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Stability Computations in Steep Cohesive Slopes:
Difficulties and Their Remedies

G. Bhattacharya* and P.K. Basudhar'

Introduction

Among the numerous slope stability computation methods based on the
limit equilibrium principles and slice discretisation, only a few methods are
categorised as “rigorous” in the sense that they satisfy all conditions of
equilibrium and are valid for general shear surfaces (e.g., Spencer method,
1973; Morgenstern and Price method, 1965; GLE method- Fredlund et al.,
1981). All these methods use a model of formulation which leads to a pair
of simultaneous nonlinear equations. The solution of this pair of slope
stability equations yields the factor of safety associated with a potential shear
surface.

The nonlinear nature of these equations necessitates the use an elaborate
technique to solve for the factor of safety. A number of solution techniques
are available in the literature, e.g., a numerical-graphical procedure (Spencer,
1967), a two-variable Newton-Raphson technique (Morgenstern and Price,
1967, Wright, 1969), a method of successive approximation (Spencer, 1973),
the best-fit regression technique (Fredlund, 1974), the rapid solver technique
(Fredlund, 1981). Excellent reviews of these methosds are available in the
literature (Fredund, 1984; Bhattacharya and Basudhar, 1999). According to
Soriano (1976), elaborate iterative schemes such as those based on Newton-
Raphson approach (Morgenstern and Price, 1967; Wright, 1969) are not stable
or do not converge to a proper solution. Bhattacharya.and Basudhar (1999)
have presented a new solution technique, with reference to the Spencer
method (Spencer, 1973), wherein the problem of finding the two unknowns
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(the factor of safety, F and an indicator of the interslice force function, 6)
from the two nonlinear equations has been formulated as a nonlinear
programming problem which is then solved by using the sequential
unconstrained minimisation technique (SUMT). It has been reported that the
proposed technique successfully overcomes some of the deficiencies of the
earlier methods.

Critical slip surfaces are now determined using optimizatior techniques
e.g., the sequential unconstrained minimization technique (SUMT) (Basudhar,
1976; Bhattacharya, 1990), dynamic programming technique (Baker, 1980);
simplex reflection technique (Nguyen, 1985), alternate variable technique
(Celestino and Duncan, 1981), variational calculus (Baker and Garber, 1977;
Castillo and Revilla, 1977), random search technique (Greco, 1996) etc.

In the conventional procedure of determination of critical shear surface,
it is required to solve the pair of nonlinear equations every time a trial slip
surface is generated by the auto search technique employed in the
minimization scheme. Bhattacharya and Basudhar (2001) have proposed a
new procedure called the direct procedure in which the factor of safety, F as
well as the characteristic interslice force inclination 6 are included in the
design vector, along with the co-ordinates defining the slip surface, while
putting the force equilibrium and the moment equilibrium equations as
equality constraints in the general mathematical programming formulation of
the problem which is then solved using the well known sequential
unconstrained minimisation technique (SUMT) of nonlinear programming.

In determination of critical slip surfaces, or, for that matter, in
evaluation of factors of safety for arbitrary slip surfaces, problems of non-
convergence may often arise (Ching and Fredlund, 1983). In rigorous slope
stability computations, besides convergence, the obtained solutions have to
satisfy some conditions of acceptability such that the internal forces obtained
from the solution do not violate the Mohr-Coulomb failure criteria anywhere
within the sliding body, no tension is implied and that the directions of
forces are kinematically admissible (Morgenstern and Price, 1965; Sarma,
1979).

It has been observed that the assumption regarding the interslice force
function has a marked influence on achieving convergence as well as
acceptable solutions. Spencer (1973, 1981) has demonstrated that in many
cases the assumption of parallel interslice forces together with introduction
of a vertical tension crack running parallel to the crest results in a convergent
solution. The acceptability of the solution is checked by the reasonableness
of the position of the line of thrust that is obtained as a part of the solution.
It has been generally observed (Spencer, 1981; Bhattacharya, 1990) that in
those cases in which the line of thrust (for effective stress) is within the
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middle third or thereabout, the conditions of acceptability are satisfied, as
can always be verified from the detailed output data. There are situations,
however, where the assumption of parallel interslice forces are not compatible
with the equilibrium conditions of the problem, such as a steep slope with
high cohesion value (Soriano, 1976) in which case one needs to try with
other interslice force functions in order to obtain an acceptable line of thrust.
It has been suggested (Ching and Fredlund, 1983) that the interslice force
assumption used should be consistent with the geometry of the slope and the
stress distribution within the soil mass. Based on a large number of finite
element based stress analysis, Fan et al. (1986) have proposed a general
empirical interslice force function which can be utilized in such situations.

In view of the above mentioned difficulties in the stability computations
especially those concerning steep and cohesive slopes, in this paper an
attempt has been made to extend the original version of the equation solver
developed earlier by the authors by incorporating the interslice force function
values at the interslice boundaries in the design vector originally consisting
of only two variables namely, F and @. Appropriate acceptability criteria can
be put as constraints in the nonlinear programming formulation. Starting with
an assumed interslice force function, solution can be obtained which would
yield, in addition to the values of of F and 0, the optimal values of the
interslice force function associated with an acceptable solution. The extended
version can be used to obtain an acceptable solution for a given shear surface
as well as for a critical shp surface which do not satisfy the prescribed
acceptability criteria.

Extension to the Earlier Solution Procedure

\

As mentioned earlier, the authors have proposed (Bhattacharya and
Basudhar, 1999) an efficient equation solver in which the problem of finding
the two unknowns (F, ) from two nonlinear equilibrium equations

Z B8] =40 (1a)
and

M, (F,0) = 0 (1b)
has been formulated as a nonlinear programming problem as follows:

Find D = [F,0]

Such that f(D) = Z2+M} - Min.

Subject to some bounds on F and 8
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FIGURE 1 : (a) Defination and Notations; (b) Forces on a Typical Slice;
(¢) Forces on an Interslice Boundary

where, referring to Fig.1, Z, and M, are the external balancing force and
moment respectively (Spencer, 1973; Bhattacharya, 1990). Both Z, and M,
are functions of the variables (F, 8). The first variable is the value of overall
factor of safety F; the second is the interslice force characteristic angle 6
which, together with the coefficients k; determines the slopes, §, of the

interslice forces (Fig.1) in accordance Wlth the following expressmn
tand;, = k;tanf (3)

where the suffix i denotes the ith interslice boundary and increases from the
toe end towards the scarp end. The coefficient k in the Spencer method is
equivalent to the interslice force function f(x) in the Morgenstern and Price
method. If n is the number of slices, (n—1) values are chosen or prescribed
by the user for k; e.g., if k is taken to be unity throughout, then the interslice
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forces will be all parallel and their slopes 6, relative to the horizontal will
be each equal to 6. For further details regarding the solution technique,
reference may be made to Bhattacharya and Basudhar (1999).

In those situations in which the assumption of parallel interslice forces
(i.e., k = 1 throughout) does not result in an acceptable line of thrust, it is
necessary to try with other k distributions. In order to allow a systematic
variation of the set of k-values, it is proposed to include the same in the
design vector. In accordance with the suggestions made earlier, in this case
the formulation has been further extended to include the constraints on the
line of thrust such that the ratios L/H lie within the middle third. In many
cases, however, this might prove to be too stringent for the smooth progress
of the numerical scheme and, therefore, a slightly more liberal bounds (0.25
to 0.65) for L/H, as suggested by Hamel (1968) has been adopted. And to
add more flexibility the depth of tension crack (z,) has also been included
in the design vector together with an upper limit z, for z, where z; is the
depth of zero active earth pressure. The extended version of the problem
formulation, in its most generalised form, is stated as follows.

Find D = [F,6,z2,k] (4a)
Such that f(D) = Z?+M2 - Min. (4b)
, L
Subject to 0.25 = E < 0.65 and (4¢)
7 =Ty (4d)
where L/H = the ratio denoting the position of the line of thrust,
L = height of the point of application of the interslice
force, and
H = height of the corresponding interslice boundary
(Fig.1¢)
z, = the depth of zero active earth pressure.
b = [y By oskip s Eal (5)

where k; is the value of the k-distribution at the ith interslice boundary.

Like the original version of the equation solver (Bhattacharya and
Basudhar, 1999), the constrained minimisation problem stated above is solved
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by the sequential unconstrained minimisation technique in conjunction with
the Powell method of multidimensional search and the quadratic interpolation
technique for unidimensional search.

General Empirical Interslice Force Function

Fredlund (1984) and Fan et al. (1986) have reported about a detailed
study on interslice force functions computed from finite element analysis.
Based on a large number of analyses, a general empirical interslice force
function has been proposed which is reproduced below for the sake of ready
reference.

~CVo®
fiix) = Kexp[—;—] (6)
where, K = magnitude of the intérslice force function at mid
slope

= variable to define the inflection points

C
N = variable to specify the flatness or sharpness of
curvature

o = dimensionless x-position relative to the midpoint of
the slope

The variable K is a function of the slope inclination and the depth
factor. The constants C and N are related to slope inclination. These
parameters were computed for a circular slip surface. Analyses for composite
or noncircular slip surfaces showed variations in magnitude for some of the
constants in the above expression but the general shape of the function
remained the same. The constants K, C and N may be obtained from the
charts prepared for them.

Ilustrative Examples

Two specific instances of steep cohesive slopes are cited in the literature
(Soriano, 1976; Castillo and Luceno, 1982), which have been reported to
pose difficulties in arriving at a converging solution. One of these cases
(Example Problem 1) (Soriano, 1976) concerns with the evaluation of factor
of safety of a given shear surface while the other (Example Problem 2)
(Castillo and Luceno, 1982) concerns with the determination of the critical
ship surface.
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FIGURE 2 : Example Problem 1 — (a) Slip Circle Modified due to Tension
Crack; (b) Optimal Interslice Force Function

Example Problem 1

Figure 2a presents a section of a steep and highly cohesive slope
together with a given slip circle. Soriano (1976) has cited this as one simple
case which is not solvable by the iterative schemes suggested by Spencer
(1973), Morgenstern and Price (1967) etc. when ¢, = 0. He has further
reported that if ¢, = 300 kPa, the factor of safety by the force equilibrium
method would be larger than F = 1.89 for any value of 8, whereas by the
moment equilibrium method the factor of safety is independent of @ and has
the value of F = 1.86. He has further observed that even though the factor
of safety is quite well defined for this slope, any iterative scheme trying to
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satisfy both moment and force equilibrium will fail to converge and that this
would very often be the case for steep and highly cohesive slopes for which
the assumption of parallel side forces (used in the Spencer method) is not
compatible with equilibrium conditions.

From the above observations it can be surmised that the non-
convergence of the problem at hand may be due to one or both of the
following:

(i) deficiency in the iterative scheme adopted for solving the pair of
nonlinear equations

(ii) incompatibility of the assumption of parallel interslice forces.

With this in view, the present study has been undertaken in the
following two phases:

(i) to investigate whether, by using the proposed equation solver, it is
possible to achieve convergence while still assuming paralle] interslice
forces i.e., k = 1 throughout.

(i) in case the above attempt fails, to make a fresh attempt to solve the
problem making use of other interslice force functions i.e.,
k-distributions based on a modified formulation treating the k-values as
design variables.

Results and Discussion
Trial Solution Assuming Parallel Interslice Forces

As a first trial, solution was attempted using the original version of the
proposed equation solver (Bhattacharya and Basudhar, 1999) considering
parallel interslice forces (k = 1 throughout) and no tension crack. A total of
20 slices was considered for the analysis. However, in agreement ‘with
Soriano’s observations, convergence could not be achieved

In highly cohesive slopes, problems of convergence may arise as a
result of development of tension and as a remedial measure it has been
suggested (Ching and Fredlund, 1983; Spencer, 1973; Spencer, 1968) to
introduce tension crack in the analysis. Accordingly, in the next trial, presence
has been assumed of a vertical tension crack running parallel to the crest of
the slope with water pressure acting in it and the given slip circle was
terminated at its bottom. The depth of the tension crack has been arbitrarily
chosen as 10.0 m (= 0.25 H,) and, true to expectations, this has resulted in
convergence. From an arbitrarily chosen initial design vector F = 2.0 and
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@ = 0.1 (with the corresponding Z, = —0.3539E+03 and M, = —0.3115E+04),
the solution has converged to F = 1.61 and 6 = 0.382 (with the corresponding
Z, = 0.8836E—03 and M, = 0.2087E+02).

Two observations can be made from this success in achieving
convergence in the case of a steep slope with high cohesion value : (i) that
the iterative scheme based on Powell’s method as used in the proposed
equation solver 1s quite effective in handling such cases, and (ii) that the
consideration of the presence of a tension zone below the crest can greatly
help overcome the problem of occasional non-convergence in such situations.

An examination of the detailed results in the above case, however,
reveals that the position of the line of thrust associated with the solution is
highly unsatisfactory as a part of it is located below the sliding mass (as
indicated by the negative L/H values). Besides, some of the resultant
interslice forces (Z') are also found to be negative. Thus, even though
convergence has been achieved, the solution is not an acceptable one. In
order to obtain an acceptable solution, the following measures have been
adopted :

() The depth of tension crack (z) has been increased from 10.0 m to
15.0 m while still considering parallel interslice forces. This has resulted
in a line of thrust which is located entirely within the sliding mass and,
is, therefore, much improved compared to the previous solution with
z, = 10.0 m. Further, the resultant interslice forces are all positive. The
corresponding solution vector is obtained as: F = 1.51 and 6 = 0.481
which are appreciably different from their previous values for
z, = 10.0 m. However, the line of thrust, though lying within the sliding
mass is not positioned entirely within the middle third of the interslice
heights.

(i) As a next trial, solution has been obtained taking z, = 20.0 m
(considering that the calculated value of the depth of zero active earth
pressure is nearly 20.0 m); however, there has been no further
improvement on the position of the line of thrust. From the above it
appears that for this slope the assumption of parallel interslice forces
does not hold good, as also observed by Soriano (1976).

Trial Selution with General Interslice Force Function

As it seemed possible that more acceptable solutions can be obtained
by considering other interslice force functions i.e., k-distributions, it is
required to try different k-distributions in a systematic manner. For this
purpose the extended formulation treating the k-values as design variables
has been utilized. In accordance with the suggestions made earlier, in this
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case the formulation has been further extended to include constraints on the
line of thrust such that the ratios L/H lie within the middle third. And to
add more flexibility the depth of tension crack (z) has also been included
in the design vector. With this extended formulation the following trials have
been made:

(i)  As already stated, Fredlund (1984), Fan et al. (1986) have reported about
the development of a general empirical interslice force function (Eqn.4)
computed from finite element analyses of a large number of problems.
Charts are available which provide the values of the empirical constants
to be used for a given problem. Using these charts the values of the

Table 1 : Calculated Responses Associated with the Solution to the
Example Problem 1

Slice No. o' T L/H L'/H Z'/YbH, F,

kPa kPa

1. 21.42 19.98
0.33 0.33 0.19 2.46

2 27.54 19.98
0.33 0.33 0.37 2.61

3. 45.78 19.98
0.37 0.37 0.49 2.24

4. 48.84 19.98
0.42 0.42 0.59 2.20

5. 47.72 19.98
0.47 0.47 0.68 2.38

6. 51.36 19.98
0.50 0.50 0.73 2.62

7. 47.08 19.98
0.52 0.52 0.79 3.14

8. 24.39 19.98
0.45 0.45 0.91 5.38

9, 21.92 19.98
0.38 0.38 1.04 High

10. 45.24 19.98
0.37 0.37 1:04 High

kL. 55.92 19.98
0.38 0.38 0.97 High

12. 56.40 19.98
0.40 0.40 0.87 High

13. 52.90 19.98
0.42 0.42 0.76 High

14 48.61 19.98
0.45 0.45 0.65 High

15 43.95 19.98
0.49 0.49 0.55 High

16 38.94 19.98
0.54 0.54 0.47 High

17 33.52 19.98
0.58 0.58 0.41 High

18 27.67 19.98
0.58 0.58 0.38 High

19 21.32 19.98
0.50 0.50 0.39 High

20 14.41 19.98
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constants have been obtained to develop the interslice force function (k-
distribution) for the present problem. The k-distribution thus developed
(Fig.2b) has been fed as input for the next trial while keeping the initial
value for the depth of tension crack z, (now a design variable) as 15.0
m. This has yielded a solution which is associated with a line of thrust
which is far more improved compared to that obtained in the first trial
but yet not entirely within the middle third.

Regarding a reasonable interslice force function it has been suggested
qualitatively that when the ground surface is horizontal the functional
direction should approach zero and it is anticipated to approach the
gradient of the ground surface near the middle of the steepest part of
the slope (Ching and Fredlund, 1983). In view of the fact that the
given slip surface passes through the toe and, therefore, the slope of
the ground surface remains unchanged for a major portion of its length
(except for a small portion near the upper end which terminates below
the tension crack), it seems reasonable to flatten the initial k-distribution
used in the first trial as shown in Fig.2b. Accordingly, a revised
k-distribution (Fig.2b) has been considered as initial guess for the next
trial while retaining the other initial values as in earlier trials. This has
finally led to the desired acceptable solution in which the line of thrust
is found to lie entirely within the middle third. The final k-distribution
is also shown in Fig.2b and the associated F and @ values are 1.50 and
1.026 respectively. The final depth of tension crack is 15.40 m. The
position of the line of thrust together with the calculated values of the
internal forces corresponding to the optimal solution are presented in
Table 1. The position of the associated line of thrust for total stress as
indicated by the ratios L/H, where L denotes height of the point of
application of the interslice force and H is the height of the
corresponding interslice boundary. The ratio L'/H indicates the
corresponding ratio for effective stress (Fig.lc). Since the value of r, is
zero, both these ratios have the same values. ¢’ and 7 denote the
effective normal stress (whose value in this case is same as that of the
total normal stress, o, as r, is zero) and the shear stress at the base of
a slice respectively (Fig.1b). The ratio Z'/YbH, indicates non-
dimensional value of the normal component of the resultant interslice
force due to effective stress at an interslice boundary (Fig.lc). For the
expressions for each of the above, reference may be made to Spencer
(1973) and Bhattacharya (1990). It can be seen from the Table that the
line of thrust lies entirely within the middle third. The values of
Z'/YbH,, o and 7 are seen to be all positive, as they should be.
Further, from the Table, it is also seen that the values of F, the factors
of safety along vertical interfaces are all greater than the value of F,
the factor of safety, as they should be. Thus, the obtained solution
satisfies all conditions of acceptability.
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FIGURE 3 : Example Problem 2 — (a) Critical Shear Surface; (b) Optimal
Interslice Force Function

Example Problem 2

Figure 3a prescats another section of a steep and cohesive slope along
with the soil properties. It has been reported (Castillo and Luceno, 1982) that
the same slope was previously analysed by Baker and Garbar (1977) and by
Castillo and Revilla (1977), using two different variational techniques and
significantly different results were obtained; the values of the minimum factor
of safety (F ) associated with the critical slip surfaces being 1.80 and 1.60
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respectively. It appears that in these solutions the acceptability criteria were
not checked (Castillo, 1989). Further, the shape and location of the critical
slip surface was not reported. The Direct Procedure of determination of
critical slip surface developed by the authors (Bhattacharya and Basudhar,
2001) has the built-in provision for inclusion of acceptability criteria. The
present analysis attempts to use the developed procedure to arrive at an
acceptable solution for the problem and then compare the results with those
obtained from other existing techniques based on variational methods,
dynamic programming, etc. :

Results and Discussion

In Fig.3a, the slip surface marked ABC has been arbitrarily chosen as
the initial slip surface. A total of 13 slices has been considered for the
analysis. To start with, no tension crack has been assumed, and, as is usual
with the Spencer method, the interslice forces have been assumed to be all
parallel i.e,, k equals to unity throughout. However, the solution did not
converge. It was observed that a number of constraints on the line of thrust
which were initially among the violated constraints, remained so even after
several cycles of minimization. This is rather unusual because, one of the
features of the extended penalty function method (SUMT) of minimization
adopted in the developed Direct Procedure is that, as the minimization
progresses, it tends to bring the solution back to the feasible region by
successively reducing the number of violated constraints. Such an occurrence,
therefore, is indicative of a kind of “ill-conditioning” of the problem in the
sense that under the given conditions the position of the line of thrust cannot
be improved and, as a result, a solution in the feasible region cannot be
obtained.

Violation of the constraints on the line of thrust indicates development
of tension in the sliding mass and, therefore, in the next trial, tension crack
has been introduced. The trial depth of the tension crack z, has been taken
as 1.08 m, (based on the depth of zero active earth pressure), thereby
changing the initial slip surface from ABC to ABD. To render more flexibility
to the computational scheme the depth of tension crack z, has been included
in the design vector. The solution has now converged to yield the final
surface marked AEF (Fig.3a) with a F,, of 1.48 and a final z, value of
1.0 m. The constraints on the line of thrust are all satisfied, which means the
line of thrust is well within the sliding mass, though all L/H values do not
lie within the middle third. The solution is, however, unacceptable as the
detailed results show the value of the calculated normal stress at the base of
the last slice near the scarp end of the slip surface to be negative.

Thus, clearly, the introduction of tension crack and its inclusion in the
design vector have contributed to the convergence of the solution. The
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Table 2 : Calculated Responses Associated with the Solution to the
Example Problem 2

Slice No. o' T L/H L'/H Z'{YbH, F,

kPa kPa

1. 16.49 17.34
0.31 0.31 0.18 157

2. 11.04 13.77
0.29 0.29 0.30 1.60

3. 15.35 16.59
0.27 0.27 0.40 1.71

4. 19.27 19.16
0.28 0.28 0.47 £ |

5. 1595 16.98
0.29 0.29 0.51 1.95

6 14.09 15:77
0.30 0.30 0.52 2.35

i 14.56 16.08
0.31 0.31 0.49 2.82

8 13.85 15.61
0.37 0.37 0.44 3.17

9 12.99 15.05
0.49 0.49 0.39 3.15

10. 11.49 14.06
0.64 0.64 0.35 3.02

11. 2.58 8.23
0.59 0.59 0.43 4.57

12. 2.40 8.12
0.49 0.49 0.51 8.89

13. 1.63 7.62

unacceptability of the solution, however, may be attributed to an improper
choice of the k distribution. As it seemed possible that more acceptable
results might be obtained using other k distributions, the surface marked AEF
has been re-solved using the original version equation solver developed by
the authors and taking the k distribution marked ‘k-initial’ in Fig.3b. Such a
k-distribution has been selected based on guidelines for the choice of
interslice force functions (Fan et al.,, 1986). However, even with this
k-distribution, the concerned normal stress still remained negative, though its
value is now closer to zero. Similar attempts can be made using a number
of different k-distributions till a more acceptable solution is obtained.

Obviously, a systematic search for a suitable k-distribution is desirable.
Now, with the kind of formulation used in the extended version of the
equation solver developed by the authors (Eqn.4) it is possible to do so by
treating the set of k-values (one for each of the interslice boundaries) as
design variables. This has now resulted in an acceptable solution as is evident
from the calculated stresses and other internal forces presented in Table 2. It
can be seen from the Table that the obtained line of thrust (indicated by the
ratios L/H and L'//H, whose values are the same in this case also, as r, is
zero) is reasonable as only a small portion of it near the toe lies marginally
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outside the middle-third of the respective interslice heights. It is further seen
that the stresses and internal forces as indicated by o', r and Z'//YbH, (as
explained in the case of Example Problem 1) are all positive, as they should
be. The values of F,, the factors of safety along vertical interfaces are seen
to be all greater than the value of F, the factor of safety, as they should be.
Thus, the obtained solution satisfies all conditions of acceptability. The final
k-distribution obtained as part of the solution is marked ‘k-optimal” in Fig.3b.
The factor of safety has been obtained as 1.53 which is a little higher than
the previous value of 1.48 corresponding to the unacceptable solution.

It appears that a more direct approach to obtain acceptable solution
would be followed if during the search for the critical slip surface the set of
k-values defining the interslice force function be included in the design
vector. But in that case the number of design variables will be nearly
doubled, which might cause computational difficulties by increasing the
interdependence among the design variables. However, such a study has not
been undertaken here.

Comparison with Solutions Obtained using Other Techniques

As already stated, attempts were made earlier to solve the present
problem using variational technique. As reported by Castillo and Luceno
(1982), two different variational formulations were used by Baker and Garbar
(1977) and by Castillo and Revilla (1977) and significantly different results
were obtained. The corresponding F ;. values were reported as 1.80 and 1.60
respectively. Such a wide variation in the value of factor of safety may be
explained by examining whether the acceptability criteria were taken care of
in these solutions. While in the solution obtained by Castillo and Revilla the
acceptability criteria were not checked (Castillo, 1989), it is not known
whether the other solution was checked for acceptability.

For the sake of comparison with the dynamic programming technique,
the program SSOPT (Baker, 1979) has been utilized to obtain a solution to
this example problem. Dynamic programming technique is widely known to
be independent of initial design points. However, in the present case it has
been observed that the program SSOPT based on the same technique is
markedly sensitive to certain input data. For quite a few apparently reasonable
set of these input data, convergence could not be achieved. After several
attempts the solution has converged to yield a F_,, of 1.75; but detailed
output show that the solution is unacceptable as it is associated with a line
of thrust which almost coincided with the critical slip surface. Furthermore,
negative values have been obtained for a resultant interslice force and the
normal stress at a slice base (near the upper intersection point of the slip
surface with the ground).
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General Discussion and Conclusions

On the basis of the studies undertaken in this paper, the following
concluding remarks can be made:

1. In those situations in which slope stability analysis based on rigorous
limit equilibrium methods (e.g., Spencer method, Morgenstern and Price
method, GLE method) faces difficulties either in convergence or in
convergence to an acceptable solution (viz., steep and cohesive slopes)
introduction of tension crack often helps in achieving convergence. In
such situations, however, to arrive at an acceptable solution it is often
required to try different k-distributions. The extended version of the
equation solver proposed in this paper, allows a systematic trial with
different k-distributions as well as varying depth of tension crack by
treating z, and the k-values as design variables, while including
appropriate acceptability constraints in the formulation.

2. The general empirical interslice force function proposed by Fan et al.
(1986) may not result in acceptable solution especially in the type of
problems treated in this paper; nevertheless, it can serve as a good
initial guess for the determination of optimal interslice force function
1.e., k-distribution leading to acceptable solutions.

3. With reference to the Example Problem 1, it is observed from Fig.2b
that the final k-distribution obtained as a part of the solution is of
irregular shape with a discontinuity in the lower half of the slope.
Again, with reference to the Example Problem 2, Fig.3b shows that the
final k-distribution is rather irregular in shape. The reasonableness of
such interslice force functions may be judged on the basis of stress
analyses using finite element method. However, the value of the present
investigation lies in the findings that the proposed numerical procedure
can be utilised successfully in obtaining an acceptable solution by
iterating over the k-distribution and eventually finding out a distribution
that is compatible with the conditions of the problem at hand. A
reasonable shape of the interslice force function can be ensured by
inserting appropriate side constraints in the formulation. However,
further work is necessary on this aspect.

4. In steep and cohesive slopes, it has been observed that problems of non-
convergence arise in the determination of critical slip surfaces even wen
well established computer programs based on rigorous methods of
analysis coupled with optimization techniques are used, e.g. the program
SSOPT based on the Spencer method and dynamic programming
technique. Using the procedures outlined in this paper, it is possible to
obtain a convergent as well as acceptable solution in two phases. In the
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phase I, the Direct Procedure in which there is provision for introduction
of tension crack with its depth as a design variable, is used which yields
a critical slip surface, which may not satisfy the acceptability criteria.

Whenever the procedure converges to unacceptable solution, it indicates
that the assumption of parallel interslice force is not compatible with
the conditions of the problem and that other k-distributions should be
tried in order to obtain an acceptable solution. In phase II, the critical
slip surface obtained in phase I is re-analysed using the proposed
extended version of the equation solver, in which the k-values are
treated as design variables while acceptability criteria are included as
constraints. This, then, results in an acceptable solution and the
associated k-distribution is also obtained as a part of the solution,

5. It appears that a more direct approach to obtain acceptable solution
would be followed if during the search for the critical slip surface the
set of k-values defining the interslice force function be included in the
design vector. But in that case the number of design variables will be
nearly doubled, which might cause computational difficulties by
increasing the interdependence among the design variables. However,
further rescarch is required in this direction.
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