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Nonlinear Time Domain Analysis of Single Piles
by FEM

B.K. Maheshwari*, K.Z. Truman' and M.H. El Naggar:

Introduction

Kocaeli, 1999; Kobe, 1995 and Northridge, 1994) have shown that

the collapse of many buildings was due to the failure of the
supporting pile foundations. Much of the research performed in the last three
decades for dynamic analysis of pile foundations assumes linear behavior of
the soil media. For example, Kaynia and Kausel (1982), Gazetas (1984) and
Makris and Gazetas (1992) proposed linear analyses of single piles and pile
groups in the frequency domain. Maheshwari and Watanabe (1998) used the
equivalent linearization technique to include the material nonlinearity of the
soil in the frequency domain. However, the equivalent linearization techniques
were not suitable for the analysis of strong earthquakes as the level of shear
strain in the soil media can be extremely high. The nonlinear conditions
expected during earthquake loading can only be accurately modeled using
time domain analyses.

Recent devastating earthquakes (e.g. Bhuj, 2001; Chi-Chi, 1999;

Matlock et al. (1978) developed a unit load transfer curve approach,
also known as p-y curves, for nonlinear analysis of piles in the time domain.
Nogami and Konagai (1986 and 1988) developed a time domain analysis
method for the axial and lateral response of single piles, respectively. They
used the soil reactions proposed by Novak et al. (1978) that assumed a plane
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strain continuous elastic medium within the framework of the Winkler soil
model. However, in these analyses, the nonlinear behavior of the soil media
was not explicitly modeled. Strong excitation that causes severe nonlinearity
warrants analysis in the time domain.

Nogami et al. (1992) accounted for material and geometrical
nonlinearity in the analysis using discrete systems of mass, springs and
dashpots. El Naggar and Novak (1995 and 1996) presented a nonlinear
analysis for pile groups in the time domain using the Winkler hypothesis.
However, it is difficult to properly represent damping and inertia effects of
continuous, semi-infinite soil media using these simplifying models. Further,
full coupling in the axial and lateral direction may not be considered.
Inclusion of nonlinearity caused by the plasticity of the soil and the
separation at the soil-pile interface requires that an analysis be performed in
the time domain using the finite element approach..

Wu and Finn (1997) presented a quasi-3D method that used strain
dependent soil properties and a tension cutoff. Bentley and El Naggar (2000)
analyzed the kinematic response of single piles using the finite element
approach. They used the Drucker-Prager soil model to account for the
plasticity of soil but did not consider work hardening of the soil media. Cai
et al. (2000) included the soil plasticity and work hardening of soil using a
finite element technique in the time domain. However, they assumed fixed
boundary conditions and neglected damping in the foundation subsystem.
Moreover, the effects of soil nonlinearity on pile response were not examined.

Maheshwari et al. (2002) analyzed the effect of material nonlinearity
on free field response and kinematic response of single piles using an
advanced plasticity based soil model HiSS (Wathugala and Desai, 1993) in
a finite element formulation. In this paper, this model is extended to account
for gapping and the effects of geometrical nonlinearity on the pile’s response.
The effects of soil nonlinearity on the seismic response and impedance
fupctions of piles are investigated. Though results presented in this paper are
only for single piles, however the model and algorithm are already extended
for pile groups as shown by Maheshwari et al. (2003).

Modeling Soil-Pile System

The soil-pile system is represented using full three-dimensional
geometric models. However, taking advantage of symmetry and anti-symmetry
(as shown in Fig.3a), only one fourth of the actual model was considered,
thus improving efficiency of computation by many-folds and time required
for computation using quarter model is less than (1/16) of that needed using
full model. The finite element quarter model used for the soil-pile system is
shown in Fig.1. The pile is fully embedded in the soil and is assumed to be



NONLINEAR TIME DOMAIN ANALYSIS OF SINGLE PILES BY FEM 349

Location of the Response

S

15,5 b 45 X
¥

Seismic Loading
on Bottom Nodes

FIGURE 1 : 3-D Finite Element Quarter Model Used for the
Soil-Pile System

bearing on the bedrock. The soil-pile system is 1dealized as an assemblage
of eight-node hexahedral elements. Each node has three translational degrees
of freedom along the coordinates X, Y and Z as shown in Fig.2a. The eight-
node brick elements used in the model are suitable since the soil and pile
responses are dominated by shear deformations rather than bending stresses.
However, 20-node solid elements can be used for higher accuracy.

Kelvin elements (Fig.2b) are attached to the model side-walls in all
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(A) 8-noded Block Element (B) 2-noded Boundary Element

FIGURE 2 : (a) Block Element Used for Soil and Pile
(b) Boundary Element (Spring and Dashpot)
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FIGURE 3 : Finite Element Mesh for Quarter Model showing Boundary
Conditions: (a) Top Plan (b) Front Elevation with Initial Pressure
Distribution
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three directions in order to provide proper boundary conditions and to allow
for wave propagation. Figures 3a and 3b show the details of the finite
element mesh in plan and elevation, respectively. The mesh is refined near
the pile and the element size increases gradually as they move away from
the pile. The size of the clements near the pile is kept less than one sixth
of the wavelength that corresponds to the highest frequency of 20 Hz
considered in the analysis (Kramer, 1996). The dimensions of the mesh for
the quarter model are 6 m X 4 m in plan and 10 m high. The elements
vajed from 0.25 m to 2 m in the horizontal direction but are kept constant
at Im in the vertical direction to allow for an even distribution of vertically
propagating SH waves. The mesh comprised 300 elements.

The separation between the soil and pile is considered by not allowing
any tension to occur in the soil elements adjacent to the pile. Pile elements
are assumed to be linear but they can also be nonlinear using an appropriate
constitutive relation. For the nonlinear soil model (HiSS), the nitial stress
condition in the soil is governed by the confining pressure of the soil and
is proportional to the depth (Fig.3b). The seismic excitation is assumed to act
on the fixed base nodes and 1s assumed to consist of vertically propagating
shear waves. Since the analysis is in the time domain, a complete three-
dimensional excitation can also be considered.

Processes of Analysis
Governing equation and solution

The governing equation of motion at time t+At 1is:

M1+A1U+Ct+A!U+Kt+AIU - t+AtR (1)

where M = diagonal mass matrix (all masses are lumped at the
nodal points);

C = global damping matrix and includes the effects of
both material damping and radiation damping
(dashpots) along the boundary;

K = symmetric stiffness matrix determined with full
coupling in all three directions of motion and
includes the stiffness of springs at the boundary
nodes;

U = relative nodal displacement at t+ At;

U = relative nodal velocity at t+ At ;

relative nodal acceleration at t+At; and

=t
1l

HAR = external load.
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Employing the constant average acceleration method of integration
(Bathe, 1982), Eqn.(1) is solved for displacement “*U . For the linear case,
the analysis is performed incrementally. When the soil plasticity is considered,
matrices K and C change after each time step and the modified Newton-
Raphson iteration scheme is used for the solution.

Boundary conditions

To simulate radiation conditions, Maheshwari et al. (2001) used
frequency independent viscous dampers However in the present study the
Kelvin elements are used because these include springs to model the
medium’s stiffness and lead to a better performance compared to the standard
viscous boundary (Wolf, 1985; Novak and Mitwally, 1988). The Kelvin
elements allow the use of a much smaller mesh size than that needed when
using viscous dampers. To evaluate the constants of the Kelvin elements used
in the time domain analysis, a Fourier spectrum of the excitation time history
is derived and the predominant frequency of loading is determined. The
stiffness and damping constants of the Kelvin model are then evaluated based
on the predominant frequency of loading. The constants of the Kelvin
clement’s spring and dashpot in the two horizontal directions are calculated
using the solution developed by Novak and Mitwally (1988) and are given

by:
k, = 9—[8 (a,,v,,D)+iS,(a,, ¥ D)] (2a)
r B 1 X3 ¥s 70 e
where k. = complex stiffness,

G = shear modulus of soil,

W
o
=
=3
w2

%)

|

= dimensionless parameters obtained from closed-form
solutions,

D = material damping ratio,
v. = Poisson’s ratio, and
1 = imaginary unit = J/_1.
Also, r, is the distance in plan from the center of the pile to the node
where the Kelvin element is attached and a_ is the dimensionless frequency
(= r(Ja;/Vs), where w is the angular frequency of excitation and V, is the

shear wave velocity of the soil. The real and imaginary parts of Eqn.(2a)
represent the stiffness and damping, respectively, i.e.

GS,
k. =— and c =
I wr,

(2b)
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For the static loading case, the damping term vanishes and the element
reduces to a spring only. Similarly, the constants for the vertical direction are
given by Novak et al. (1978):

. G -
k\\' = r_I:SWE(aI"D)-’_lSWZ (a"‘D):I (321)

where the subscript w is used to represent the vertical direction and the other
parameters are the same as in Eqn.(2a).

Stiffness and damping for the vertical direction are determined in a
similar fashion as mentioned in Egn.(2b) i.e.

St and ¢, = L
w % w it (3b)

To determine the stiffness and damping of the Kelvin elements, the
constants given by Eqns.(2b) and (3b) are multiphed by the area of the
element face (normal to the direction of loading). It should be noted that for
the vertical direction the dimensionless parameters S, and S, are
independent of Poisson’s ratio and for the static case both the spring and
dashpot terms vanish. Thus, for the low frequency range, the spring and
dashpot constants are adjusted to match more rigorous solutions by choosing
a mmimum cutoff frequency (a, = 0.3) below which the stiffness is taken to
be constant (= 2) and the damping is taken to be linear.

The boundary conditions at the axes of symmetry and anti-symmetry
are shown in Fig.3. The nodes on the axis of symmetry are free to move in
the vertical direction and along the direction of the axis of symmetry, and
are fixed in the perpendicular horizontal direction. The nodes on the axis of
anti-symmetry are constrained in both the vertical direction and the direction
of this axis and are free to move in the perpendicular horizontal direction.
All the nodes along the base are fixed in all three directions (Fig.3b). Two
loading conditions were considered in the analysis. For seismic response
external force 1s due to vertically propagating shear waves applied at fixed
nodes. For determination of dynamic stiffness harmonic excitation is applied
at the pile head.

System damping
To adequately represent damping in the system, both radiation and

material damping are considered in the analysis. The damping matrix C
consists of two parts; radiation damping, C, and material damping, C,, i.e.
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C =C+C, (4a)

The matrix of radiation damping, C, is diagonal and has non-zero terms
only at the nodes (on the boundary) where the Kelvin elements are attached.
The matrix of material damping, C_ is taken to be proportional to stiffness
(Guin and Banerjee, 1998) and is given by:

C, = aK (4b)

m

where a = 2D/w, (4b)

where D is the material damping ratio and w, is the predominant circular
frequency of loading. Additional hysteretic damping may develop due to the
nonlinearity. However, dissipation of seismic energy through inelastic
deformation tends to overshadow the dissipation of the energy through
hysteretic damping as shown by Anderson (1989) and is therefore neglected.

Nonlinear soil model

To introduce the effect of plasticity, the &, version of the nonlinear
soil model HiSS (hierarchical single surface) proposed by Wathugala and
Desai (1993) is used. Both plasticity and work hardening of the soil are
considered in the model. The model is based on an incremental stress-strain
relationship and assumes associative plasticity. Further, for the 6; version of
HiSS model, the constitutive relationship for nonvirgin loading (i.e. loading
or unloading) is assumed elastic. The d, version denotes the basic model for
initially isotropic material, hardening isotropically with associative plasticity
that involves zero deviation from normality d; of the increment of plastic
strain to the yield surface F. Superscript * is used to denote a modified
series of models specially developed to capture the behavior of cohesive
soils. The material parameters (of the model) for a marine clay found near
Sabine Pass, Texas, were determined from laboratory tests (Katti, 1991) and
verified with available data from field tests in “Pile Segment (1986)”.

A simplified formulation used in virgin loading in HiSS is described
here; a detailed formulation can be found in Wathugala and Desai (1993). In
this model, a material parameter § is used to define the shape of the yield
surface in the octahedral plane. Assuming f = 0 as was the case for Sabine
Clay, the dimensionless yield surface F can be simplified as:

2
J o I
F = |22 _'J _y[_f] =0 :
(p; P, P, (32)

+é

ps
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where J, = first invariant of the stress tensor oy
J,p = second invariant of the deviatoric stress tensor;
p,. = atmospheric pressure;
y and n = mate:/igiparameters that influence the shape of F in
oo

Ji's space;

Parameter 5 is related to the phase change point defined as the point where
material changes from contractive to dilative behavior (Fig.4).

In Egn.(5a), a,
strain trajectory &, as:

is the hardening function defined in terms of plastic

a,, = h/E" (5b)

where h, and h, = material parameters, and

£, = trajectory of the volumetric plastic strain.
Typical yield surfaces in I, —\/E space for this model are shown in Fig.4.
Separation at the pile-soil interface
Separation at the soil-pile interface, particularly near the pile heads,
may occur during strong ground motions or loading from the pile head

leading to high inertial forces. The pile-soil interface forces in the top layers
of soil are high and the resisting forces due to the confining pressure are
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FIGURE 4 : Shape of Yield Surfaces
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low. Thus, separation starts from the top layers and heads downward to a
larger depth. In the present analysis, separation (or gapping) is approximately
taken into account by allowing limited tension (until naturally existing
compressive confining pressure in the soil is exhausted) in the soil elements.
To include the effect of separation in the algorithm, it is modified as follows.

For a 3D model loaded in one direction, it is assumed that separation
occurs in the direction of loading only and the soil and pile are still in
contact in the other horizontal direction. Friction at the pile-soil interface is
neglected. At every time step and at every iteration within a time step, the
normal stresses in the soil elements (in the direction of loading) are checked
for each Gaussian point against the confining pressure at that depth.
Separation is assumed if the tensile normal stress exceeds the confining
pressure. During separation, the constitutive stiffness matrix of the soil is
modified by sharply reducing the stiffness of elements corresponding to the
direction of loading.

For the elastic case, the constitutive stiffness matrix reduces to that
corresponding to a plane stress case. When the stresses in the soil clements
during load reversal are again within limits, the full value of the constitutive
stiffness matrix is restored. It is noted that when separation is considered in
the analysis even an elastic soil model requires an iterative scheme to check
the convergence at every time step. Therefore, the computation time increases
significantly.

Seismic excitation
The control point for seismic loading 1s assumed at the bedrock and

thus the external force in the equation of motion is found by (Clough nd
Penzien, 1993):

5 1+A(R = ""N]PF t+AL ;\I/b (6)

pseudostatic response influence coefficient vector, and

where Pe

bedrock acceleration at time t+ At, due to vertically

Il

Vi

D

propagating shear waves.
Impedance Functions of the Soil-Pile System

The impedance function (or dynamic stiffness), K_, includes the static
stiffness of the system as well as the effects of inertia and damping. In the
frequency domain, this is a complex quantity and can be determined at a
particular frequency w by:
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K, = k, —o’'M+iwC (7a)
where k, is the static (true) stiffness of the system and M is its mass.

Alternatively, the complex dynamic stiffness K, can be evaluated in
the frequency domain by applying a real load with a given amplitude, P, at
the pile head and noting the complex response amplitude, U, of the pile
head, 1.e.

K. = BfU, (7b)
The dynamic stiffness of piles is a function of the loading level and
frequency. In the current time domain analysis, the stiffness of the piles is
evaluated as follows. For the quarter model, a harmonic lateral load of
amplitude P, equal to 12.5 kN 1s applied at the pile head and the resulting
displacement at the same point is noted for different frequencies of excitation.
This value of load (i.e. 50 kN for a full pile) is selected to ensure that soil
yielding occurs and the response becomes nonlinear. Also, this level of
loading was found to cause separation at the pile-soil interface. After the
response stabilizes (i.e. becomes steady state), the peak amplitude of the
response, Uy, and its time lag, t, with respect to the applied force amplitude
are noted from the time history of the resulting displacement at the pile
head. With these observations, the phase lag A (in radians) and complex
dynamic stiffness of the soil-pile system can be found as follows:

0 = wt, = 2aft, (7c)
K. = (R/U,)e’ (7d)

where f is the frequency of excitation in Hz.

Separating the dynamic stiffness, given by Eqn.(7d), into real and
imaginary parts, the pile spring constant (including effect of inertia) and
damping constant can be determined.

Computerization

A FORTRAN program (3dNDPILE) was developed to perform the
analysis. Finite element programming strategies suggested by Zienkiewicz
(1977), Bathe (1982) and Wathugala (1990) have been incorporated in the
development of the program. For the nonlinear analysis, three criteria, namely
the displacement criteria, the out-of-balance load criteria and the internal
energy criteria, are used simultaneously to check the convergence of the
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iteration (Bathe, 1982). To save space used to store the matrices, a skyline
storage scheme (Zienkiewicz, 1977) is adopted. Special procedures
(Wathugala, 1990) are used to ensure the robustness of the HiSS iterative
solution. These special procedures are further enhanced to deal with the case
when the plasticity parameter (4) becomes negative. The plasticity parameter
is a constant of proportionality and is used to define the flow rule of
plasticity, (Chen and Baladi, 1985) as follows:

doF
o) Lo
déij - A()U-- (8)

The left hand side of Eqn.(8) defines the plastic strain increment tensor.
Convergence of the dimensionless yield surface (F) is assumed when its
absolute value becomes fairly small, i.e. when ABS(F) < 107", For harmonic
excitations, the step size 15 assumed to be (T/20 ). where T is the period. The
algorithm developed 1s quite efficient and economical and computation time
is reduced due to the use of the quarter model. therefore, nonlinear analyses
can be performed on a modermn P.C. and a workstation is not required for the
computation. The analyses reported herein are performed on a Pentium P.C.
(with Windows XP OS, 664 MHz speed and 768 Mb RAM). Computational
time for the static analysis is less than 30 seconds even for the nonlinear
analysis. A dynamic elastic analysis for a 30 s earthquake (with .02 s time
interval) requires about five minutes and the nonlinear analysis requires less
than two hours.

Data Used in Computation

Table 1, shows the data used in the analyses. For the transient motion,
an acceleration time history for the El Centro Earthquake (Chopra, 1995) has
been used (Fig.5a; shown only for the first 20 s). Figure 5b shows a
smoothed Fourier spectrum for this time history. The response (aucelemuon)
stiown in all results is that at the pile head.

Verification of the Model and Algorithm

The proposed finite element model and developed algorithm need to be
verified. This is performed using clastic and clasto-plastic analyses and the
results are compared with those found in the literature. The verification is
carried out for static as well as dynamic loading,

Verification for static loading

Figure 6 shows a schematic of the problem considered for static
verification which involves the lateral loading of an end-bearing pile from
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TABLE 1 : Data Used in Computation

Properties of Soil (Sabine clay) Desai and Wathugala (1993)

Young's modulus (E,) 11.777 MPa
Mass density (p,) 1610 kg/m®
Poisson’s ratio (v,) 0.42
Material damping ratio (D) 0.05
Parameters of HiSS model:

¥ 0.047

7 24

h, 0.0034

h, 0.78

Properties of Pile (Concrete)

Young’s modulus (E) 25000 MPa
Mass density (p,) 2400 kg/m’
Poisson’s ratio (v,) 0.25
Length (L) 10 m
Cross section (square), side (d) 0.5 m

Seismic Loading

Harmonic sinusoidal wave

Amplitude (Acceleration) Unit (1 m/s’)

Frequency Varying

Transient El Centro Earthquake 1940
(N-S component)

PGA 0.32g

Predominant frequency 1.83 Hz

Loading from Pile Head
Harmonic: sinusoidal wave g
Amplitude (Force) 12.5 kN
Frequency Varying

the top. The geometry and properties of the soil-pile system, which are the
same as those used by Bentley and El Naggar (2000), are also shown in
Fig.6.

Horizontal deflections of the pile head are computed for different
amplitudes of applied load for the elastic and plastic cases. The results are
shown in Figs.7a and 7b for the elastic and plastic cases, respectively. These
results are compared with the results presented in Bentley and El Naggar
(2000) (including those produced by other authors). Bentley and El Naggar
(2000) have shown results using three different meshes and concluded that
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finest mesh (i.e. mesh # 3) gives the best results, therefore for verification,
only the mesh # 3 is used here. It can be seen that for the elastic case
(Fig.7a), the results are in good agreement with those of a FEA study by
Trochanis et al. (1988) who considered a square pile similar to the current
case, but the deflections evaluated by the present model are slightly less than
those for Bentley and El Naggar (mesh # 3), and Poulos and Davis (1980)
who considered a circular pile cross-section. For the plastic case, analyses
with and without gapping were performed and the results are presented in
Fig.7b and compared with the response obtained by Trochanis et al. (1988),
and Bentley and El Naggar (2000) for elasto-plastic soil with gapping. It can
be seen that the results obtained from all approaches agree well, even though
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different plasticity models were used (HiSS here and Drucker-Prager in other
studies). This verifies the model for static loading. It can also be observed
from Fig.7b that when gapping 1s allowed for a HiSS soil model, the increase
in response due to gapping is not significant. It appears that the effect of
plasticity overshadows the effect of separation.

Verification for dynamic loading

The response time histories for the free field (assuming no pile) and
the pile head are derived for harmonic excitations with different frequencies
for the elastic soil model. The amplitude of the steady state free field
response, U, and the pile head response, U, are noted from the response
time history and the transfer function, U, /U, , are derived for different
frequencies and presented in Fig.8 in terms of the dimensionless frequency,
a, = wd/V,.

Figure 8 shows that the value of the transfer function is slightly more
than unity for a, < 0.3 and less than unity at higher frequencies. The transfer
function displays a peak value slightly greater than two at a, = 0.4 (near the
natural frequency of the soil-pile system). Kaynia and Kausel (1982) suggest
that the value of the transfer function for a single pile 1s slightly more than
unity for lower and moderate values of a, and decreases significantly at
higher frequencies. This verifies the model for dynamic loading. The free
field response evaluated using the model for transient excitation compared
well with that obtained using SHAKE91 (Maheshwari et al., 2002).

Effects of Soil Nonlinearity on Pile Behavior

The effects of material and geometrical nonlinearity on the response of
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the soil-pile system are investigated. The effects of soil plasticity on the
seismic response arc investigated first followed by examining the effects of
soil nonlinearity on the dynamic stiffness of the system. In these two cases,
gapping at the soil-pile interface is neglected and a perfect bond is assumed.
The effects of separation on the dynamic stiffness are then investigated for
both the elastic and HiSS soil models. This enables evaluating the relative
importance of soil plasticity and gapping at the soil-pile interface on the
behavior of the soil-pile system.

Effects of Soil Plasticity on Pile Seismic Response

The effects of soil plasticity (including work hardening) on the seismic
response of a soil-pile system arc observed. The linear and nonlinear
responses of the pile head are evaluated for harmonic as well as transient
excitation. For harmonic excitation, the effects of soil plasticity and the
frequency of excitation on the pile response are investigated.

Analysis for harmonic excitations

The pile head response 1s obtained for harmonic excitations with
different frequencies for the linear and nonlinear cases. The results are
presented in Fig.9a in terms of the amplitude of pile head motion (U,)
normalized by the amplitude of the input bedrock motion (U,). Figure 9a
shows that the effect of soil nonlinearity on the pile head response is
noticeable at low and moderate frequencies (a, < 0.6) but is insignificant at
higher frequencies. At low frequencies (0.15 < a, < 0.5) the effect of
nonlinearity increases the normalized response as much as 40% emphasizing
the importance of nonlinear analysis.

The kinematic interaction factors or transfer functions (i.e. ratio of pile
head response to the elastic free field response) are derived at discrete
frequencies of excitation and are shown in Fig.9b. It can be seen that at low
and moderate frequencies of excitation (a, < 0.6), the nonlinear interaction
factor is significantly higher than the linear one but at higher frequencies
there 1s little difference between the two.

Analysis for transient motion

Figure 10a shows the linear and nonlinear pile head responses due to
the El Centro Earthquake loading (for clarity, only the initial 10 seconds are
shown). [t is observed that although the maximum acceleration amplitudes
for elastic and plastic cases are almost the same, most of the other peaks are
high for the plastic case. Bentley and El Naggar (2000) made a similar
observation. The peak responses for the elastic and HiSS case are
approximately 0.72g and 0.70g, respectively.
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FIGURE 9 : Effect of Nonlinearity on (a) Pile Head Response at Different
Frequencies; (b) Kinematic Interaction Factor

A smoothed Fourier spectrum of the pile head response is shown in
Fig.10b. It is noted that the difference between the linear and nonlinear
responses is noticeable and the Fourier amplitudes of the HiSS soil model
are higher than that of the elastic soil model. The peaks for both models
occur near 3.9 Hz (the second natural frequency of the soil-pile system). At
higher frequencies (greater than 6 Hz), there 1s hardly any difference between
the linear and nonlinear responses. However, the contributions to the structural
response at these high frequencies are minimal.

Effects of Material Nonlinearity on Impedance Functions

The dynamic stiffness (or impedance functions) of the soil-pile system
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FIGURE 10 : Pile Head Response due to El Centro Earthquake (a) Linear
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must be known when evaluating the dynamic response of a structure
supported by a pile foundation. During strong excitations, this stiffness is
affected by the nonlinear soil behavior.

In the present study, the complex dynamic stiffness (K.) is found using
Eqn.(7d), and can be written as:

K. = k+ik’ (9
where the real part, k = k,—w'M represents the stiffness (including the
effect of inertia) and the imaginary part, k' = @C represents the damping.
The dynamic stiffness of the system is evaluated using the linear (elastic)
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Soil-Pile System: (a) Real Part (b) Imaginary Part

and nonlinear (HiSS) soil models for different excitation frequencies. The
results are presented in a dimensionless form. Figures 11a and 11b show the
effects of soil nonlinearity on stiffness and damping, respectively. The
dynamic stiffness is normalized with respect to the static stiffness of a single
pile (k). Figure 1la shows that the normalized elastic stiffness of a single
pile remains near unity at low frequencies, as has been observed by Kaynia
and Kausel (1982).

Figure 11 shows that the soil nonlinearity reduces both stiffness and
damping. However, its effect is more significant on the stiffness than it is on
damping. The effect of the soil plasticity is to reduce the stiffness (Fig.11a)
for all frequencies. but the effect is more significant at low frequencies
(ag < 0.4). In this frequency range, the soil nonlinearity reduced the
normalized stiffness to approximately one half of its elastic value. The effect
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Soil-Pile System: (a) Real Part (b) Imaginary Part

of soil nonlinearity on damping (Fig.11b) 1s less at low and moderate
frequencies but greater at higher frequencies. For the nonlinear case, the
damping increases almost linearly with frequency. Nogami and Konagai
(1987) and Nogami et al. (1992) made similar observations using a Winkler
soil model.

Effects of Geometrical Nonlinearity on Impedance
Functions

For a soil-pile system, the possibility of separation between a pile and
the soil is higher in the case of loading applied at the pile head (due to
inertial effects) compared to the case of seismic loading through the soil.
Therefore, the effects of separation are investigated only for the dynamic
stiffness.
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Elastic soil model

Figure 12 shows the effect of separation on the real and imaginary
parts of the dynamic stiffness for the elastic soil model. Figure 12a shows
that gapping significantly reduces the real part (stiffness) at all frequencies
due to the lack of soil support along the pile segment where gapping occurs.
Figure 12b shows that the effect of gapping on damping is not significant at
low frequencies (a, < 0.3) but is considerable at high frequencies. This is
because at higher frequencies radiation damping ceases to occur as there is
no wave propagation along the gap.

Plastic soil model

Figure 13 shows the effect of gapping on the stiffness of the pile-soil
system for the case of the plastic soil model. It is noted from Fig.13a that
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the effect of gapping on the real part is not significant at low frequencies
(a, < 0.3), unlike the case of the elastic soil. A similar observation is made
for the static loading (Fig.7b). Trochanis et al. (1988) also conclude that
when soil plasticity is considered in the case of static loading on piles, the
nonlinear response’ is almost entirely due to soil plasticity and pile-soil
separation does not result in additional nonlinearity. However, at higher
frequencies the effect of gapping is more significant compared to the elastic
soil model.

Figure 13b shows that gapping results in a decrease in the damping as
wave propagation ceases along the gapping zone, especially in the high
frequency range where the radiation damping represents a major portion of
the total damping. The overall effect of gapping on damping is similar to
that observed in the case of the elastic soil model.

Conclusions

The effects of material and geometrical nonlinearity on the behavior of
single piles are investigated. A three-dimensional finite element dynamic
technique in conjunction with the HiSS soil model is used. Analyses are
performed for seismic excitations as well as for inertial loading. The linear
and nonlinear pile responses are calculated. The following conclusions are
drawn:

1. The effect of soil nonlinearity on the seismic response is significant at
low and moderate frequencies that represent the range of interest
for seismic loading. However its effect was insignificant at higher
frequencies. For transient excitation, Fourier spectra further validate this
observation,

2. The soil plasticity reduces both the real and imaginary parts of the
dynamic stiffness but its effect on the real part is more pronounced,
particularly at low frequencies.

3. For the elastic soil model, the effect of gapping on the pile stiffness
was significant at all frequencies. However, for the plastic soil model,
its effect is insignificant at low frequencies and considerable at high
frequencies. It appears that at low frequencies plasticity overshadows
the effect of gapping while at higher frequencies the effect of separation
prevails due to an increase in nertial forces.

In general, nonlinearity significantly affects both dynamic stiffness and
seismic response of a soil-pile system and its effect is much dependent on
the frequency of excitation. Therefore, analyses presented may have an
important bearing in the practical design of pile foundations.
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Notations

Dimensionless frequency (=w*d/V,)
Dimensionless frequency (= w1, /V,)
Global damping matrix

Material damping matrix

Radiation damping matrix

Damping coefficient for lateral direction
Damping coefficient for vertical directions
Damping ratio of soil;

Dimension of pile in cross-section (square);
Young’s modulus for pile

Young’s modulus for soil

Dimensionless yield surface for HiSS soil model
Frequency of excitation in Hz

Shear modulus ‘for soil

A material parameter in HiSS soil model

A material parameter in HiSS soil model

imaginary unit = /|
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‘U
‘U

First invariant of stress tensor

Second invariant of deviatoric stress tensor
Global stiffness matrix

Real part of the dynamic stiffness

Imaginary part of the dynamic stiffness

Complex dynamic stiffness for the soil-pile system
Complex stiffness coefficient in lateral direction
Stiffness coefficient (real part) in lateral direction
Complex stiffness coefficient in vertical direction
Stiffness coefficient (real part) in vertical direction

Static stiffness of the soil-pile system in horizontal
direction

Length of the pile/ height of the soil stratum
Global mass matrix

Amplitude of the force applied at pile head
Atmospheric pressure

Pseudostatic response influence coefficient vector
Nodal external force vector at time

Distance from center of pile to the finite element
boundary

Dimensionless parameter for stiffness in lateral
direction

Dimensionless parameter for damping in lateral
direction

Dimensionless parameter for stiffness in vertical
direction

Dimensionless parameter for damping in vertical
direction

Time lag between force and displacement for
mertial loading

Relative nodal displacement vector at time

Relative nodal velocity vector at time
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Relative nodal acceleration vector at time
Amplitude of input bed rock motion

Complex amplitude of displacement at the pile head
Amplitude of free field ground motion

Amplitude of pile head motion

Bedrock acceleration at a particular time step
Shear wave velocity of the soil

Time step incremen

Basic version of HiSS soil model, modified for
clays

Incremental plastic strain tensor
Hardening function in HiSS soil model
A material parameter in HiSS soil model

A material parameter in HiSS, related to phase
change poin

Plasticity parameter (a constant of proportionality)
Poisson’s ratio of pile

Poisson’s ratio of soil

Mass density of pile

Mass density of soil

Stress tensor

Circular frequency of excitation

Predominant circular frequency of loading
Volumetric plastic strain

Phase lag in radians





