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A New Procedure for Finding Critical Slip 
Surfaces in Slope Stability Analysis 

G. Bhattacharya* and P.K. Basudhart 

Introduction 

I
t is now well appreciated that slope stability analysis by limit equilibrium 
methods is essentially a problem of optimisation wherein the shape and 
location of the critical slip surface is determined, which corresponds to 

the minimum factor of safety subject to the conditions that the shape of the 
critical slip surface is physically reasonable and that the obtained solution 

;,, satisfies sorrie acceptability criteria. During the past three decades, a great 
deal of research has been directed towards refinements in the development of 
the safety functional. Quik ~ few methods are currently available 
(Morgenstern and Price, 1965; Spencer, 1973; Fredlund and Krahn, 1977; 
Sarma, 1979; Chen and Morgenstern, 1983), which are valid for general slip 
surfaces and satisfy all conditions of equilibrium. Excellent reviews are 
available on the accuracy of various limit equilibrium methods of analysis 

(Duncan, 1996). · 

Refinements in the method of analysis were followed by the use of 
sophisticated optimization techniques to search for the critical slip surface, 
e.g., calculus of variation (Ramamurthy et. al, 1977; Castillo and Revilla, 
1977; Baker and Garber, 1977), linear programming (Martins, I 982), dynamic 
programming (Baker, 1980). While dynamic programming technique is very 
powerful as it yields the absolute minimum disregarding any local minima 
that may exist, it suffers from a major drawback known as the curse of 
dimensionality (Rao, 1984 ). Baker ( 1980) has also pointed out other 
drawbacks of dynamic programming technique when applied to slope stability 
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problems. Morgenstern (1977) commented on some difficulties in the 
application of variational calculus to slope stability problems and cautioned 
against ignoring these difficulties. According to Martins ( 1982 ), variational 
techniques cannot be used for heterogeneous media. Because the stability 
analysis of slopes involves nonlinearity, the linear programming technique has 
not been widely adopted by researchers in this area. The penalty function 
formulation or the sequential unconstrained minimization technique (SUMT) 
has found a number of applications in the slope stability computations 
(Basudhar, 1976; Greco, 1988). The most important merit of the penalty 
function methods is their flexibility; one can easily add or delete constraints, 
modify the objective function or constraints and interchange the roles of 
various parts of the problem (Fox, 1971 ). A critical appraisal of the 
application of optimization techniques to slope stability problems has been 
presented by Bhattacharya (1990). 

To obtain a physically acceptable solution, it is essential not only to 
satisfy the equilibrium and boundary conditions and failure criterion along tlie 
shear surface but also to satisfy some conditions of acceptability or criteria 
for admissibility such that the implied state of stress within the soil mass is 
feasible. The stresses obtained from the solution should not violate the 
Mohr-Coulomb failure criterion anywhere within the sliding body, no tension 
should be implied and the directions of forces should all be kinematically 
admissible (Morgenstern and Price, 1965). It has been pointed out (Sarma, 
1979) that it is not always possible to obtain a completely acceptable solution 
without going through a lot of iterations. Therefore, experience is needed to 
seek out a seemingly unacceptable solution that can be treated as acceptable. 
However, such experience cannot be expected of common users and, 
moreover, an acceptable solution differs from an unacceptable one by an 
unknown magnitude and is likely to be case specific. 

It is thus evident that there still exists a need to develop a generalised 
procedure for determination of critical slip surface with adequate built-in 
provision to ensure that the obtained solution satisfies the prescribed 
conditions of acceptability. Towards this end, in this paper, an effort has been 
made to develop a procedure for slope stability analysis in which a rigorous 
method of evaluation of factor of safety satisfying all conditions of statical 
equilibrium is coupled with a powerful optimization technique to search for 
the critical slip surface such that the formulation itself is capable of 
incorporating appropriate acceptability criteria for the obtained solution. 

Of all the rigorous methods, which are valid for an arbitrary or general 
slip surface, the Spencer method (Spencer, 1973) has been rated as the best 
as it combines a simple method of solution with an acceptable degree of 
accuracy (Wright, 1969). The Spencer method is used in conjunction with the 
sequential unconstrained minimization technique to construct a computational 
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FIGURE 1 (a) Definitions and Notations; (b) Forces on a Typical Slice; 
(c) Forces on an lnterslice Boundary 

procedure by which both the critical slip surface and the minimal factor of 
safety are determined simultaneously. The mathematical programming 
formulation of the problem has been taken advantage of in incorporating the 
acceptability criteria as design constraints. It should be pointed out, however, 
that the generalized procedure presented here can be coupled with any other 
rigorous method such as the Morgenstern and Price method (Morgenstern and 
Price, 1965); the choice of the Spencer method has been made for 
convenience only. For the sake of simplicity, the formulation of the procedure 
is explained and elucidated with reference to simple homogeneous slopes. 
The extension and application of the developed procedure to heterogeneous 
slopes such as in zoned dams are reported elsewhere (Bhattacharya and 
Basudhar, 2000). 

The Safety Functional for the Spencer Method 

In the Spencer method of analysis it is required to solve the following 
pair of nonlinear equilibrium equations to find the two unknowns F and 0: 
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Force Equilibrium: Zn (F, 0) = 0 

Moment Equilibrium: Mn (F, 0) = 0 

(I a) 

( I b) 

where, referring to Fig. I , Zn and M
0 

are the external balancing force and 
moment respectively; F is the average factor of safety and 0 is a characteristic 
angle defining the variation of the interslice force inclination, o, given by : 

(2) 

where the suffix i denotes the ith inters lice boundary (Fig. I). The coefficient 
k in the Spencer method is equivalent to the interslice force function f(x) 
in the Morgenstern and Price method. If n be the number of slices, (n -1) 
values are chosen or prescribed by the user for k; e.g., if k is taken to be 
unity throughout, then the interslice forces will be all parallel and their slopes, 
oi will be each equal to 0. Expressions for Zn and M11 originally given by 
Spencer, have been modified by the authors to includ~ external forces and 
moments (Bhattacharya and Basudhar, 1992). 

The method of. solution suggested by Spencer (1973) for the pair of 
nonlinear stability equations stated above is a process of successive 
approximation in which the values of the external force Z11 and the external 
moment M

11 
are gradually reduced to a negligible level. Bhattacharya and 

Basudhar (1999) have discussed certain limitations of this method and 
proposed a new powerful and efficient equation solver, which has been coded 
in a computer program, SOLVE. 

Line of Thrust 

Figure l(c) shows, on a typical interslice boundary, the normal 
component of the effective interslice force, Z' together with the heights L 
and L' of the points of action of the total and effective inter-slice forces 
respectively from the slip surface. Accordingly, the lines joining these points 
at various interstice boundaries are called the line of thrust for total stress 
and for effective stress respectively. In the Spencer method of analysis, these 
are obtained as a part of the solution. Expressions for L, L' and Z' are 
given by Spencer (1973) and by Bhattacharya (1990) for unloaded and loaded 

slopes respectively. 

Acceptable Line of Thrust - Introduction of Tension Crack 

In those cases in which the positions of the lines of thrust (obtained as 
part of the solution) are not satisfactory, Spencer (1973) has recommended 
the assumption of a water-filled vertical tension crack running parallel to the 
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FIGURE 2 Discretization Model for Homogeneous Slopes 

crest of the embankment. The depth of the tension crack, z., can be assumed 
as the depth of zero active earth pressure, Zo, given by: 

2c' 
Zo = 

yF(l-r.) 

l+sin¢;n 

I-sin¢~, (3) 

The above expression is, however, applicable only to slopes in 
homogeneous soils in which the pore water pressure increases with depth in 
direct proportion to the overburden. 

Depth of Tension Crack {IS Design Variable 

Equation (3) requires an iterative procedure to solve for the depth of 
tension crack z0 • Spencer (1973) suggested that the value of F occurring in 
this expression can be obtained from a preliminary trial taking k = 1 
throughout and with no tension crack. In the search for critical slip surface, 
the value of F changes from one trial shear surface to another. For slip circle 
analysis, Spencer ( 1968) has provided a chart to obtain z

0 
for various 

homogeneous slopes and soil and pore pressure coefficient values. In the 
search for critical slip surfaces of general shapes, the iteration can be 
conveniently done by treating z, as a design variable together with an upper 
limit for z. as z0 • This aspect is further discussed in a later section. 

Minimization of the Safety Functional 

Slice Discretization 

The potential sliding mass is divided into n vertical slices of uniform 
width (Fig.2). Let •Yi, y2, Y;, .. . , Yn+i be the y co-ordinates of the shear 
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surface at the slice boundaries. The shear surface terminates at the bottom of 
a vertical tension crack of depth 2i. If x 1, x2, ••• , X;, Xn+I be the corresponding 
x co-ordinates, then, Yn+i = (H1 - 2i); x1 = xL and, ¾+I = xu. From these, the 
angle a; that the base of the ith slice makes with the horizontal can be 
calculated. 

Design Vector 

The shape and location of a shear surface is completely defined by y2, 

y3, ••• , Y;, .. . , y
0

, 2t, xL, and Xu and, for a given soil, the factor of safety can 
be expressed as a function of the above co-ordinates. The search for the 
critical surface is to find these co-ordinates, which minimizes the factor of 
safety. The design vector in this case is, therefore, as follows: 

(4) 

where, ndv is the total number of design variables. Clearly, the number of 
design variables is directly proportional to the number of slices adopted in 
the computation. When 2i is not considered as a design variable, ndv = n + l. 

Objective Function 

Since the objective is to minimize the safety functional, F, it is identified 
as the objective function and can be expressed in tenns of the design vector as: 

F = f(D) (5) 

Design Constraints 

In order to ascertain that the shape and location of the slip surface are 
physically reasonable and kinematically compatible, the following restrictions 
or constraints need to be imposed on the choice of the design variables. The 
constraints enumerated below are all inequality constraints. 

Boundary Constraints 

I. The shear surface must lie within the slope geometry; this will be 
satisfied if the following restrictions are imposed. 

(i) (6a) 

2, 3, ... , m I + 1 ; j 



A NEW PROCEDURE FOR FINDING CRITICAL SLIP SURFACE 155 

(ii) 

where m 1 is the number of interslice boundaries lying to the left 
of the toe. 

(6b) 

(m1 + 2) ::5 i ::5 (m1 + m2 + I) 

and (m1 + I) ::5 j ::5 (m1 + m2) 

where, m2 is the number of interslice boundaries within the 
inclined portion (including the toe) of the slope surface and x1 is 
the x-coordinate of the toe. 

(iii) g j (D) (6c) 

(m1 + m2 + 2) ::5 i ::5 n 

and (m1 + m2 + I) ::5 j ::5 (n - I) 

2. The shear surface should not penetrate any rigid stratum below. Assuming 
that the rigid stratum boundary is a horizontal one at a depth Dr , as in 
Fig.2, the normalized form of the above requirement is given by: 

(7a) 

When the hard stratum boundary is an irregular one, the above 
constraint is given by: 

giD) = kil _ l 

lzfl 
::5 0 (7b) 

where, z; represents the corresponding ordinates of the irregular rigid 
boundary. If, however, the lowest point YM of this boundary is found 
out, then, instead of putting a constraint on all negative Yi, only one 
constraint would do. This can be expressed as: 

(7c) 
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3. When the depth of tension crack, z, is a design variable, an upper limit 
for z, is set at Zo, the depth of zero active earth pressure (Eqn.3). 

(8) 

Curvature Constraints 

4. For the shear surface to be concave upward, the following relationship 
should be satisfied. 

(9) 

Side Constraints 

5. To ensure reasonable values and to avoid unnecessary search, an · 
appropriate lower bound on the design variable F may be imposed as 
follows: 

(10) 

where F O is the specified lower bound on F. Similarly, appropriate 
upper and lower bounds may be imposed on the design variable 0. A 
detailed discussion on this has been given by Bhattacharya and 
Basudhar ( 1999). 

Acceptability Constraints 

To obtain a physically acceptable solution, the following constraints 
need to be imposed : 

I. No state of tension should be implied to exist above the slip surface. 
For this, control is effected on the position of the line of thrust. The 
line of thrust, which is obtained as a part of the solution should lie 
within the middle thirds of the heights of the interslice boundaries. 
However, it has been observed that imposition of such constraints may 
become too stringent for smooth progress of the minimization scheme. 
To allow more flexibility, therefore, the line of thrust is restricted to lie 
within the s liding mass. The following normalized forms of the 
constraints are considered: 
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g/D) = 
-L; 

:5 0 I, 2, .. . , n - I ( 11 a) 
H ; 

gj(D) 
· L 

= -'- I :5 0 I, 2, ... , n - I (11 b) 
H; 

where, referring to Fig. l(c), L; is the height of the point of application 
of the interstice forces from the shear surface and H; is the height o f 
the ith interslice boundary. 

However, situations may arise where the above constraints are 
found hard to satisfy particularly in locations near the crest of a 
s lope. In some cases it also happens that the above constraints are 
satisfied, yet , the li ne of thrust for effective stress is no t 
satisfactory. In such cases introduction of tension crack generally 
results in acceptable li ne of thrust . In some cases , in addition to 
ten s ion crack, other assumptions regarding the s lopes of the 
interslice forces are to be tried in order to obtain reasonable lines 
of thrust (Spencer, 1973 ). 

2. The internal forces obtained from the solution should not violate 
the Mohr-Coulomb failure criterion anywhere within the sliding 
body. This can be ensured by checking that the values of the 
factors of safety a long vertical interfaces are not less than the 
overall factor of safety of th e s lope . However, it has been 
demonstrated (Spencer, 1981) that in those cases in which the 
obtained line of thrust is satisfactory, the solutions generally show 
good agreement between the average factor of safety against 
shearing on the slip surface and the factors of safety on the critical 
shear planes (which may not be vertical). On the other hand, it is 
not desirable to burden the numerica l scheme with t oo many 
constraints, unless they are essential , so that the progress of 
minimization is not unduly affected. Keeping the above 
observat ions in view, no such constrain t has been imposed; 
however, the obtained solution is checked for any violation of this 
requirement. 

3. The directions of internal forces obtained as part of the solution should 
be kinematically admissible. Following the discussion above, in order to 

· avoid using too many constraints, no such constraint has been imposed. 
However, in all cases the obtained solutions are checked for the 
admissibility of signs of the forces, consistent with the method of 
analysis. 
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Proposed Direct Procedure for Determination of Critical 
Slip Surface 

Principle 

The procedure of determination of critical shear surfaces for which 
formulation has been presented above may be referred to as the Indirect 
Procedure as it involves, in the process of arriving at the critical slip 
surface, numerous attempts to solve the stability equations for a large 
number of trial slip surfaces. Rigorous methods of analysis such as the 
Spencer method or the Morgenstern and Price method call for an 
elaborate numerical technique for solving the pair of nonlinear stability 
equations. It has been reported that apart from being slow, such 
techniques occasionally meet with convergence difficulties (Soriano, 1976; 
Bhattacharya and Basudhar, 1997). 

It has, therefore, been felt that it would be very useful if the slope 
stability problem be formulated in such a manner that the critical slip 
surface is determined directly obviating, thereby, the tedium of solving a 
couple of nonlinear equations every time a trial slip surface is generated by 
the auto search technique employed in the minimization scheme. This may 
be achieved by including both F and 0 in the design vector along with the 
sl ip surface co-ordinates while putting the force equilibrium and the moment 
equilibrium requirements as equality constraints. The optimal design vector 
would now give not only the shape and location of the critical slip surface 
but also the factor of safety, F, and the interslice force angle, 0, associated 
with the critical shear surface. However, the objective function, namely, the 
factor of safety of the slope, remains unchanged. Thus, in this new 
formulation, the objective function, F, also appears as a design variable. 
The procedure of determination of critical slip surface based on this new 
formulation will henceforth be referred to as the direct procedure. The 
basic problem may be stated as follows: 

Find the shear surface as well as the corresponding factor of safety, F, 
and the interslice force angle, q, such that the factor of safety of the slope 
is minimized subject to the conditions that: 

(i) the force equilibrium condition is satisfied i.e .. , Zn = 0 

(ii) the moment equilibrium condition is satisfied i.e .. , Mn = 0 

(iii) the shape of the critical slip surface is kinematically admissible and that 
the obtained solution satisfies the acceptability criteria discussed in the 
preceding section. 
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Design Vector and Constraints 

From the above, it is clear that for the direct procedure, the design 
vector defined earlier is extended by the inclusion of two additional design 
variables, F and q, and is given by : 

The constraints associated with the direct formulation includes all the 
inequality constraints associated with the indirect formulation discussed earlier. 
In addition, two equality constraints are required to be imposed in the form 
of the two equilibrium requirements (Zn = O; Mn =O) which are inherent in 
the formulation itself. These two conditions can be combined to form a single 
normalized equality constraint as: 

(z~+SrM~ ) 

(ybH1 )
2 (13) 

where, lj stands for the fh equality constraint function, H1 is the height of the 
~ slope, g is the unit weight of soil, b is the width of each slice and Sr is a 

scale factor. The scale factor Sr is introduced to make the function well 
behaved without any eccentricity resulting from the poss ible large difference 
in the magnitude in the values of Zn and Mn. Otherwise the iterative scheme 
to find the minimum may not converge. In this analysis, the scale factor has 
been chosen as given below and used earlier by Morgenstern and Price 
(1967). 

[az
11 ]

2 

+ [azn ]
2 

aF ae 
Sr = 

[aMn ]
2 

+ [aM 0 ]

2 

aF ae 
(14) 

Mathematical Programming Formulation and Solution Procedure 

The constrained minimization problem stated above can be cast as a 
mathematical programming problem of the following general form: 

Find D such that 

f(D) ➔ Min. (I Sa) 
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subject to g i D) ::S 0 

liD) ::S 0 

j 

j 

1, 2, ... , n;. 

1, 2, ... , n0 • 

(15b) 

(15c) 

where, ni and n
0 

are the total number of inequality and equality 
constraints respectively. D, f(D) , g(D) and 1 (D) represent the design 
vector, the objective function, the inequality and the equality constraint 
functions respectively. 

Since it is difficult to obtain an initial feasible decision vector, a 
method, which accepts infeasible initial design vector is advantageous. The 
extended penalty function method enunciated by Kavlie (1971) is adopted 
here because of the fact that this method readily accepts infeasible decision 
points, but the optimal solution lies in the feasible region. In this method, the 
modified objective function is formed as: 

p 

tp(D,rk) = f(D)-rkLGi[g/D)] (16) 
j=I 

where function G is chosen as follows: 

(17) 

where, the tolerance, e, is given by: 

(I 8) 

0
1 

is a parameter defining the transition between the two types of penalty 
terms and p is the total number of constraints. General guidelines for 
appropriate choice of the parameters 01 and, e are available in the literature 
(Kavlie and Moe, 1971; · Cassis and Schmit 1976). r is a positive constant 
called penalty parameter and rk is its value corresponding to the k

th 
cycle of 

minimization. Using a reduction factor c (usual value is 0.10), the penalty 
parameter rk is made successively smaller in order to obtain the constrained 
minimum value of the objective function f(D). Thus, 

(19) 
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FIGURE 3 Critical Slip Surfaces obtained from Various Techiques 
for the Example Problem 

The composite function 1./J (D) so generated, is then minimized by using 
Powell's method of conjugate directions for multidimensional search and 
quadratic interpolation technique for unidimensional search (Fox, 1971 ). 

The proposed Direct Procedure formulated above has been coded in a 
Fortran program SUMSTAB and all computations reported herein have been 
carried out using the same. 

"' Illustrative Example 

Figure 3 presents a section of a homogeneous slope. The soil properties 
viz., the effective angle of shearing resistance ¢ ' , the stability ratio ( c'/yHr) 
and the pore pressure ratio, ru are as indicated in the figure. The actual value 
of y and c' are taken as 20.0 kN/ m3 and 12.20 kPa respectively. The same 
slope was earlier analysed by the following investigators, using different 
minimization techniques as given below: 

I. Spencer (I 967) using slip circle analysis and grid search technique. 

2. Narayan et al. (I 976) using general slip surface and variational 
technique. 

3. Baker (1980) using general slip surface and dynamic programming 
technique. 

The purpose of selecting this example problem is to present a 
comparative study of the developed Direct Procedure with the other existing 
techniques such as based on grid search, variational calculus and dynamic 
programming technique etc and thereby validate the program SUMSTAB with 
respect to the previously reported results. 
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Present Solution 

It is well known that any nonlinear programming problem is starting 
point dependent and engineering judgement is required to choose a good 
starting point. In the present analysis, therefore, three widely different starting 
points or initial design vectors (which correspond to three different shear 
surfaces) have been considered. A total of 13 slices have been used in the 
computation. Such a selection of the number of slices is based on observations 
in earlier studies (Bhowmik and Basudhar, 1989) that in noncircular analysis 
of homogeneous slopes, when the number of slices exceeds 12, there is no 
significant variation in the results. To start with, it has been assumed that 
there is no tension crack and_ that the interslice forces are all parallel i.e., 
k = 1 throughout. As expected, three different initial design vectors have 
resulted in three different local minima i.e. , three different F min values 
corresponding to three different final shear surfaces. Out of these, the shear 
surface, which is associated with the least of the F min values (F min = 1.03) has 
been selected as the critical shear surface; however, the acceptability of this 
surface requires to be checked. 

On examining the detailed results, it has been observed that although 
the line of thrust for total stress remains entirely within the middle-third, the 
solution is unacceptable as the effective interslice force ( Z') at the last 
interslice boundary is negative, which implies development of tension. As a 
remedial measure, presence of a water-filled tension crack running parallel to 
the crest of the slope has been assumed. In the re-analysis, the depth of 
tension crack has been treated as a design variable with an initial depth (zJ 
of 3.0 m based on Spencer's chart (Spencer, 1968). The revised solution is 
found to be acceptable. The values of the minimum factor of safety and the 
corresponding interslice force angle have been obtained as : F min = 1.004 and 
0 = 0.4164 rad. The final depth of the tension crack associated with the 
acceptable solution has been obtained as 2t = 4.893 m. The critical shear 
surface thus obtained is presented in Fig.3 and the associated line of thrust 
and other internal variables are presented in Table I. It is seen from the 
Table that the line of thrust for total stress as well as that for effective stress 
(indicated by the ratios L/H and L'/H respectively) lie within the middle
third of the heights of the interslice boundaries. Furthermore, values of the 
factors of safety along vertical interfaces, F v• are seen to be greater than the 
value of F min> as it should be. The Table also shows that the effective normal 
and shear stresses at slice bases and, also, the normalized horizontal 
component of the effective interslice force (indicated by a' , i- and Z'/ybH1 

respectively) are all positive as required for an acceptable solution. 

It may be mentioned that a total of seventeen .,design variables 
(corresponding to thirteen slices) have been considered in the present analysis, 
including the depth of tension crack. The design vector and constraints at the 
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Table 1 Calculated Responses Associated with the Solution to the 
Example Problem 

Slice a' ' L/H L'/H 
Z' bH 

F,. I 

No. kPa kPa 
y 

I 21.89 30.17 
0.57 0.61 0.05 3.43 

2 44.68 49.19 
0.42 0.45 0.09 2.96 

3 55.08 58.00 
0.39 0.41 0.13 2.71 

4 59.50 62.54 
0.37 0.39 0.16 2.56 

5 65.00 64.47 
036 0.37 0.18 2.46 

6 63.00 64.45 
0.35 0.36 0.18 2.40 

7 60.00 62.99 
0.35 0.36 0. 17 2.38 

8 58.50 60.29 
0.34 0.35 0. IS 2.39 

9 56. 15 55.66 
0.34 0.35 0.13 2.45 

10 44.19 48.21 
0.34 0.35 0.09 261 

II 41.08 45.91 
0.~5 0.36 0.06 2.83 

12 29.71 35.31 
0.37 0.48 0,03 3.45 

13 14. 10 21.89 

beginning and at the end of minimization are given in Table 2. The Table 
indicates that even though the initial design vector is infeasible with regard 
to the equality constraint, the proposed scheme, utilizing the Extended Interior 
Penalty Function method, brings out a feasible optimal solution quite 
efficiently. 

Comparison with Earlier Solutions 

Table 3 presents the values of the minimum factors of safety Fmin along 
with the interslice force inclinations 0, as reported by various investigators 
using different techniques. It is seen that the present analysis has yielded the 
least value of F min and that obtained by Baker ( 1980) using dynamic 
programming is closest to this value. The Fmin values obtained in the other 
two solutions (Spencer, 1967; Narayan et al., 1976) are a little higher. For 

J the sake of comparison, the critical slip surfaces for all these solutions are 
also presented in Fig.3 alongside the acceptable critical slip surface obtained 
in the present solution. 



Table 2 Design Vector and Constraints for the Example Problem 

STARTlNG POINT 

o, e. f t/1 F (} 

0.001 -0.1 I.I 1.3014 I.I 0.40 

Design Variables 17 Variables for 13 Slices 

- 0.5 1 0.00 0.5 15 1.50 2.50 4.25 

11.95 15.00 18.85 22.75 61.20 -5.00 

27.50 

Constraints (inequality) 

- 0.9941 - 0.7775 -0.6685 - 0.5857 - 0.5242 -0.4698 

- 0.2960 -0.2342 -0.1637 - 0.0953 - 1.0200 -0.0050 

- 0.7500 - 0.4000 - 0.4500 -0.3500 -0.0999 -0.8000 

- 0.4505 - 0.3854 - 0.3532 -0.3424 -0.3325 -0.3316 

- 0.3630 - 0.4 186 -0.7233 - 18.82 -0.5496 -0.6146 

-0.6675 -0.6684 -0.6667 - 0.6592 -0.6370 -0.5814 

- 0. 1001 - 0.3990 -0.0625 

Constraint (equality) : 0.800£ - 02 

z. 
- 0.2534 x 103 

6.40 

1.1 0 

-0.4 163 

- 0.4700 

-0.0500 

-0.3333 

-0.6468 

- 0.2767 

M. 

-0.1425 X 104 

9.00 

0.40 

- 0.3618 

-0.0150 

- 0.8500 

-0.3408 

- 0.6576 

17.82 

-0\ 
~ 

z 

~ 
Cl 
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~ 
rr1 
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n 
~ 
0 
C: 

~ 
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-
OPTIMAL POINT 

cl, co f 

0.001 - 1.0 X 10- 8 1.0041 

Design Variables : 17 Variables for 13 Slices 

-0.2338 0.2190 

12.1122 15.0213 

25.6071 

Constraints (inequality) 

-0.7357 -0.6213 

-0.2389 -0.1883 

-0.2590 - 0.2433 

-0.5682 - 0.4226 

-0.3404 -0.3395 

-0.6408 -0.6480 

- 0.0,141 -0.4164 

Constraint (equality) : 0.7723E-14 
No. of r-minimization required = 7 

1.0750 

17.9337 

-0.5381 

- 0.1322 

-0.2381 

-0.3864 

-0.3451 

-0.6533 

-0.4611 

' 
Table 2 Continued 

t/1 F 9 z. M. 

1.0061 1.0041 0.4 164 0.3719 X 10- • 0.3048 X 10-l 

2.2580 3.7229 5.4468 7.4 141 9.6194 

21. 400 62.1 160 - 0.0448 1.0041 0.4164 

-0.48 11 -0.4286 -0.3796 -0.3329 -0.2866 

-0.0672 -0.6866 -0.4032 -0.3270 -0.2819 

- 0.2874 -0.4164 -0.0033 -0.6939 -0.4607 

- 0.3695 -0.3592 -0.3520 -0.3467 -0.3428 

-0.3729 -0.4318 -0.5774 -0.6136 -0.6305 

-0.6572 -0.6596 
' 

-0.6605 -0.6549 -0.6271 

Note : Out of a total of 17 design variables, the first 12 denote y-coordinates, the next two x-coordinates of the two ends of a shear surface. the next 
two denote F and 9 while the last variable denote (H, - z,). Out of a total of 51 inequality constra ints, the first 12 are boundary constraints, next 
12 are curvature constraints, next 24 are constraints on the line of thrust, the next 3 are side constraints. 
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Table 3 Comparison of Various Solutions to the Example Problem 

S.No. Methodology used Minimum lnterslice Reference 
Factor of force angle 

Shape of Minimization technique safety in degree 

slip surface Fmin (J 

I. C ircular Grid search 1.07 22.50 Spencer (1967) 

2. General Variational technique 

(i) Direct 1.13 23.41 Narayan et al. 

(ii) Indirect 1.1 2 23.72 (1976) 

3. General Dynamic programming 1 02 22.50 Baker (1980) 

4. General SUMI 

(i) Acceptable 1.00 23.85 Present solution 

(ii) Unacceptable 1.03 24.66 Present solution 

From Fig.3, it is observed that the shapes and locations of the critical 
slip surfaces obtained from various techniques are markedly different. Among 
these, the critical surface obtained from the present analysis and that from 
Baker's analysis based. on dynamic programming are close to each other 
except at the upper end. This corresponds well with the closeness of their 
F min values. However, for a meaningful comparison, it is required to check 
whether the earlier solutions satisfy the prescribed acceptability criteria. Now, 
so far as an acceptable line of thrust is concerned, except in the case of 
solution using variational technique (Narayan et al., 1976), only the line of 
thrust for total stress were reported and shown to be satisfactory. This, 
however, does not necessarily imply that the line of thrust for effective 
stresses would also be satisfactory. To investigate this aspect further, the 
critical slip circle reported by Spencer (1967) has been reanalyzed using the 
program SOLVE. The results of the reanalysis indicate perfect agreement 
with the factor of safety value of 1.07 reported by Spencer (1967). Moreover, 
the line of thrust for total stress is seen to lie within the middle third of the 
heights of the interslice boundaries, as reported; yet, the line of thrust for 
effective stress and the resultant effective inters lice forces are far from 
satisfactory (details of these results are not presented here for the sake of 
brevity). Had this acceptability been checked in the reported solutions 
(Spencer, 1967; Baker, 1980), perhaps assumption of tension crack would 
have been necessary, as has been done in the present solution. It may be 
recalled that in the initial part of the present investigation also, a critical 
surface has been obtained, without considering tension crack, for which the 
obtained line of thrust for total stress is found to be satisfactory; yet, the 
corresponding line of thrust for effective stress is not acceptable. In the 
solution using variational technique (Narayan et al., 1976), unlike the present 
solution, an acceptable solution was obtained without introducing any tension 
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Table 4 Progress of Minimization in the Example Problem 

No. of Value of r Objective Composite z, M. 
r-minimization function function 

f tp kN/m kN-m/m 

0 I X 10-• I. !000 1.3014 -0.2534 E +03 - 0.1425 E +04 
(Starting Point) 

I I X 10- • 1.0007 1.0236 0.1204 E +04 0.4662 E +02 

2 IX I0-5 0.9999 1.0056 0.1270 E +03 0.1312 E +03 

3 IX IO-r, 1.001 I 1.0051 0.9338 E +02 0.2525 E +03 

4 IX I0- 7 1.0002 10047 0.4021 E +02 0.1864E +03 

5 Ix I0-8 1.0033 1.0069 0. 11 37 E +02 0.2605 E +02 

6 IX 10-9 1.0042 1.0063 0.9508 E +00 0.9785 E +00 

7 I X 10-10 
1.004 I 1.0061 0. 1432 E +00 0.3439 E +00 

8 I X 10-•1 1.004 I 1.006 I 0.3719 E - 04 0.3048 E -02 
(Optimal Point) 

crack. This may be attributed to the difference in the definition of the 
interslice force functions in the two analyses. It may be noted that in the 
former case the interslice force function was based on effective stresses 
whereas in the present analysis this function (k-distribution) is based on total 
stresses. 

As regards the other acceptability criteria that the values of factors of 
safety along vertical interfaces (F v) cannot be less than that for the critical 
slip surface (F min) while the present solution and the solution by variational 
technique satisfy thi_s criteria, this criterion has been apparently ignored in the 
other two solutions. 

Progress of Minimization 

Table 4 presents the variation of the objective function f and the 
composite function 1/J with the penalty parameter r. It is seen that unlike 
interior penalty function method and like exterior penalty function method the 
decrease in the function values with the progress of minimization · is not 

·monotonic. On examination of the detailed results (not presented here) it has 
been observed that in the first few cycles of r-minimization, the function 
values (f and 1/J) decrease continually till they reach some minimum values 
(usually controlled by the lower bound for F used in the analysis) and the 
scheme shows a tendency to keep all the inequality constraints satisfied. 
However, at these stages the equality constraint remains violated i.e., its value 
does not decrease significantly, as is evident from the values of Zn and M

0 
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presented in the Table. Afterwards, the mm1m1zation procedure attempts to 
effectively satisfy the equality constraint by re-adjusting the design variables 
F and 0. This eventually results in subsequent increase in the value of F till 
convergence is achieved. It may be mentioned that similar trends have been 
observed in the case of a wide range of problems studied by the authors, in 
which the direct procedure has been used. 

Conclusions 

From the studies contained in this paper the following conclusions are 
drawn: 

I . The proposed direct procedure for determination of critical slip surface 
promises to be a powerful tool for the stability analysis of homogeneous 
slopes. However, as is usual with any nonlinear programming approach, 
the developed numerical scheme is starting point dependent. As such, to 
locate the global minimum, it may be necessary to try with a few 
different starting points; however, the effort can be reduced if the initial 
design vector is based on engineering judgement. 

2. The extended interior penalty function method adopted in the proposed 
direct procedure appears to be a powerful algorithm in handling 
infeasible design points as well as equality constraints for this class of 
problems. Acceptance of infeasible starting points is an advantage with 
the proposed procedure· to solve a wide variety of problems. 

3. The results obtained by using the proposed procedure compares well 
with those obtained by using other techniques e.g., calculus of variation 
and dynamic programming technique. However, the proposed technique 
is more flexible in incorporating the acceptability criteria in the analysis. 

4. In most of the analysis using Spencer's method, introduction of tension 
crack is necessary to get an acceptable critical shear surface. The 
method developed has the provision for including the depth of the 
tension crack in the design vector, which increases its potential for 
obtaining acceptable solutions. 
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Notation 

b width of slice 

c' effective cohesion 

D force due to pore water pressure on an interslice 
boundary 

D design or decision vector 

c\ transition parameter in the extended penalty function 
formulation 
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F 

H, 

h 

k 

L 

L' 

1/D) 

Me 

M" 

n 

ndv 

n. 

n; 

N 

Pe 

Q. 

rk 

ru 

Sm 

sv 

factor of safety associated with a given or trial 
shear surface 

minimum factor of safety corresponding to the 
critical shear surface 

factor of safety against shear along a vertical 
interface 

objective function 

l inequality constraint function 

height of an interslice boundary 

height of embankment 

mean height of a slice 

co-efficient of slope of interslice forces 

height of the point of action of an interslice force 
for total stress above the base of the interslice 
boundary on which it acts 

height of the point of action of the interstice force 
for effective stress above the base of the interslice 
boundary on which it acts 

/1 equality constraint 

externally applied moment 

external moment required to be applied to the nth 

s lice to stabilize the embankment 

number of slices 

number of design variables 

number of equality constraints 

number of inequality constraints 

normal force at the base of a slice 

external vertical force on a s lice 

external horizontal force on a slice 

penalty parameter in the ktl' cycle 

pore pressure ratio 

mobilized shear force along base of a slice 

mobi lized shear force along an interslice boundary 
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T 

w 

z 

INDIAN GEOTECHNICAL JOURNAL 

force due to water pressure m tension crack 

weight of a slice 

x co-ordinate of the lower intersection point of the 
shear surface with the ground surface 

x co-ordinate of the upper intersection point of the 
shear surface with the ground surface 

y co-ordinate of the intersection of the i111 interslice 
boundary with the shear surface 

resultant interslice force on any interslice boundary 

Z' = force due to effective stress normal to a interslice 
boundary 

2i depth of tension crack 

2il depth of zero active effective stress 

Z
0 

external force required to be applied :fo the nth slice 
to stabilize the embankment 

a inclination of slice base with the horizontal 

y bulk density of soil 

Yw density of water 

0 characteristic angle defining the slope of resultant 
interslice forces 

o slope of resultant interslice forces 

0
1 

transition parameter in the extended penalty function 
method 

c tolerance in the extended penalty function method 

a total stress nor~al to base of a slice 

a' effective stress · normal to base of slice 

r shear stress along the base of a slice 

¢' effective angle of shearing resistance 

,p;
11 

mobilised angle of shearing resistance 

1/J penalty function or composite function 




