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Passive Earth Pressure Coefficients by 
Generalized Procedure of Slices 

G. Bhattacharya* and S. Pant 

Introduction 

D
etermination of the passive earth pressure acting on a rigid retaining 

wall is one of the most extensively studied stability problems in 
geotechnical engineering. Most methods of calculating passive 

pressures consider the soil mass to be in limiting equilibrium and differ only 
in assumptions regarding the shape of the failure surface and the application 
of statics. Due to its versatility in accounting for any shape of failure surface 
and variable soil properties, the method of slices has all along attracted the 
attention of the researchers (Janbu, 1957; Shields and Tolunay, 1973; 
Basudhar and Madhav, 1980) and promises to be extremely useful to the 
practicing engineers to determine the earth pressure on a retaining wall. In 
this note, a simple approach using the method of slices has been proposed 
for estimating passive earth pressure coefficients. 

Formulation 

In this study the failure surface has been considered to be of general 
or arbitrary shape and an expression for the passive thrust in a general c-</> 
soil has been derived. Figure I shows the soil-wall geometry with a potential 
slip surface of arbitrary shape and the potential sliding mass divided into 11 

number of vertical slices. For a given geometry of the soil-wall system and 
the material properties, the passive earth pressure is a function of the shape 
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FIGURE I : Slice Discretization for a Trial General Slip Surface 

and location of the potential slip surface. With the co-ordinate axes chosen 
as in Fig. I, let x" be the x co-ordinate of the upper intersection point of the 
slip surface with the ground surface. Then, the shape and location .of ~he 
potential slip surface is completely defined by y1, y2, y3, ••• , y1, ... , y

0
_1 and 

x
11 

and, therefore, the passive earth pressure can be expressed as a function 
of the above co-ordinates. In the proposed procedure an attempt has been 
made to determine a set of values of the above co-ordinates for which the 
passive earth pressure is the minimum; or, in other words, the co-ordinates 
defining the critical slip surface which, for the condition of critical equilibrium 
(F = I), i? the failure surface. 

Objective Fu11ctio11, Decisio11 Vari{tb/es {tlU/ Constraints 

For the evaluation of passive earth pressure the method developed by 
Janbu (1957) has been used in the present study. For the sake of completeness 
the salient working formulae are reproduced here. Referring to the Figs. 2(a) 
and 2(b), the horizontal (normal) component of the passive earth pressure can 
be expressed as: 

P., = Eb = -[t.A; + J;sJ (]) 

where 

A ; 
A ' 

= _, 
'Y/a, (2) 
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A '. 
I (3) 

I + tan¢' tan a; 
= 

I+ tan 2 a; (4) 

dw dP 
P; - +- = YZ; +q; 

dx dx 
(5) 

(6) 

T,- = dE; - h - E tana - z dQ; 
dx ,, ' ,, ' dx 

(7) 

(8) 

(9) 

where h ,, = assumed position of thrust line 

The significance of the terms has been explained in Figs. 2(a) and 2(b). 
The vertical component of the passive earth pressure at the contact face b-b 
is expressed as: 

( 1 I) 

where o = angle of wall friction . 

The passive earth pressure coefficient is expressed as: 

KP= 
0.5yH 2 + q H (12) 

In this paper passive earth pressure coefficients are obtained for two 
different cases: 
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FIGURE 2 : (a) Sliding Mass with Forces Acting, 
(b) Forces on a Typical Slice 

Case A: The lowest value of K" will result if it is assumed that all the 
vertical shear forces (T) are lost close to the wall where the shear force ts 
maximum (Shields and Tolunay, 1973). For such a case, t = O 

Case B: Passive earth pressure coefficients are also obtained without 
neglecting the vertical shear forces (T) at the interfaces of the slices. 
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To validate the developed computer program and also for the sake of 
comparison with existing solutions, solution has also been obtained by 
considering a failure surface composed of a logarithmic spiral and a straight 
line as suggested by Terzaghi ( 1943). In this case the computation becomes 
much simpler as the problem reduces to one of single variable unconstrained 
minimization (Basudhar and Madhav, 1980). 

Decision Variables 

From the series of equations listed above, it is clear that for a given 
soil-wall system the passive pressure varies only with • the shape and location 
of the slip surface. Hence the passive pressure is minimized with respect to 
the co-ordinates defining the location of the slip surface. So the decision 
variables are the co-ordinates of the slip surface and the decision (D) can be 
expressed as 

(13) 

So, the problem involves n decision variables where n is the number of 
slices into which the sliding mass is divid~d. 

Objective Functio11 

The objective function is the passive pressure, which can be expressed 
in terms of decision vector D as: 

(14) 

Constraims 

In order to ascertain that the shape and location of the slip surface are 
physically reasonable and geometrically compatible, some constraints need to 
be placed on the choice of the decision variables. A physically reasonable 
and geometrically compatible slip surface should satisfy the following 
constraints: 

I. No part of the shear surface is permitted to lie beyond the boundary of 
the soil-wall system. This requires: 

I. y; ~ 0 or - y; :5 0 

= 1,2, ... ... , n-1 (15) 
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and 

( 16) 

2. For a general analysis it is assumed that the potential slip surface is 
concave upward. In the limiting case the obtained shear surface may be 
a plane. This requires: 

i = I, 2, .. .... , n - I ( 17) 

3. The slope of the shear surfaces at its intersection with the ground 
surface is to satisfy the maximum obliquity condition: 

:re <P 
a l :s; 

4 2 

or, g;(D) = _a_l _ _ , 

.7!.. - p_ 
( 18) 

4 2 

where a 
1 

= base slope of the first slice .. 

4. The line of thrust should be above the slip surface and within the 
middle third of the inters/ice depths. This requires: 

i = I, 2, ...... , n (I 9) 

In the present method of analysis (Janbu, 1957), the line of thrust is 
pre-assigned as: 

h = kz. t , I 

where k 

i = 1, 2, ...... , n (20) 

constant whose value is normally made to lie between 
0.3 and 0.4. 

.. 
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It appears, therefore. that there is no need to impose any constraint in this 
regard. However, it has been observed that for smooth convergence it is 
better to allow some flexibility in the position of the line of thrust during the 
optimization process, rather than assigning a fixed position at the start. This 
can be conveniently done by including the coefficient k in the design vector 
and imposing a reasonable limit for it as: 

0.30 :5 k :5 0.40 

(21) 

(22) 

MatJ,enwtical Programming Problem 

To locate the critical slip surface, the factor of safety is to be 
minimized. The problem is stated as an optimization problem as follows: 

Find the decision vector D111 such that 

F = f(D
11
,)- is the minimum of f(D) (23) 

subject to 

j = 1,2, ....... M (24) 

where M total number of constraints 

inequality constraint function. 

Minimization Procedure 

The problem stated above is one of multivariable constrained 
minimization. Solution has been attempted using the Sequential Unconstrained 
Minimization Technique (SUMT) popularly known as the penalty function 
method. Since it is difficult to obtain an initial feasible decision vector, a 
method, which accepts infeasible initial decision vector, is advantageous. The 
extended penalty function method enunciated by Kavlie ( 1971 ) has been used 
in the present study because of the fact that this method readily accepts 
infeasible decision points. A detailed description and application of the 
method to the stability problems are available in the literature (Bhattacharya, 
1990). The developed program has the provision for using the interior penalty 
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function method whenever an initial feasible design vector is available. The 
sequential unconstrained minimization has been carried out in combination 
with the Powell's method for multidimensional. search and quadratic fit for 
unidimensional search. 

Results and Review 

Number of Slices 

It has been observed that the K
1
, values yielded by the proposed 

procedure markedly vary with the number of slices used in the computation. 
The results show a monotonic decrease of such values with the increase in 
the number of slices up to a certain number of slices beyond which there 
is no appreciable variation. This number. again. varies with the kind of slip 
surface considered in the analysis. For analyses based on log spiral composite 
slip surfaces, this number is in the vicinity of 20, while for those based on 
general slip surfaces it ranges from 6 to 8. In all computations for which 
results are presented below, the number of slices has been chosen 
accordingly. 

Solutions Based on Log Spirltl Compo.Iite Slip Surface 

Considering that the failure surface is composed of a log-spiral and a 
straight line, Basudhar and Madhav (1980) presented a simplified method of 
analysis wherein the inclinations of the interslice forces were varied linearly 
from the Rankine value in the Rankine zone to the wall friction angle over 
th~ length of the curved rupture surface. It has been reported that for purely 
frictional soils the passive earth pressure coefficients, ~, obtained by their 
simplified method agree closely with those obtained using more rigorous 
methods (Chen, 1975; Sokolovsky, 1965; Shields and Tolunay, 1973). Keeping 
this in view, it has been decided to test the validity of the developed 
computational scheme on the basis of a comparison between the results of 
this paper with those of Basudhar and Madhav ( 1980). Table I presents. for 
a dry and purely frictional backfill with a horizontal surface, a comparison 
between the results of the present analysis considering a failure surface 
composed of a log-spiral and a straight line, with those reported by Basudhar 
and Madhav (1980). ·soth Case A and Case B have been considered. The 
data used for the computations are as follows: H, = 5.0m. q = 2.0 t/m2 and 
y = 2.0 t/m3

• 

Case A: It may be observed from Table I that for o = 0, the present solutions 
are identical with those of Basudhar and Madhav ( 1980). For higher values 
of o the two solutions are in close agreement except in a few cases where 
the present solution gives slightly higher values; the largest variation being 
1.77% corresponding to ¢ = 40° and o = 40°. 
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Table I Comparison of Present Solution with Known Results 

f, in 8. in Basudhar KrishnaMurthy* Present Solution Basudhar 
degrees degrees and Madhav (Janbu) Case A and Madhav 

Case A Case B 
Composite General 

shear surface shear surface 
(I) (2) (3) (4) (5) (6) (7) 

10 0 . . 1.42 . 1.42 

5 . 1.55 1.53 1.52 1.56 

10 . 1.70 1.59 1.54 1.67 

20 0 2.04 . 2.04 . 2.04 

10 2.43 2.60 2.43 2.40 2.56 

20 2.65 3.00 2.66 2.54 3.12 

30 0 3.00 . 3.00 . 3.00 

15 4.13 4.50 4. 13 4.04 4.64 

30 4.87 6.00 4.90 4.58 6.93 

40 0 4.60 · . 4.60 . 4.60 

20 7.82 9.00 7.87 7.52 9.56 

40 10.49 14.00 10.68 9.88 19.35 

• As given in Basudhar and Madhav's Paper 

Present Solution 
. Case B 

Composite General 
shear surface shear surface 

(8) (9) 

1.42 . 

1.58 1.56 

1.63 1.61 

2.04 . 

2.56 2.50 

2.94 2.85 

3.00 . 
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In their paper Basudhar and Madhav ( 1980) have also reported about 
solutions obtained by Krishna Murthy ( 1972) which are based on Janbu's 
method (.Janbu, 1957) and, therefore. can be utilized for a meaninoful . . ::, 

comparison with the present solution which arc also based on the Janbu's 
method. For ;·eady reference, the above results (Krishna Murthy, 1972) are 
also presented in Tablt 1. It is observed that compared to the above, the 
present analysis (using 20 slices) yields much lower values: the laroest 
difference corresponding to ¢ = 40°, o = 40° is about 30%. It is, howe:er, 
interesting to note that when only a few number of slices (4 to 6) is used, 
the present analysis yield K" values which fully agree with those reported by 
Krishna Mu1thy. This observation highlights the effectiveness and efficiency 
of the proposed procedure as also the influence of the number of slices used 
in the computation. 

Case B: As expected. solutions corresponding to Case B yield values higher 
than in Case A because of the inclusion of interslice shear forces. The 
difference generally increases with the increase of ¢ and O. As in Case A, 
for o = · 0, the present solutions are identical with those of Basudhar and 
Madhav ( 1980). For higher values of <) . the present solution generally yields 
lower values except for ¢ = I 0°, i5 °~ 5° in which case it is marginally higher 
( 1.28%). In other cases, the present solutions are substantially lower; e.g., 
corresponding to ¢ = 30°,\ 6 = 30°, the margin of decrease is 15.5%. For 
</> = 40°, i5 = 40°, however, the present values are lower by a high margin 
of 25.97. 

Solutiom Based 011 Ge11eral Slip Surface 

The solutions based on general slip surface are also presented in 
Table I. It is observed that compared to the solutions based on the log spiral 
composite slip surfaces, those based on general slip surfaces yield much 
lower IS, values. The difference increases with the increase of¢ and i5 . For 
Case A, the largest reduction is 8.09% corresponding to <P = 40°, o = 40°. 
For Case B, the largest reduction is remarkably high (27.46%), also 
corresponding to </> = 40°. o = 40°. But in other cases, however, the difference 
is much less; e.g., for ¢ = 30°, o = 30° the difference is only 7.72%. As 
expected, Case B values are higher than those of Case A; the largest increase 
is about 23.4% corresponding to ¢ = 40°, 1) = 20°. 

Shape and Loc:a1io11 of the Failure Surface.\· 

It is of some interest to determine the shape and location of the failure 
surface of general shapes and compare it with the classical failure surface 
composed of a log spiral and a straight line. With the proposed procedure. 
the shape and location of the failure surface (critical slip surface 
corresponding to F = I) is obtained as a part of the solution along with the 
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KP values. For both Case A and Case B the following observations have been 
made: 

The obtained general failure surfaces generally differ from the corresponding 
classical rupture surfaces; ti1e magnitude of difference varying with the </> and 
6 values. By and large, the variation is more pronounced for Case A 
solutions. For this category of solutions. difference between the two surfaces 
increases as ¢ value increases and, for the same ¢ value, the difference 
increases as o value increases. The trend is the same for all combinations of 
r/J and o. For a short stretch near the wall the general surfaces are deeper 
than the corresponding log spiral composite surfaces but are located above 
them for the rest portion [Figs. 3(a) and 3(b)]. For the solutions for Case B, 
however, the trend appears to be reversed. Here the general surfaces are all 
along located below the corresponding composite slip surfaces and intersect 
the oround surface farther off from the wall. But. in comparison to the Case 

b 

A, the slip surfaces are observed to be more closely located, except for 
<f> = 40°, b = 20° and for <f> = 40°. c) = 20° [Figs. 4(a) and 4(b)]. 

(a) 

COMPOSITE FAILURE SURFACE 

GENERAL 

(b) 

C0l'-t1POSITE FAILURE SURFACE 

FIGURE 3 : Comparison of F:1ilure Surface (Case A) 
(a) </> = 30° and 6 = 15°: (b) </> = 30° and o = 30° 
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(b) 

GENERAL FAILURE SURFACE 
(da~hfd liM) 

FIGURE 4 : Comparison of Failure Surface (Case 8) 
(a) </> = 40° and I} = 20°; (b) </> = 40° and d = 40° 

Concluding Remarks 

On the basis of the studies contained in this paper the following 
concluding remarks · can be made: 

The developed numerical scheme, which couples Janbu's GPS procedure with 
the sequential unconstrained minimization technique of nonlinear programming, 
has proved to be an efficient and effective tool for the determination of 
passive earth pressure on retaining walls. In addition to the coefficient of 
passive earth pressure, the shape and location of the failure surface also come 
out as a part of the solution. The procedure does not involve any pre-assigned 
geometry of the shear surface and has the potential to be used for cohesive 
soils and also in heterogeneous soil conditions under arbitrary surcharge and 
earthquake type of loading. The study reveals that for purely frictional soils 
the passive earth pressure coellicients based on the assumption of classical 
log spiral rupture surface are on the nonconservative side with respect to an 
analysis based on general failure surface. The difference in the Kr values are, 
however, found to be less than I 0% except for ¢ = 40°, o = 40° in which 
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case the difference exceeds 25%. This is very significant. With respect to 
earlier solutions using method of slices (Basudhar and Madhav, 1980), the 
present solution appears to be on the conservative side. The difference is 
small (less than 6%) when the solution is obtained neglecting interslice shear 
forces; but when the inters I ice shear forces are considered the largest 
difference is nearly 20% for </> = 30°, o = 30°. This excludes the case 
</> = 40°, o = 40° in which case the difference is found to exceed 35%. 
Regarding the shape and location of the failure surfaces it has been observed 
that when interslice shear forces are taken into account, the obtained general 
failure surface is not much different from the classical log spiral straight line 
composite failure surface as long as </> value is less than 40°. 
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