4, 
pp.353-367. 

BOWLES, J.E. (1996) : Foundalion Analysis and Design, Fifth Edition, McGraw 
Hill International Editions, Civil Engineering Series, pp. I 101. 

BYCROFT, G.N. (1956) : "Forced Vibrations of a Rigid Circular Plate on a Semi
infinite Elastic Space and on an Elastic Stratum", Philosophical Transactio1ts of 
Royal Society of London, Vo1.248, No.A948, pp.327-368. 

CHANDRAKARAN, S. (200 1) : "A Simplified Metl\od for Design of EmQcdded 
Foundations Subjected to' Horizontal Vibrations", Proceedings IGC 2001, December 
2001, pp.540-543. 

ERDEN, S.M. (1974) : " Influence of Shape and Embedment on Dynamic 
Foundation Response", Ph.D Thesis, University of Massachusetts, at ·!\mherst, 

. Mass., USA. 

GAZETAS, G .. and TASSOULAS, J.L. (1987) : "Horizontal Stiffness of",.Arbitrarily 
Shaped Embedded Foundations", Journal of Geotechnical Engineering, ASCE, 
Vo1.113, No.5, pp.440-457. · 

HALL, J.R., Jr. (1967) : "Coupled Rocking and Sliding Oscillations of Rigid 
Circular Footings", Proceedings of International Symposium on Wave Propagation 
and Dynamic Properties of Earth Materials, pp.J39-148. 

HSIEH, T.K. (1962) : "Foundation Vibration", Proceedings of Institution of Civil 
Engineers, London, Vol.22, pp.221 -226. 

KALDJIAN, M.J. (1969) : "Discussion on Design Procedures for Dynamically 
Loaded Foundations", Journal of Soil Mechanics and Foundations Division, ASCE, 
Vol.95, No.SMl, pp.364-366. 

,, 



SLIDING COMPLIANCE FUNCTIONS 265 

L YSMER, J. and KUHLEMEYER, R.L. ( 1969) : "Finite Dynamic Model for 
Infinite Media", Journal of Engineering Mechanics Division, ASCE, Vo1.95, 
No.EM4, pp.859-877. 

L YSMER, J. and RICHART, F.E. ( 1966) : " Dynamic Response of Footings to 
Vertical Loading", Journal of Soil Mechanics and Foundation Engineering Division, 
ASCE, No.SMI, pp.65-91. 

MINDLIN, R.D. (1936) : "Force at a Point in the Interior of a Semi-infinite Solid", 
Journal of Applied Physics, Vol.?, pp. l 95-202. 

NAGENDRA, M.V., SRIDHARAN, A. and SREEN!VASAN, M. (1981) : 
"Foundation Response to Horizontal Vibrations", Indian Geotechnical Journal, 
Vol.l6, pp.l32-151. 

NOVAK, M. and BEREDUGO, Y.O. ( 1972) : "Vertical Vibration of Embedded 
Footings", Journal of Soil Mechanics and Foundation Engineering Division, ASCE, 
No.SMI2, pp. I291 - 1309. 

RAMIAH, B.K. , CHIKANAGAPPA, L.S and RAMAMURTHI, T.N. ( 1977) : 
"Vertical Vibration of Embedded Footings", Proceedings of IX International 
Conference on Soil Mechanics and Foundation Engrneering, Vo1.2, pp .343-346. 

RATAY, R.T. ( 1971) : "Sliding-Rocking Vibration of Body on Elastic Medium", 
Journal of Soil Mechanics and Foundations Division, Proceedings of ASCE, Vo1.97, 
No.SM I, pp.I 77-192. 

SANKARAN, K.S., SUBRAMANIAM, M.S. and SASTRI, K.K. ( 1977) 
"Horizontal Vibrations - New Lumped Parameter Model", Proceedings of IX 
International Conference on Soil Mechanics and Foundation Engineering, Vol.2, 
pp.365-368. 

VELETSOS, A.S. and YOUNAN, A.H. ( 1995): " Dynamic Modeling and Response 
of Rigid Embedded Cylinders", Journal of Engineering Mechanics, ASCE, No.9, 
Vol.l21 , pp.I026- 1035. 

WOfF. J.P. ( 1988) : Soil-Structure Interaction Analysis in Time Domain, Prentice 
Hall, Englewood Cliffs, New Jersey, pp. l6. 

Notations 

Q 

Rhs• Rhsb• Rhsl 

K hs• Khsb 

Horizontal force on footing. 

Vertical load on footing ... 

Horizontal reaction in sliding shear mode. 

Horizontal sliding stiffness in shearing interaction 
at the base of the footing. 

Horizontal sliding stiffness in shearing interaction 
on the lateral vertical sides of the footing 

Horizontal sliding stiffness of embedded footing as 
a whole. 
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0, t:. 

uhs 

d 

h 

x, y, z 

R, 

R2 

r 

dA 

ro 

e 

fJ-

f-lm 

G 

v 

F,h.(e), ... , F6hs(e) 

Fhs(e) 

ch.(e) 

Khs(e) 

lhs.C e) 
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Horizontal deformation in soil due to a point load. 

Horizontal deformation at the centre of the footing. 

Thickness of footing. 

Depth of embedment of footing. 

Co-ordinates of a point within the soil. 

~r2 +(z- hi 
~r2 +(z+hY 

Jx2 + y2 

Elemental area of the base of footing. 

Radius of footing. 

Embedment ratio, (h/r0 ). 

Coefficient of friction between the footing and soil. 
I 

Maximum coefficient of friction between the 
footing and soil. , 

Vertical pressure under footing. 

Modulus of rigidity of soil. 

Poisson's ratio of soil. 

Values of integrals. 

Terms of dimensionless sliaing compliance function. 

Dimensionless sliding compliance function. 

Sliding compliance function. 

Sliding impedance function. 

Stiffness increase factor for the footing with rigid
base pressure distributions underneath. 

Stiffness increase factor for the footing with 
uniform pressure distributions underneath. 

Stiffness increase factors for the footing with 
parabolic pressure distributions underneath. 

A constant = 3- 4v 

{32 A constant = (1- v )(2 - v) 
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