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Introduction 

T
he stochastic description of the heterogeneous soil media gives a 
rational way of dealing with the variability of soil properties, which 
is not possible by deterministic approaches. Such an approach takes 

into account the uncertainties involved in various stages of soil profiling. The 
point to point variations of soil properties though expressed through the 
statistical parameters such as mean and standard deviation, the correlation of 
the property values with their separating distance expresses both qualitatively 
and quantitatively the nature, strength and extent of this correlation. Figure I 
shows the parameters necessary for characterisation. The terms in Fig.l(a), 
u, ii, Ou represent the average value, the standard deviation of fluctuation 
of u from the average and ou , the scale of fluctuation of u, which measures 
the distance within which the soil property u(z) shows strong correlation in 
the vertical direction. Figure l(b) shows the characterisation in two 
dimensions. In this case, h is the average depth, ii characterizes the 
magnitude of difference and ou is the characteristic or the correlation 
distance. Such stochastic characterization of soil profiles/properties is very 
important in geotechnical engineering, especially in stability problems, where 
the risk of failure is a function of spatial variability of natural soils 
(Vanrnarcke, 1977a). Vanmarcke had pointed out that such probabilistic 
characterisation would essentially provide a basic format for quantifying 
geotechnical engineering information regarding the subsurface conditions at a 
particular site and provide a basis for predicting the performance of a 
geotechnical engineering structure and for quantifying the probability failure. 
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FIGURE 1 : Parameters of (a) Homogeneous Randomly Varying Soil 
Property; (b) Randomly Varying Depth of Rock 

Further it enables a geotechnical engineer to assess critically and compare 
various site investigation and testing programs and also evaluate their 
effectiveness (Kulatilake and Varatharajah, 1986). Literature pertaining to 
geological and geotechnical investigations shows that spatial variability 
modelling had been attempted with two different approaches, using techniques 
based on analysis of random fields and geostatistics. Both the techniques 
have been separately dealt with by geotechnical and mining engineers and 
engineering geologists (Journel and Hujibregts, 1978; De Groot and Baecher, 
1993). However, in literature, there is no attempt to examine them 
collectively, and to draw useful information with regard to exploration 
programs. It is also necessary to examine the significance of the information 
obtained with reference to the stability of geotechnical structures. The paper 
focuses on these concepts in characterization of variability of soils and their 
application to a typical soil data pertaining to soft soil deposits, and addresses 
these aspects in two sections. The paper presents two examples demonstrating 
the influence of spatial variability on the stability of an embankment and a 
cut slope on soft soil. 

Random Field Theory 

Stationarity 

The random field theory implicitly assumes that data are stationary, i.e., 
the statistical properties of the time series are unaffected by any shift of the 
spatial origin or statistically it means, the first two moments (the mean and 
the covariance) are required to be constant. Any kind of data are considered 
to be stationary if it strictly adheres to the following conditions: (I) the 
mean, is constant with distance or no trend/drift exists in the data, (2) the 
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FIGURE 2 Forms of Non-Stationaity (a) Trend; (b) Variance; 
(c) Relationship (After Bennett, 1979) 
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variance is constant with distance, (3) there are no seasonal vanat10ns and 
( 4) there are no irregular fluctuations. Non stationarity may however result 
from the trend, variance and relationship as demonstrated by Bennett ( 1979) 
and shown in Fig.2. As applications of both random field theory and 
geostatistics are facilitated by stationary data, treatment must be first given 
to data transformation, by which a non-stationary data set is transformed to 
a stationary one. The standard methods to process the data transformation are 
(1) classical decomposition; (2) differencing; (3) variance transformation 
(Jaksa, 1995). 

The decomposition method has been widely used in geotechnical 
"" literature with reference to data transformation than other methods. This 

method aim at estimating and removing the deterministic component called 
trend, and keeps the residual random component stationary. As suggested by 
Lumb (1974) and Brockwell & Davis (1987), a non-stationary data set is 
transfom1ed to ~ stationary data set, by removing a low-order polynomial 
trend (upto second order, Joumel and Huijbergts, 1978), which is usually 
estimated by Ordinary Least Squares (OLS). The de-trended data set is 
checked for stationarity by means of nonparametric tests such as Kendall 's 
r test (Daniel, 1990). For details, refer to Appendix 1. 

Autocorrelation Functions (ACF) 

Lumb ( 1966) gave the initial treatment of soil variability and suggested 
that spatial variability models represented by mean linear trends provide 
relatively the basic models of the geotechnical properties, which are 
considered as random vafiables. Since the introduction of the concept of 
autocorrelation by Agterberg ( 1970), many works have been directed at 
evaluating spatial autocorrelation for different geotechnical properties 
accounting for the vertical and horizontal variations. For engineering 
purposes, spatial variability is separated into two parts: (i) a . deterministic 

1 trend, (ii) residual variability about the trend, X; = t; + U; . The trend is 
characterised by a line, curve or surface, and the residuals are characterised 
statistically, by a mean, standard deviation and autocorrelation function. 
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Rather than characterize soil properties at every point, data are used to 
estimate a smooth trend and remaining variations are described statistically. 
The residual variations are seldom independent from one place to another. 
Usually they display waviness about the trend, rather than being completely 
erratic. This waviness actually reflects spatial structure ignored by the trend, 
creating autocorrelation among the residuals (De Groot and Baecher, 1993). 
The decrease in the standard deviation of soil properties averaged over a 
volume of soil or over a linear distance of soil is reflected in the 
mathematical expressions, called autocorrelation functions (ACFs) that are 
often used to model this decay of auto correlation with separation distance. 
The estimation of autocorrelation of a given property and the correlation 
distance, within which the property is said to be strongly correlated, is the 
primary task in spatial variability modelling. The basic statistical properties 
routinely used are the autocovariance, Ck, and autocorrelation pk, at lag k. 

(1) 

(2) 

The sample autocorrelation function lrk l at lag k is defined as: 

N-k 

2.: (x;- x)(xi+k- x) 
i =l 

r k = ----~N~----------
2-:(X; -x)2 (3) 

i = l 

The ACF is used to determine the distance over which a property 
exhibits strong correlation. The sample autocorrelation function (ACF) or 
correlogram is the graph of rk for lags, k = 0, 1, 2, 3 . .. K, where K is 
the maximum number of lags allowable. Several stipulations have been 
formulated regarding the maximum number of lags, out of which, K = N/4, 
(Box and Jenkins, 1970) where N is the total number of data, is generally 
used. Also the accuracy of the sample autocorrelation function is directly 
related to the number of observations/data. Though for full three dimensional 
analysis, the minimum number of test results needed for precise estimates of 
ACF is of the order of 104

, Lumb (1974) has stated that for one-dimensional 
study, the value of N in the range of 20 to 100 would suffice for good 
results. 

Models for Autocorrelation Functions 

The work by Vanmarcke (1977a, 1977b and 1983) on the application 
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Table 1 T h eoretical Autocorrelation Functions 
(Vanmarcke, 1993) 

No. Model Type Autocorrelation Function 

Simple Exponential e-~hvh 

2 Squared Exponential (Gaussian) e 
-Hhjfh)'J 

3 Regression (2 Order) [ 1 + 4(lhl/a) Je -~hvh 

4 Cosine Exponential cos{lhl/a) e -Itt'~ 

5· Triangular {,_(I hi/a)} lhl !::: a 
0 lhl ~a 

of random field theory to soil variability modelling contributed significantly 
to these concepts and its application to geotechnical problems. Vanmarcke 
(1977a) proposed a new parameter 6v, called scale of fluctuation, which 
accounts for the distance within which the soil property shows relatively 
strong correlation. The various models of theoretical autocorrelation functions 

~ used to detem1ine the scale of fluctuation are shown in Table 1. He derived 
the variance function (f}) using spatial averaging principle and showed the 
fluctuations are smoothened in the averaging process through a parameter 
called, standard reduction factor, rv. However, geotechnical literature, treating 
soil variability, has given more attention to the ACF method rather than 
variance function method. 

Geostatistics 

Geostatistics is based on the . regionalised variable, represented by 
random functions, unlike the classical approach, which treats samples as 
independent realisations of a random function (Armstrong, 1998). 
Regionalized variables are those that fall between random variables and 
completely deterministic variables. These variables could be used to describe 
any phenomenon with spatial distribution such as elevation, any ground 
property, etc., This mathematical technique widely used in mining applications 
was originally developed by Krige and Mat heron ( 1965), with a view to 
assist in the estimation of changes in ore grade within a mine. Since the 
property exhibits spatial continuity throughout and it is not always possible 
to sample every location, the immediate practical need arises for estimating 

' unknown values from data taken at specific locations that can be sampled. 
The sampling and estimating of regionalized variables are done so that, later, 
a pattern of variation of the property under investigation can be mapped for 
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FIGURE 3 Typical Semivariogram and Few Types of 
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a specific location, using kriging operation. Kriging is an interpolation 
method, which uses semivariogram in calculating estimates of surface at 
specific locations. Owing to such successful application of geostatistics 
principles in mines, later it pervaded its applications in diversified engineering 
disciplines. Soulie et al. (1990) presented a geostatistical analysis of the 
spatial variability, both vertical and horizontal, of vane measurements of the 
undrained shear strength, su, of a soft clay deposit in the valley of James 
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Bay area of Quebec and estimated the value of su at points of the deposit 
where no measurements were made, by using kriging method. 

Semi Variograms 

The spatial variation is quantified by the semivariogram, where the 
semi-variance measures the degree of spatial dependence between samples. 
The variogram is a function, which characterizes the dependence existing 
between variables at different points in space. This dependence is assumed to 
be a function of the distance that separates values of variables rather than the 
values themselves. The magnitude of the semivariance between points depends 
on the distance between the points. The value of the sample-semivariogram 
for a separation distance h (lag) is the average squared difference in z values 
between pairs of input sample points separated by h, given by 

r(h) = - 2: {z(xJ- z(xi+hW I [ " l 
2h j;J 

(4) 

where X; are the locations of the samples, z(x;) are their values and n is the 
number of pairs (x;, xi+h) separated by a distance h. 

The geostatistics also assumes the data to be stationary, i .e., the 
semivariograms depends only on the separation distance and not on the 
locality of the pairs. It has been shown by Davis ( I 986), that if the trend is 
subtracted from the regionalised variable, the residuals wi ll , lend themselves 
be regionalised variables and will have local mean value zero. If the 
regionalised variable is stationary and normalised to have a mean of zero and 
a variance of 1.0, the semivariogram will be the mirror image of the 
autocorrelation function. The 'essential components of semivariogram are the 
sill, range, and nugget as shown in Fig.3 (Am1strong, 1998). 

I. Sill - The semivariance increases as the distance increases until at a 
certain distance away from a point the semivariance, then will no longer 
increase, causing a flat region to occur on the semivariogram called a 
si ll. 

2. Range - From the point of interest to the distance where the flat region 
begins is termed the range or span of the regionalized variable. Within 
this range, locations are related to each other, and all known samples 
contained in thi s region. This region is also referred to as the 
neighborhood, and must be considered when estimating the unknown 
point of interest. A typical semivariogram reaches a limit called its sill 
at a distance called range. 
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Table 2 : Typical Semivariogram Models (Armstrong, 1998) 

No Model Type Analytical Semivariogram 

Simple Exponential y{h) = c[l- exp(-lhl/a)] 

2 Squared Exponential y(h) = c[l - exp( -':r)] 
(Gaussian) 

y{h) = c[ 3lhl _}_(~)] ihl < a 
3 Spherical 2 a 2 a3 

c ihl C!: a 

4 Power y{h) = Clh!" with 0 <a S 2 

5 Nugget y(h) = 0 h = 0 

= c !hi > 0 

6 Cubic y{h) = c(7r2 -8.75r3 + 3.5r5 -0.7r7
) if r < I 

= c otherwise, where r = h/a 

3. Nugget - The initial value of semivariance may not start from the 
origin, but intersects the semivariance axis at a distance, called nugget. 

The variogram consists of the following features: (1) it always starts at 
0 [for h = 0, z (x +h) = z (x)], it could be also discontinuous just after the 
origin; (2) it generally increases with h; (3) it rises upto a certain level 
called the Sill and flattens out, or alternatively, it may just go on rising. 

Models for Variogrums 

Clark ( 1979) provided a number of semi-variogram models, and 
described the process of fitting a model to an experimental semi-variogram 
using a trial and error approach. The experimental variogram is obtained 
from the Eqn.(4) for one, two or three dimensions depending upon the 
problem at hand. The experimental semivariogram is usually determined upto 
half of the total sampled extent (Joumel and Huijbregts, 1978; Clark, 1979; 
Brooker, 1989). The minimum number of pairs needed for a reliable estimate 
of semivariance is between 30 and 50 (Journel and Huijbregts, 1978; Brooker, 
1989). The experimental variograms obtained above have to be fitted to the 
standard analytic variogram models. Some of the common semivariogram 
models are given in Table 2 and various types of semi variograms are shown 
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in Fig.3. The process of fitting or determi~ing the 'appropriate' model for 
the given data set, for the semi variograms are concerned, needs an exercise 
of judgement coupled with experience. In order of importance (Armstrong, 
1998), the following features are to be regarded properly while fitting the 
models to the semivariance data: the nugget effect, the slope at the origin, 
the range, the sill and the anisotropies. 

The nugget could be determined by extrapolating the semivariance back 
to the origin and the slope can be assessed with the initial values; the range 
can be fixed visually and the sill is the value where the variogram reaches 
a constant semivariance value. Depending on the behaviour of the slope and 
nugget, corresponding models may be chosen. The range is the equivalent of 
correlation distance within which the property shows strong correlation. It is 
reported (Soulie et al., 1990) and elsewhere that it is difficult to say which 
model best fits the data,· or represents the soil variability for the particular 
site, however, a model should reflect the main characteristic of the spatial 
variability. 

Issues in Correlogram and Semivariogram 

Nugget Effect 

The nugget effect, which is common both in autocorrelation function 
and variogram, is attributed to the combination of the three separate 
phenomena namely: Microstructures within the geological material, sampling 
or statistical errors, and measurement errors (Rendu, 1981 ). In fact, the 
nugget effect that is obtained from the experimental semivariogram depends 
greatly on the physical distance between the individual samples that form the 
data set. As the sampling distance increases, it is possible to obtain a better 
estimate of C

0
• However, while one is able to reduce the sampling interval 

to a very small distance, the cost of the exploration program increases 
dramatically. As a result, it is often unreasonable and in fact unnecessary to 
reduce the sampling spacing below some nominal value. Unfortunately, this 
minimum sampling distance is dependent on the geological material being 
examined and cannot be known prior to investigation. Common practice is to 
begin sampling with a relatively coarse grid, and then to fill with a repeatedly 
finer grid, until the sample spacing no longer influences the resultant 
experimental semivariogram (Jaksa, I 995). 

Nested Structures 

Nested structures are sources of variability, which come into play 
simultaneously for all distances and are influenced by the scale of 

' observation. They indicate the presence of processes operating at different 
scales and are reported both in the random field theory and geostatistics 
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literature (Joumel and Huijbregts, 1978; Vanmarcke, 1978). Both a shorter 
range and a longer range will be apparent, wherein the shorter range 
represents the micro-variability of the property and the longer range is 
attributed to other influences, such as by depositional features or jointing 
within the soil mass (Marsland and Quarterman, 1982). In an investigation 
by Jaksa et al. (1994), it was indicated that the apparent variability of 
horizontal correlation distance, from two different analysis in keswick clay, 
which varied from 1 to 2 m to 0.15 m, could be explained by nested 
structures. Vanmarcke (1978) reasoned this to the fact that geotechnical 
properties may exhibit two or more superimposed scales of fluctuation, 
depending on the modeling scale. 

Model Fitting 

The three main approaches in the literature for estimating the 
parameters of the semivariogram model are: inspection, weighted least 
squares, and likelihood methods (Alexander et al. , 2001). It is apparent that 
before the wide use of computers, semivariograms were fi tted based on 
visual inspection and presently, statisticians commonly use variants of 
maximum likelihood estimation to fit semivariograms while researchers from 
physical sciences use variants of least squares approach. However, Joumel 
and Huijberts ( 1978) .suggested that automatic fitting of models to 
experimental semivariograms such as least squares methods should be 
avoided, since least squares assumes that sample points are independent 
observations which is not true of the experimental variogram and the 
behaviour of the variogram very close to the origin is not known. And yet 
it is vital and lea st squares does not take account of this anomaly 
(Armstrong, 1998). Though it is necessary to obtain best fit by trial and 
error approach, certain guidelines are given in the literature. Clark ( 1979) 
and Brooker ( 1991) recommend guidelines for the fitting the appropriate 
model to the experimental variograms. For example, the tangent at the 
origin intersects the sill at a point with an abscissa 2av3, a, I. 73a 
respectively for spherical, exponential and gaussian models, where ' a ' 
represents the range. It is to be noted that experimental semivariogram is 
usually determined only up to half of the total sampled extent (Joumel and 
Huijberts, 1978; Clark, 1979; Brooker, 1989). With respect to model fitting 
of ACFs, the method of Ordinary Least Square is adopted, and tried with 
the recommended models. 

Correlation Distance 

The common technique in time series analysis (Box and Jenkins, 1970) 
to determine the correlation distance is by Barlett's approximation (Eqn.5). 
The following equation gives the Barlett's limit corresponding to two standard 
errors of estimates (Jaksa, 1995) 
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1.96 = + ---JN (5) 

where N is the total number of observations/data. The rk I denotes the 
Barlett's limit and the correlation distance corresponding to this limit is equal 
to the scale of fluctuation o. The correlation distance corresponds to the 
ordinate of the intersection of Barlett's limit and sample ACF. 

The correlation distance (h), or the scale of fluctuation (o) (determined 
from the sample ACF), the Barlett's distance (r8) (obtained from the general 
Barlett's limit condition) and the range, (determined in the semivariogram), 
in essence, represents the same distance of strong correlation for any property, 
while the property variation satisfies all the necessary assumptions of 
stationarity. The detailed investigation in the relation between, o, r8 . and a, 
revealed that the exact equality between these parameter values does not 
occur at all instances, unless the sampling program has been done perfectly 
with minimum measurement and human errors (Jaksa, 1995). Since these 
values are found to be heavily dependent on many factors, such as physical 
features of the soil, presence of any anomalous materials/layers, measurement 
accuracy and the related other geological phenomena, the close disagreement 
between these values is inevitable, unless the errors has been carefully 
avoided/minimised at every stage of soil profiling. Further, Jaksa et al. (1997) 
demonstrated that the scale of fluctuation and hence, the correlation distance, 
is greatly influenced by (1 ) the spacing of the data; (2) the stationarity of 
data; (3) the degree of polynomial trend removed from the data; and (4) 
measurement errors. Further, it is pointed out that it is paramount that data 
used to assess the spatial variability of geotechnical materials be obtained at 
sample spacing less than the correlation distance of the material. It has also 
been demonstrated (Jaksa, 1995) that the model parameters for the sample 
ACF or semivariogram will widely differ, for the data, with and without the 
trend removal, depending on the stationarity of the data. 

Analysis of Autocorrelation Functions 

The sample autocorrelation function has been obtained for cone tip 
resistance profile of Singapore peaty clay, to demonstrate the function, 
properties and , utility of the ACFs in the geotechnical context. This site is 
reported to be located along the Singapore river bank with mainly peaty clay 
deposit with layers of silty clay and marine clay at its bottom (Chang, 1986). 
The soil profile and their statistical description are shown in Fig.4(a) and 
Table 3. 

The 18 m profile of cone-:tip resistance values (kg/cm2
) shown m 

Fig.4(a), appears to follow an increasing trend with depth, with a mean of 
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FIGURE 4 (a) Cone 'fip Resistance Profile for the Singapore Clay; (b) 
Cohesion Profile for the Singapore Clay 

Table 3 : Statistical Description of the Geotechnical 
Properties of Various Soil Profiles 

Statistical Values Singapore Clay 

Cone Tip Value Cohesion 

Mean {kg/cm2
) 7.81 0.38 

Skewness - 0.299 0.69 

Kurtosis 1.0 144 -0.7 

Coefficient of Variation 0.678 0.65 
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FIGURE S Sample ACF with Models Fitted and Showing Barlett' s Limit 
for Cone Tip Resistance, Singapore Clay 

7.91 (kg/cm2
) and coefficient of variation of 0.678. Kendall's r test (Daniel, 

1990) confim1ed the non-stationarity of the data hence the data is de-trended. 
The constructed sample ACF for the de-trended data, with the fitted models 
is shown in Fig.5. The exponential and the Gaussian models show the best 
fit with the model parameter values, for which correlation distances are 0.3 m 
and 0.52 m. The correlation distances as obtained by the sample ACF and 
Barlett's limit are tabulated in Table 4 for comparison. For the above data, 
Barlett's distance using Barlett's limit (0.64) gives correlation distances of 
0.18 m and 0.3 m respectively. 

Analysis of Semi Variograms 

The correlation distance as discussed earlier, could also be derived 
using semi variograms using the geostatistical principles. In order that the 
efficiency or the robustness of the determination method using random filed 

Table 4 Correlation Distances by Sample ACF and Barlett's 
Limit for Cone Tip Resistance 

Models Fitted Barlett' s Limit Correlation Distance(m) 

h re 
(Sample ACF) (Barlett's limit) 

Exponential Gaussian 0.64 0.30 0. 18 

0.52 0.30 
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Figure 6 Experimental Semivariogram with Models Fitted for Cone Tip 
Resistance Values, Singapore Clay 

analysis or geostatistics be felt, semi variograms are also constructed for the 
same soil profile (Fig.4a). As the geostatistical analyses also requires the 
stationarity of the data, the cone resistance data of the Singapore clay is 
de-trended and the estimated semivariogram for the residuals is shown in 
Fig.6. 

The experimental semivariogram is constructed using (Eqn.4) and the 
available models were used to fit these values. Though the behaviour near 
the origin is well defined, with a nugget of 3 (kg/cm2

)
2
, the semivariances 

scatter with wide deviations at higher lags. A range of 2m corresponding a 
sill of 27 (kg/cm2

)
2 with a nugget of 3 (kg/cm2i characterizes for this 

semivariogram. Along with the usual spherical and exponential models, the 
Gaussian model is also fitted to this data to show the relative behaviour of 
these models. The gaussian model behaves closely to the spherical model 
reaching the sill immediately than the exponential model. 

Discussions 

The correlation distances estimated from sample ACF, Barlett 's limit 
and semivariogram for the cone tip resistance data of the Singapore clay are 
0.3 m (exponential model), 0.18 m, and 2 m respectively. The results reveal 
that the correlation distance for the cone tip resistance agrees with that 
obtained from the Barlett's limit (0.3 m and 0.18 m), but appreciable deviation 
is observed, between the result from sample ACF (0.3 m) and semivariogram 
(2m). The reason for such a deviation in correlation distance values might 
be that the sampling distance is not close, leaving only smaller number of 
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data. The accuracy of the estimation of sample ACF and the semivariogram 
is significantly influenced by the number of pairs of observatiorts available 
for their determination. Notwithstanding the errors i11volved in the sampling 
process, the analysis brings out a similarity in the correlation distance, 
detem1ined from two different principles. 

The very nature of soil variabil ity presents a higher lev~! of difficulty 
in quantifying them in the design stage of important geotechnical structures. 
The lack of adaptabil ity of the conventional design methods to take the soil 
variability into account makes a design engineer handicapped, though a good 
deal of effort in design is desired. The capability of the random field theory 
and the geostatistics in dealing the soil variability is being now increasingly 
highlighted, in literature. Since the theoretical formulations of such analyses 
are well supported in the geotechnical engineering context, immediate 
application of these analyses is called for, with the view of to perform better 
and rational design of geotechnical structures and assess its reliability. The 
outcome of such analysis always brings out a better understanding of the 
subsoil, the pattern of property variation, leading to an economical site 
exploration and interpolation of the property values, at points where sampling 
is not possible, through kriging. 

Influence of Spatial Variability in Slope Stability Problems 

The spatial variability concepts, applied to the slope stability problems 
have been demonstrated in literature (Alonso, 1976 and Vanmarcke, 1977a). 
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FIGURE 8 Experimental Semivariogram with Models Fitted for Cohesion, 
Singapore Clay 

The significance of the parameter such as correlation distance in horizontal 
and vertical directions, along the soil slope, could be brought out more 
clearly, when a complete probabilistic slope stability analysis is done. With 
a view to emphasize the practical necessity of incorporating soil variability 
in the routine slope stability analysis, the influence of the variability of the 
cohesion of the Singapore clay on an embankment and cut slope stability is 
discussed. 

The variability of the cohesion is quantified by the correlation distance 
both from the random filed analysis and semivariogram, by the methods 
discussed earlier. The sample ACF, with fitted models and Barlett 's limit is 
shown in Fig.7, wherein Gaussian and second order regression models are 
used. The experimental semivariogram has a sill value of 0.0351 (kg/cm2i, 

Table 5 Correlation Distances by Sample ACF and Barlett's 
Limit for Cohesion Values 

Models Fitted Barlett's Limit Correlation Distance(m) 

h ra 
(Sample ACF) (Barlett 's limit) 

Gaussian 0.64 1.70 0 .75 

Second Order 1.42 0.50 
Regression 
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a range of 3.5 m with zero nugget and the exponential, spherical and gaussian 
models fitted to the data are shown in Fig.8. The comparative values are 
shown in Table 5. The result shows that the correlation distance obtained 
from the sample ACF, Barlett 's limit and semivariogram are 1.7 m (Gaussian 
model), 0.75 m and 3.5 m, respectively. 

Slope Stability Analysis 

The influence of spatial variability of undrained shear strength with 
depth in terms of cohesion is considered in the analysis. Autocorrelation 
function which expresses the correlation between any two points as a function 
of distance lag is of modified Gaussian type (Calle, 1985), given by 

(6) 

where Dh and Dv are autocorrelation parameters, which are related to the 
scales of fluctuation. Terms ox, oy and 02 are distance lags between any two 
spatial points in x, y and z directions. The parameter a is the ratio of 
vertical variance (the variance of fluctuations relative to the mean value 
along a vertical line) to the total variance (the variance relative to the mean 
value, over the whole deposit). For a = I, the autocorrelation functi on takes 
on the classical Gaussian form, which is often suggested in literature. For 
calculation of probability of failure, First Order Second Moment (FOSM) 
method is used and probability of failure is defined as factor of safety being 
equal to or less than one. 

Since the primary purpose is to demonstrate the influence of spatial 
variability, as quantified by theories mentioned, only vertical co relation 
distance is treated as variant and all other parameters are kept constant in the 
analysis. Herein two typical examples are discussed to illustrate the influence 
of correlation distance on the probabilities of failure. 

Example 1 

An embankment resting on the soil profile (Fig.4) is considered as 
shown in Fig.9. The variation of probabilities of failure for the slip circle 
passing through the foundation soil (FS = 2.01), with the change in vertical 
correlation distance is shown in Fig. J I. The figure shows the influence of 
vertical correlation distance in the range of 0. I m to 5 m. In this case the fill 
is purely a unifom1 cohesionless soil (¢ = 35° and c = 0) and since the 
major failure surface passes through the embankment side slope, the influence 
of vertical correlation distance of the foundation soil is not significant in this 
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FIGURE 10 : Cut Slope on Peaty Clay 
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case. As a result, the probabilities of failure associated with this stability 
analysis are very low. 

Example 2 

A typical cut slope on the soil profile of Fig.4 with heights of 6 m and 
I 0 m is considered (Fig.IO). Figure 12 shows the influence of vertical 
correlation distance in the range of 0.1 m to I 0 m. It could be observed that 
the increase in vertical correlation distance increases the probabilities of 
failure of the slope. Vertical correlation distances for shear strength 
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parameters, nonnally lies in the range of 0 .1 m to 5 m. It is apparent from 
Fig.\2 that the variation of probabilities of failure is very significant for this 
range of vertical correlation distance. In this case, the probabilities of failure 
(corresponding to factor of safety of 2) is influenced significantly, say for 
H = 6m and C.O. V = 0.3, it increases to four orders of magnitude. 
Conservative estimates of probabilities of failures are likely, if the correlation 
distance is not considered in the probabilistic analysis. 

Concluding Remarks 

The application of random field theory and geostatistics as an efficient 
descriptor of soil variability is demonstrated. The correlation distance which 
measures the distance of strong correlation exhibited by soils is treated both 
from the random field theory and geostatistic principles. The estimation of 
correlation distance helps the soil exploration program to be economical and 
rational and in the interpolation of the property values at the unsampled 
points. Case studies were presented to detail the methods involved and the 
stochastic characterisation of the soil variability is highlighted with different 
soil properties. The study clearly points out the similarity of the correlation 
distances, as evaluated from the two different principles. The significance of 
incorporating the correlation distances in the probabilistic analysis of soil 
slopes is shown through embankment and cut slope stability problems. 
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Notation 

X;, xi+k = random variables at ith and i+k points 

ck autocovariance 

Pk autocorrelation 

rk Sample ACF 

y(h) = semivariance 

h = correlation distance 

a range 

c = sill 

co nugget 

0 = scale of fluctuation 
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Appendix I 

Kendall's 'l' test (Daniel, 1990) 

Kendall's -r is a measure of correlation of say two individual properties 
or data X and Y, based on the ranks of observations, wherein the objective 
is to test the null hypothesis that X and Y are independent (which implies 
T = 0) against one of the following alternatives: t ;t 0, t > 0, t < 0. The 
alternative t ;t 0 is interpreted to mean that there is an association between 
X and Y, t > 0, implying a direct association between X and Y and t < 0, 
means that X and Y are inversely associated. The test statistic is given by 

s 
T = ----

n(n-1)/ 2 

S = P-Q 

where n = number of (X, Y) observations, 

P number of pairs in natural order, 

Q number of pairs in reverse natural order. 

The obtained • is compared with -r* tabulated and accordingly the 
correlation between X and Y could be decided. 




