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Generalised Procedure of Slices for Analysis of 
Zoned Dams Under Steady Seepage 

G. Bhattacharya* and P.K. Basudhart 

Introduction 

Determination of critical slope failure surfaces based on limit 
equilibrium methods valid for general slip surfaces coupled with the 
Sequential Unconstrained Minimization Technique (SUMT) or the 

Penalty Function method has now received lot of attention (Greco, 1988; 
Bhattacharya, 1990). The authors have developed a new procedure called 

,,, Direct Procedure using Spencer's method (Spencer, 1973) in conjunction with 
the Extended Interior Penalty Function method (Kavlie, 1971 ). One of the 
most distinguishing features of the developed procedure is that it has built
in provisions to ensure that the obtained solutions satisfy some prescribed 
acceptability criteria. The basic formulation of the technique together with its 
application in case of homogeneous slopes has been presented elsewhere 
(Bhattacharya and Basudhar, 2000b). The purpose of this paper is to examine 
the effectiveness and efficiency of the Direct Procedure when applied to the 
general case of nonhomogeneous slopes, and, specifically to slopes of zoned 
dams and embankments. 

Analysis of zoned dams and embankments under steady seepage have 
been reported by several investigators, using various techniques. Baker ( 1979) 
reported about the analysis of the Okete Dam upstream slope under steady 
seepage condition with the help of the program SSOPT which is based on 
the Spencer method of analysis (Spencer, 1967) in conjunction with the 
dynamic programming technique. The principle of the methodology adopted 
in the program SSOPT and its formulation were presented elsewhere (Baker, 
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1980). Celestino and Duncan ( 1981) used a simplified search scheme 
proposed by them to find the critical shear surface for the Birch Dam in 
Oklahoma, based on the Spencer ( 1967) method to compute the factor of 
safety. Later, Nguyen (I 985) used the Simplex refection technique in 
combination with the simplified Bishop method to search for the critical slip 
surface for the same dam section. 

Satyam Babu ( 1986) analysed the downstream slope of the Beas Dam 
in Punjab, Jndia, which is founded on a thin shear zone. He used the Interior 
Penalty Function Method coupled with Janbu's Generalized Procedure of 
Slices (Janbu, 1973). He also highlighted some numerical difficulties arising 
due to the presence of the thin shear zone in the foundation. One major 
deficiency of this approach is that an Interior Penalty Function Method 
requires a feasible starting point, which may not be readily available. Later, 
Basudhar et al. ( 1988) employed a more generalized version of the above 
approach based on the Sequential Unconstrained Minimization Technique 
coupled with the Janbu's GPS procedure. 

It may be mentioned here that although, in a broad sense, 
nonhomogeneous slopes also include slopes in soils with anisotropic undrained 
strength variation, studies on such slopes have been presented elsewhere 
(Bhattacharya and Basudhar, 2000a) and, therefore, have not been included 
here. The present paper deals first with the extension to the basic formulation 
(presented earlier with reference to homogeneous slopes) and then with an 
illustration of the same to the analysis of slopes of zoned dams and 
embankments. 

Analysis 

Discretizatio11 Mot/el, Design Variables, Objective Function amt 
Constraints 

Figure 1 shows a typical section of a zoned dam along with a potential 
slip surface of arbitrary shape which terminates at the bottom of a vertical 
tension crack of depth Zr· Three subsoil layers have been shown in the Figure. 
There can be, however, any number of layers with any arbitrary alignment. 
The potential sliding mass is divided into n number of vertical slices. With 
reference to the chosen system of axes, y and z represent the ordinates of the 
points on the sheer surface and on the s lope boundary respectively 
corresponding to a particular x-coordinate at an interstice boundary. The shape 
and location of the slip surface is completely defined by these x- and y
coordinates and the factor of safety can be expressed as a function of these 
design variables. For finding the critical slip surface, these coordinates, which 
minimize the factor of safety, need to be determined. The factor of safety is 
the objective function here. 
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FIGURE 1 A Typical Section of a Zoned Dam along with a Trial 
Non-Circular Shear Surface 
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For the determination of the critical slip surface the Direct Procedure 
(Bhattacharya and Basudhar, 2000b) valid for methods of analysis satisfying 
all equilibrium conditions such as the Spencer method (Spencer, 1973) is 
adopted. In this procedure the problem is formulated as follows. 

Find the shape and location of the critical slip surface, together with 
the associated minimum factor of safety (F = Fmin), subject to the following 
requirements. 

(i) The equilibrium conditions, as expressed by the following equations, 
are satisfied: 

Force Equilibrium: Z
0 

(F, 0) = 0 

Moment Equilibrium: Mn (F, 0) = 0 

(1 a) 

(I b) 

In the above, Z,, and Mn are the external balancing force and moment 
respectively; 'F is the average factor of safety and 0 is a characteristic 
angle defining the interslice force inclination. 

For the expressions for Z,, and Mn, reference may be made to the 
original work of Spencer (1973) or, for a loaded slope, to Bhattacharya 
and Basudhar (1992). 

(ii) The shape of the critical slip surface as well as the line of thrust 
obtained as part of the solution are both reasonable. 

Design Vector 

The design variables are collected in a design vector -as follows: 

(2) 
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where, referring to Fig. I, y2, y3, .. . , y
11 

denote the y-coordinates defining the 
slip surface, while xL and Xu are the x-coordinates of the lower and the upper 
points of intersection between the slip surface and the slope boundary. 

Design Constraints 

Equality Constraint: The requirements in Eqn. (I) are combined to form a 
single normalised equality constraint as: 

= Z~ + SrM~ 

(ybHi)2 (3) 

where, y is any characteristic unit weight of soil, b is the width of each slice, 
H1 is any characteristic height of the slope and Sr is a scale factor introduced 
to make the function well behaved (Bhattacharya and Basudhar, 1999). 

Inequality Constraints : The following inequality constraints are imposed in 
the analysis to obtain a reasonable critical slip surface and the associated line 
of thrust. 

I. The shear surface must lie within the slope geometry. 

= 2:'.l_ _ I ::s 0 (4) 
z 

i, j = I , 2, .. . , n - I 

2. The shear surface should not penetrate any rigid stratum below. An 
alternative approach is to impose unusually high values of strength 
parameters for the rigid layer. 

3 . The slip surface should have a shape, which is concave upward. 

4. To avoid development of tension, the line of thrust, obtained as a part 
of the solution, must lie within the sliding mass. 

5. To avoid unnecessary search an appropriate lower bound on the design 
variable F may be imposed. 

Mathematical forms together with discussions for the constraints 2 
through 5 are the same as in homogeneous slopes and are given elsewhere 
(Bhattacharya and Basudhar, 2000a; 2000b ). 
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Mathematical Progrmnmillg Formulation and Solutio11 Procedure 

The constrained minimization problem stated above can be cast as a 
mathematical programming problem of the following general form : 

Find D such that 

f(D) ➔ Min. 

subject to the constraints g i (D) :S 0 

j 

I , 2, ... , n ;. 

I , 2, ... , n •. 

(5a) 

(5b) 

(5c) 

where, n; and n. are the total number of inequality and equality 
constraints respectively. D, f(D) , g(D) and 1 (D) represent the design 
vector, the objective function, the inequality and the equality constraint 
functions respectively. 

As an initial feasible decision vector is generally not available, a 
method, which accepts infeasible starting design vector, is advantageous. The 
extended penalty function method enunciated by Kavlie ( 1971) has been used 
in the present study because of the fact that this method readily accepts 
infeasible decision points but the optimal solution lies in the feasible reg ion. 
In this method, the constrained problem is transformed into an unconstrained 
one as follows: 

p 

1/J (D, rk) = f(D)- rkLG;[gi(o )] (6) 
j= I 

where, the function G is chosen as follows: 

olgi(o)j = gi~o) 
(7) 

[2c - g/o)] 
= ----- for g/D) > E 

where, the tolerance, c, is given by: 

(8) 
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c\ is a parameter defining the trans1t1on between the two types of 
penalty terms and p is the total number of constraints. General guidelines for 
appropriate choice of the parameters c5, and, E are available in the literature 
(Kavlie and Moe, 1971; Cassis and Schmit 1976). r is a positive constant 
called penalty parameter and rk is its value corresponding to the k

th 
cycle of 

minimization. Using a reduction factor c (usual value is 0. I 0) the penalty 
parameter rk is made successively smaller in order to obtain the constrained 
minimum value of the objective function f(D) . Thus, 

(9) 

The composite function '1/J (D) so generated, is then minimized by using 
Powell's method of conjugate directions for multidimensional search and 
quadratic interpolation technique for unidimensional search (Fox, 1971 ). 

A Generalised Procedure for Calculation of Slice 
Characteristics in a Zoned Dam 

In the computation of the factor of safety of a heterogeneous dam or 
embankment section using the method of slices, complications arise in the 
calculation of weight, m9bilised shear force and pore water pressure for each 
slice. This is because of the fact that the base of a particular slice is most 
likely to lie in more than one zone or region and below a number of layers 
or zone boundaries starting from the slope boundary. It is, therefore, required 
to locate the two end points of the base of a slice so that appropriate values 
for the soil and pore pressure properties can be used in the calculation of the 
above mentioned slice characteristics. A generalised procedure for the 
computation of the weight, the cohesive and frictional components of the 
shear strength and the resultant pore water pressure for each slice has been 
developed. It consists of the following steps: 

Location of a Slice 

This involves the following steps: 

I . To draw the slope section to a convenient scale. 

2. To introduce a co-ordinate system with the following conventions: 

(i) The horizontal x-coordinate increases in the direction of slide. 

(ii) The vertical y-coordinate increases in the direction of gravity. 

(iii) The origin is conveniently chosen at the mid-point of the top 
width of the embankment or the dam section so that the 
y-coordinates of all points in the search region are positive. 
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3. The trial or given shear surface is drawn and the sliding mass is divided 
into the selected number of slices which need not be of uniform widths. 
Thus, the coordinates of the points on the shear surface at its 
intersections with the interstice boundaries are known. The slope of the 
base of the kth· slice can be calculated from: 

(10) 

where, ak is the angle made by the base of the k1
h slice with the 

horizontal; /1 xk is the width of the kth slice; yk and Yk+I are the 
ordinates of the points of intersection between the shear surface and the 
kth and the (k + I )1" slice boundaries respectively i.e., the ordinates of 
the two ends of the base of the kth slice. 

4. To introduce a vertical boundary at every point where the slope surface 
and the boundary between layers change directions. Such points are 
herein called the 'intersection points' of the slope section. When either 
the slope surface or any of the layer boundaries has a vertical section, 
two vertical boundaries are introduced at the same x i.e., a strip of zero 
thickness is assumed in between. Thus the entire search region is 
divided into a nwnber of parts along the horizontal x-direction. Each of 
these parts is herein termed as a ' range' and each of the vertical 
boundaries mentioned above as an intersection boundary. For any slope 
section the number of ranges is fixed. 

5. The slope surface as well as the layer boundaries are specified by listing 
the y-coordinates of the points at which they are intersected by the 
intersection boundaries. Various zones present in the zoned dam are also 
treated as ' layers'. The geometry of any layer is specified by the co
ordinates of its lower boundary. If in a particular range (segment) a layer 
(zone) does not exist it has to be treated as the layer of zero thickness in 
that range or a nwnber of ranges. Layers are numbered from the face of 
the slope downwards. To illustrate the numbering of the layers, the dam 
section shown in Fig.2 is chosen, for which the layer numbering is as given 
in tabular form below the dam section. For example, the layer nwnber l 
which includes the toe weight marked Zone IV has thickness of 1112 and 
K1K2 at the I01

h and the I llh intersection boundaries respectively and zero 
thickness at all other boundaries as at those boundaries it coincides with 
the slope surface. Similarly, the layer number 2 which includes the shell 
marked zone III has thickness of G1G2, H1H2, 1112 and 1213 at the 711\ 811,, 
9th and I Olh intersection boundaries respectively and zero thickness 
elsewhere. For the sake of convenience, an axis system different from that 
in Fig. I has been chosen for the calculation of slice characteristics. 



180 INDIAN GEOTECHNICAL JOURNAL 

INTERSECTION BOUNDARIES 
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FIGURE 2 Specification of Layer System in a Typical 
Heterogeneous Section 

From the known values of the co-ordinates of the intersection points of 
the slope geometry the values of the gradient m and the intercept c 
for each of the ranges are calculated using the following expressions: 

m = m;,i = 
(Yi+l,j - Y;,J 

(x;+1, j - x;,J 
and (I la) 

(llb) 

where the equation of the ith range of the j'" layer is given by: 

Y=m-X+c -,,J l, J 

where (X, Y) 

i = 1, 2, .,., nR and 

j = 1, 2, ,.,, (nL + 1) 

(l lc) 

co-ordinates of any point within the search 
domain 
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X; the x-coordinate of the ith intersection boundary 

Yi. j the y-coordinate of the ith intersection point of 
the jth layer 

m;_j the gradient of the ith range of the jth layer 

C;_j the intercept made by the ith range of the l 
layer on the y-axis 

nR total number of ranges 

nL total number of layers 

In the above, j = I refers to the slope surface, j = 2 refers to the layer 
number I and so on. 

6. It is required to locate the pos1t1on of the base of a slice so that 
appropriate soil and pore pressure properties can be ascribed to it. To 
do so it is required to locate the two end points of the base. The 
technique adopted to locate any point (x, y) on the shear surface is 
explained as follows. 

(a) The range i within which the concerned point lies can be found 
such that 

(12a) 

i = I, 2, ... , nR 

(b) Similarly, the layer j containing the point can be found such that, 

(12b) 

j = 1, 2, ... , Ill 

where, Y dj+1 is the y-coordinate of the point of intersection of the 
l' Iayer boundary with an imaginary vertical line through the given 
point (x, y) on the shear surface and is calculated as: 

(12c) 

By repeating (a) and (b) above, the following are found out for a slice: 

(i) the range / ranges covering two of its sides. 

(ii) the layer / layers containing the two ends of its base. 
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:HTERSECTION BOUNDARIES 
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FIGURE 3 (a) A Typical Slice; (b) A Typical Sub-Slice; (c) A Typical Unit 

Slice S5, ; (d) Unit Block ABCD 

7. The number of intersection boundaries falling within the width of a 
slice is noted. If this number is n8 , the entire slice is divided into 
(n

8
+l) number of strips or sub-slices of varying widths. Each of these 

sub-slices lies entirely within one range. An example of such a slice is 
shown in Fig.3(a) in which case n8 = 5. 

8. The y-coordinates of the two ends of the base of a sub-slice can be 
calculated from the already known values of (i) the y-coordinates of the 
ends of the base of the original slice, (ii) x-distances of the intersection 
boundaries and ( iii) the inclination of the base of the original slice. 

Following step 6, the layers containing the two ends of the base of 
each of the sub-slices are also found out. Then, taking a sub-slice, it is to 
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be checked whether its base has been intersected by any layer boundary. If 
the two bottom ends of the concerned sub s lice lie in the same layer, then 
there is ~ usly no such intersection. Otherwise, there may be one or more 
intersections with one or more than one layer boundaries. These are found 
out by turns. The co-ordinates of such intersection points are calculated by 
using the known equations of the straight lines representing the base and the 
particular range of the concerned layer boundary. If the number of such base 
intersection is nf, then the number of subdivisions of this sub-slice will be 
(nF + I). These are the most elementary units constituting an original slice; 
there cannot be any possibility of such a unit being subdivided. Any such 
unit lies entirely within a range and its base also lies entirely within one 
layer. Referring to Fig.3(a), it is seen that the sub-slice marked S5 has been 
intersected once by a layer boundary, namely, layer 1. So for S5, the number 
of elementary units is 2 as shown separately in Fig.3(b). 

Weight of " Slice 

The weight of an elementary unit described above is the sum total of 
the weights contributed by each of the layers it has passed through. Referring 
to Figs.3(c) and 3(d), the weight contributed by the jth layer will be the area 
of the trapezium ABCD multiplied by the unit weight of that layer. 

Let bF be the width of the unit slice; n0 the deepest layer or the 
number of layers the unit slice passes through; yi the unit weight of the soil 
of the t layer and W ABCD : '. . ·veight of the block ABCD. The weight of the 
kth elementary slice is then given by: 

no 

w.1., = L w Aeco 
j= I' 

[k = 2 for S52 in Fig.3( c )] 

(13a) 

The weight of one sub-slice (say kth
) and, finally, that of an entire slice 

are given by Eqns.(13b) and (13c) respectively: 

n,+I 

w •• , = Iw.1., 
k = l 

n~l 

w = Lw,._ 
k=I 

(13b) 

( 13c) 
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Shear Strength Components 

Considering that the two ends of a slice-base may lie in different layers, 
the magnitudes of cohesive and frictional components of shear strength 
available is likely to vary along a slice-base. However, as the base of an 
elementary unit described in the previous step lies entirely in a single layer, 
the cohesive and frictional components calculated for an elementary unit may 
be summed up to obtain the corresponding values for the entire slice, as 
follows: 

where 

Cohesive force component 
"c 

_2:C;lll; (14a) 
i:::: i 

n F. 

Frictional force component Itan¢; Ill; (14b) 
i =i 

c; and¢; shear strength parameters corresponding to the ith 

elemental unit 

ll l; length of the base of the ith elemental unit and 

n E the total number of such elemental units in the entire 
slice. 

If required, the average strength parameters for the slice can be obtained as 

fc'.lll I I 

c~v 
i= i 

= 
"• 
Ii11; 

(14c) 

i=i 

11£ 

I tan¢; L11; 

</J~v tan-1 i= i 
= 

"" 
Ii11; 

(14d) 

i=i 

Pore Water Pressure 

The developed computer program for the proposed procedure has the 
provision for calculation of pore water pressure using two different methods 
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namely, Method 1 based on the Bishop's pore pressure ratio, ru and Method 2 
based on a given piezometric surface. 

Method I : This method can be applied to situations where values of ru are 
available for all the zones of the dam or embankment section. Following the 
same principle as discussed in connection with the calculations of cohesive 
and frictional components of shear strength for an entire slice, the total force, 
Ub due to pore pressure acting on a slice base may be obtained as follows: 

IIE 

= ""'ru.ab_iili ~ ' ' (15a) 
i=l 

where, ru; is the value of ru corresponding to the ith unit slice; ab; is the 
average overburden pressure on the base of such a unit. If, for the slice 
concerned, the average pore pressure on the base is required,, it can be 
obtained as: 

i= l 
uav = 

(15b) 

Method 2 : This method is applicable where the piezometric line or surface 
is available. The pore water pressures are generated using the vertical 
distances from piezometric surface to the shear surface. In this method, a 
new set of intersection boundaries are introduced at every point where the 
given piezometric' surface changes directions. These vertical boundaries thus 
form a number of vertical strips. The distance between _ any two consecutive 
boundaries is also referred to as a 'range' with reference to the pore pressure 
calculation. The original slice may be quite arbitrarily positioned with respect 
to the vertical strips. 

In situations where phreatic line or the top flow line is available in 
place of the piezometric surface, calculation of pore pressure can be carried 
out treating the phreatic surface as the piezometric surface. This approximation 
however, introduces some error. A detailed discussion on this and in general 
on the methods of pore pressure calculations has been presented by Lambe 
(1989) and as such they are not stated here. When the phreatic surface is to 
be used, the first step in using the Method 2 is to approximate the curved 
surface by a series of straight line segments and then the new set of 
intersection boundaries are introduced as described above. For example, Figure 
4 shows a dam section with an assumed phreatic line which has been 
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PHREATIC LINE INTERSEC TION BOUNDARY 
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FIGURE 4 Typical Section of a Zoned Dam along with the Pheratic Line 

approximated by 7 linear pieces namely, ab, be, cd, de, ef, fg, gh and hi. 
Now, regarding the positioning of the piezometric surface with respect to the 
base of the various slices, the following four cases may arise: 

Case I : Within the strip, the piezometric surface lies entirely above the shear 
surface [Figure 5(a)]. The force due to pore pressure acting at the base of 
a single strip or unit is given by: 

(16a) 

Case II : Within the strip the piezometric surface intersects the base of the 
strip with its right end going down (Figure 5(b)). 

Here the pressure will be caused by only that part of the piezometric 
surface, which is above the base and is given by: 

(16b) 

where, the horizontal distance, xp, is given by 

(16c) 

where, m1, c 1 and m2, c2 are the constants of the following two equations 
representing the base of the strip and the piezometric line respectively and x1 
is the x-coordinate of the left interslice boundary in Figs.5(b) and 5(c). 
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CASE I CASE II CA SE 111 

Pt,reotic line 
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( o I (bl 

FIGURE 5 Various Positions of the Pheratic Line with respect to 
the Slip Surface 

(16d) 

(l 6e) 

.,, Case III : The piezometric surface intersects the base with the left end going 
down [Figure 5(c)]. Following the same notations as used above, 

(16f) 

Case IV : The piezom~tric surface lies entirely below the base of the strip. 
In this case, for the strip concerned, .:\ U; = 0 

Resultant Force Due to Pore Pressure 

The resultant force due to pore pressure acting at the base of an original 
slice is then obtained by adding all the components. If nP is the number of 
strip or unit per slice, the resultant force is given by: 

", 
ub = L.:\U; 

j = I 

J Forces Due to Water Ponding 011 the Face of the Slope: 

(17) 

The forces exerted by the water ponding on the face of the slope are 
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( a) 

l c, 

( b) ( d I 

FIGURE 6 : Forces due to Water Ponding on the Face of a Slope 

computed slice-wise. Referring to Fig.6(a), it can be seen that two cases may 
arise and are discussed as follows: 

Case I : This case corresponds to slices such as marked 'I' in Fig.6(a). This 
slice has been separately shown in Fig.6(b ) . Let h1 and h2 be the vertical 
distances of the two top ends of the slice from the water line measured 
downward. The trapezoidal pressure diagram has been shown in Fig.6(c). The 
resultant thrust on the slice UP acts normally at a distance I' from C3 where,: 

(18a) 

where, (18b) 

and, I ' (18c) 

This is equivalent to a force UP acting at the mid-point CM together with a 
couple in the clockwise sense of moment 

(19a) 
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FIGURE 7 Critical Shear Surfaces for the Example Problem 

Case II : This case corresponds to slices marked II in Fig.6(a) which are 
bounded by the horizontal surface. For this case h1 = h2 and, hence, I = b 
and I' = 1/2, which make, UM = 0. 

For the sake of convenience in including these forces in the formulation, 
..,- UP has been .re-solved horizontally and vertically, as shown in Fig.6(d), giving: 

(19b) 

(19c) 

The Program SUMSTAB 

The scope of the pr-0gram SUMSTAB originally developed and reported 
for homogeneous slopes (Bhattacharya and Basudhar, 2000b), has been 
extended to nonhvmogeneous slopes such as slopes of zoned dams and 
embankments founded on layered deposits having any arbitrary variation of 
soil and pore pressure conditions. It should be mentioned, however, that in 
its present form, the program is capable of analysing a dam section only for 

the steady seepage condition. 

Illustrative Example: The Okete Dam Upstream Slope 

Figure 7 shows a section of the Okete dam upstream slope along with 
the layering, soil properties and the phreatic line. The ordinates of the various 
points on the dam section including the layer boundaries and the phreatic line 
have been taken from a manual by Baker (1979) who has presented detailed 
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results of analysis of the same section with the help of the program SSOPT 
which is based on the dynamic programming technique in conjunction with 
the Spencer 's method (I 967). In the said analysis, pore pressures have been 
generated using vertical distances below the phreatic line shown in the Figure. 
This phreatic line is reportedly a top flow line and the forces due to water 
ponding on the face of the slope have been considered in the analysis. The 
purpose of selecting this case study as the illustrative example in the present 
study is the following: 

(i) to test the effectiveness and efficiency of the proposed numerical scheme 
in handling a zoned dam with a complex geometry, iayering and a steep 
phreatic line. 

(ii) to draw a comparison between the results obtained by using the program 
SSOPT based on the dynamic programming technique and the developed 
program SUMSTAB based on the sequential unconstrained minimization 
technique. 

Results and Discussion 

Previous Solution by Baker using the Program SSOPT 

As already stated, the problem was solved earlier by Baker (1979) 
using the program SSOPT. The critical shear surface given by the program 
SSOPT based on the dynamic programming technique coupled with the 

Spencer's method, as reported by Baker ( 1979) is also presented in Fig. 7. 
The values of F111;n and 0 were reported to be 1.467 and 8.976 degrees 
respectively. The calculated values of various slice characteristics associated 
with the critical surface were also reported in the form of a computer output 
of the program SSOPT, which is not reproduced here to save space. It is, 
however, seen from the said output (Baker, 1979) that the resultant interslice 
forces as well as the normal forces at the slice bases are all positive, as they 
should be. The positions of the line of thrust for total stress are also 
reasonable. However, the line of thrust for effective stress has not been 
reported. 

Present Solution 

Before proceeding with the critical surface determination, the critical 
surface reported by Baker has been re-analysed using the program SOLVE 
developed by the authors (Bhattacharya and Basudhar, 2000b) and the 
obtained values (F = 1.466, 0 = 8.976°) are observed to be in perfect 
agreement with those reported by Baker. The slice configurations used in 
Baker's analysis have also been used in the present re-analysis of Baker's 
critical surface. 
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The critical slip surface obtained in the present analysis is also 
presented in Fig.7. A total of 19 slices has been used in the computation. 
The.initial trial slip surface is also shown in the Figure. The corresponding 
Fmin and 0 have been obtained as 1.48 and 8. 706 degrees respectively which 
are quite close to the value of 1.47 (rounding off to two decimal places) 
and 8.976 corresponding to the critical surface reported by Baker. However, 
as seen from the figure, the two critical surfaces are quite different from 
each other especially towards the toe, the present critical surface being 
much deeper. 

The calculated responses associated with the obtained critical 
surface are presented in Table 1. The positions of the line of thrust for 
total stress and that for effective stress are indicated by the ratios L/H 
and L'/H respectively, where, L and L' denote heights of the points of 
application of the total and effective interslice forces respectively and 
H is the height of the corresponding interslice boundary. Z, Z', a, a' 
and r denote the resultant interslice force, normal component of the 
effective interslice force, the total normal stress, the effective normal 
stress and shear stress at the base of a slice respectively. For the 
expressions for each of the above, reference may be made to Spencer 
(1973) and Bhattacharya (1990). It can be seen from the Table that the 
line of thrust for total stress as well as for effective stress lie within 
the middle third except at a couple of interslice boundaries near the 
upper end. The effective interslice forces ( Z') as well as the effective 
normal stress (a') and shear stresses (r) at the slice bases are all 
pos1t1ve and hence the line of thrust can be accepted as reasonable. It 
may be mentioned, however, that the determination of the position of 
the line of thrust for effective stress as also the pore water pressure is 
based on treating the phreatic line as the piezometric line and, hence, 
is approximate. ;,\,ttempt to find a more acceptable line of thrust by 
introducing tension crack and treating the same as a des ign variable, 
has been demonstrated elsewhere for the case of homogeneous s lopes 
(Bhattacharya and Basudhar, 2000b). Such an attempt has not been made 
in this case in view of the difficulty in estimating the depth of tension 
crack in a layered soil. Alternatively, analyses may be carried out taking 
arbitrary depths for tension crack and keeping it constant during the 
search; however, no such attempt has been made here in view of the 
satisfactory values of the internal forces. 

Table 2 presents the values of the design vector and the design 
constraints at the starting point and at the optimal point corresponding 
to the solution presented above. The Table indicates that even though 
the initial design vector is infeas ible with regard to both equality and 
inequality constraints (the violated constraints are marked as 
underlined), the proposed scheme utilizing the Extended Interior Penalty 
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Table I Calculated Responses Associated with the Critical Slip 
Obtained in the Present Analysis 

Slice 0 o ' T L/ H L'/H z Z' 

No. kPa kPa kPa kN/m kN/m 

I 11 1.6 70.7 36.0 
0.56 0.40 500.0 253.2 

2 164.9 101.3 41.1 
0.48 0.47 1109.0 754.2 

3 187.3 110.9 26.2 
0.45 0.47 1446.0 966.8 

4 217.2 127.5 31.8 
0.42 0.44 1784.0 1257.0 

5 240.5 141.5 35.7 
0.4 1 0.44 2094.0 1564.0 

6 264.1 163.3 39.4 
0.41 0.45 2388.0 1804.0 

7 285.5 182.0 43.1 
0.39 0.44 2625.0 1837.0 

8 3 10.1 195.8 46.9 
0.38 0.43 2864.0 1929.0 

9 335.9 206.3 48.2 
0.37 0.42 3069.0 1971.0 

10 350.7 209.0 48.1 
0.36 0.43 3213.0 1692.0 

11 361.2 216.4 48.5 
0.35 0.39 3235.0 1634.0 

12 366.3 188.0 48.0 
0.35 0.40 3150.0 15 12.0 

13 320.8 146.6 62.3 -

0.34 0.38 2616.0 1178.0 

14 287.4 128.1 67.7 
0.31 0.31 2118.0 968.2 

15 262.4 121.0 47.2 
0.30 0.28 1583.0 693.8 

16 227.9 103.9 40.5 
0.26 0.23 1026.0 362.9 

17 182.5 91.4 33.3 
0.25 0.21 481.8 250.2 

18 118.3 65.4 26.1 
0.31 0.31 97.3 96.2 

19 39.7 39.7 15.5 

Function method brings out an optimal solution which is entirely in the 
feasible region. Thus it is seen that, the proposed Direct Procedure is 
capable of handling the equality constraint as well as infeasible initial 
design vector quite efficiently. Similar observation has been made 
elsewhere with respect to homogeneous slopes (Bhattacharya and 
Basudhar, 2000b ). 
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Table 2 Design Vector and Constraints for the Example Problem 

STARTING POINT 

d, e. f 
"' F 0 

0.001 -0.1 1.25 1.3448 1.25 0.1000 

Design Variables 22 Variables for 19 Slices 

-2.6667 -4.4444 -5.7778 -6.4444 -6.9778 -6.9999 

- 6.9999 -5.9999 - 5. 1111 - 3.7778 -1.9999 0.0000 

10.5778 15.3778 96.0000 -3.0000 1.2500 0.1000 

Constraints (inequality) 

- 0.9398 -0.7884 - 0.7695 -0.7520 -0.7256 -0.6928 

-0.5936 -0.5616 -0.5150 - 0.4779 -0.4453 -0.3997 

-0.1747 -0.1127 -0.8890 -0.4443 - 0.6668 - 0.1332 

- 0.0000 0.0000 0.0000 0.1112 - 0.4445 -0.4446 

-0.7333 -1.0445 - 0.3333 - 0.8222 -0.5980 -0.5843 

-0.4172 -0.3831 -0.3629 -0.3413 -0.3172 -0.2849 

-0. 1481 -0.0624 0.0898 0.4220 1.3823 3.6408 

-0.4633 -0.5312 -0.5828 - 0 .6169 - 0.6370 -0.6S87 

-0.7439 - 0.7838 -0.8519 -0.9376 - 1.0898 -1.4219 

-0.2600 - 0.1000 

.. 
Constrai_nt (equality}' : 0.3456E+OO 

z. 

0.1033 X 103 

-6.9999 

2.6889 

-0.6623 

- 0.3287 

-0.5113 

-0.2220 

-0.5366 

-0.2561 

-0.4020 

-06828 

-2.3823 

M. 

0.2332 X 104 

-6.9999 

6.1111 

-0.6296 

- 0.2519 

- 0.0221 

-0.6890 

-0.4588 

-0.2162 

-0.4157 

-0.7150 

-4.6407 

'--

Cl 
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r;; 
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OPTIMAi, POINT 

o, e. f 

0.001 -I.Ox 10-8 1.4835 

Design Variables 22 Variables for 19 Slices 

-2.5382 -4.5821 

-6.9394 -6.5540 

10.7466 15.0999 

Constraints (inequality) 

-1.0000 - 1.0000 

-0.6323 -0.5865 

-0.1665 -0.0908 

-0.0776 -0.0027 

-0.0223 -0.7552 

-0.4780 -0.4539 

-0.3533 -0.3263 

-0.3899 - 0.4683 

-0.6265 -0.6347 

- 0.4935 -0.1519 

Constraint (equality) : 0.1268E-09 
No. of r-minimization required = 7 

-5.3997 

-5.9199 

87.8154 

-0.8635 

-0.5359 

-0.0014 

-0.3605 

-1.1883 

-0.44 14 

-0.3098 

- 0.5220 

-0.6467 

Table 2 

1/J 

1.4855 

-6.1077 

- 5.0073 

-10.3439 

-0.8089 

-0.4897 

-0.9768 

-0.3432 

-0.0012 

-0.4206 

- 0.2868 

-0.5461 

-0.6737 

Continued 

F 8 z. M. 

1.4835 0.1519 0.2933 X 10- 2 -0.1843 X 10- 1 

-6.6261 -6.9409 -6.9999 -6.9990 

..:.2.34g9 0.5702 3.5059 6.8329 

1.4835 0.1519 

-0.7766 -0.7463 -0.7196 -0.6753 

-0.4527 -0.4022 -0.3260 - 0.2391 

-0.3347 - 0.2952 -0.1567 -0.2547 

-0.0922 - 2.0383 -0.0119 -0.0037 

-0.6989 -0.6462 -0.6100 -0.5317 

-0.3992 -0.3838 - 0.3735 -0.3653 

-0.2442 -0.3186 - 0.30 11 -0.3538 

-0.5586 -0.5794 -Q.6008 - 0.6162 

-0.6902 -0.7132 - 0.7558 -0.6814 

Note : o ·ut of a total of 22 design variables, the first 18 denote the y-coordinates and the next two denote the x-coordinates of the two ends of a potential 
shear surface while the last two are the variables F and 8. Out of a total of 74 inequality constraints, First 18 are boundary constraints, next 

· 18 are curvature constraints, next 36 are constraints on line of thrust and the last two are side constraints on F and 8 respectively 
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Table 3 Progress of Minimization in the Exal)lple Problem 

No. of Value of r Objective Composite z .. M,. 
r-minimization function function 

f 1/J kN/m kN-m/m 

0 1 X 10 -• 1.2500 1.3448 0.1033 X 103 0.2332 xl04 

(Starting Point) 

1 IX 10-4 1.0002 1.0475 0.3238 X 103 -0.3431 X 103 

2 IX 10-5 1.0019 1.1753 0.2874 X 103 0.4814 X 103 

3 l X 10-r. 1.3943 1.4553 0.5303 X 102 -0.7395 x 101 

4 I X 10- 7 1.4786 1.4928 0.1499 X 102 - 0.1055 X 102 

5 I X 10-s 1.48 I 8 1.4894 0.2181 x 101 0.2142 X 102 

6 IX 10-9 1.4835 1.4856 0.5933 X 10- 1 0.2737 x IO" 

7 IX 10- JO 1.4835 1.4855 0.2933 X I 0-2 - 0.1842 X 10- 1 

(Optimal Point) 

Progress of Minimization 

The progress of the mm1m1zation can be studied from Table 3 which 
presents the variation of the function values f and 1/J with the number of 
r-minimizations. It is seen that initially the function values go on decreasing 
to reach some lowest values and then show a tendency to increase till they 
converge to the feasib le minimum. On inspection of the detailed results it has 
been observed that in the first few cycles the function values decrease 
continually during which the numerical scheme shows a tendency to keep all 
the inequality constraints satisfied. However, at these stages the equality 
constraint remains violated i.e. , its value does not dimin ish sufficiently. 
Afterwards, the minimization procedure attempts to effectively satisfy the 
equality constraint by re-adjusting two design variables in particular, namely, 
F and 0. This eventually results in subsequent increase in the values of the 
functions f and 1/J till finally the convergence is achieved. The trend observed 
here is the same as has been observed in the case of homogeneous slopes 
(Bhattacharya and Basudhar, 2000b). 

Conclusions 

Based on the studies reported in this paper, the following conclusions 
are drawn: 

I . The proposed methodology based on the Spencer method of analysis 
coupled with the sequential unconstrained minimization technique of 
nonlinear programming promises to be an effective and efficient tool 
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for determining the critical slip surface and the associated minimum 
factor of safety of nonhomogeneous slopes. 

2. The program SUMSTAB developed as a FORTRAN version of the 
proposed Direct procedure can handle any complex geometry of a zoned 
dam section founded on a stratified deposit with any number of 
arbitrarily aligned layers having various soil and pore pressure 
characteristics under steady seepage condition 

3. For the case study reported herein, the results obtained using the 
program SUMSTAB based on the developed procedure are comparable 
to that yielded by the program SSOPT also based on Spencer method 
of analysis but coupled with a different minimization procedure namely, 
the dynamic programming technique which is known to yield global 
minimum. It is observed that the value of the minimum factor of safety 
obtained by using the two programs are in close agreement with each 
other; the corresponding critical slip surfaces, are, however, markedly 
different. 

4. From the observation stated above it appears that it is the shape and 
location of the critical shear surface rather than the value of the 
minimum factor of safety, which is more sensitive to the methodology 
used for their determination. The closeness of the factor of safety of the 
two shear surfaces (evaluated by the same method of analysis, e.g., the 
Spencer method) wide apart from each other also indicates the presence 
of a critical zone rather than a sharply defined critical slip surface. 
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