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A New Approach of Solving the Stability 
Equations of General Slip Surfaces 

G. Bhattacharya* and P.K. Basudhart 

Introduction 

There are at present numerous methods for slope stability computations 
based on the concept of limit equilibrium and slice discretization. 
Among these, only a few methods belong to a category which satisfies 

all conditions of equilibrium and is valid for general shear surfaces. All these 
methods use a model of formulation which leads to a pair of simultaneous 
nonlinear equations. The solution of this pair of slope stability equations 
yields the factor of safety associated wi th a g iven potential shear surface. 
Due to the nonlinearly of the simultaneous equations, it becomes necessary to 
use an elaborate solution technique to compute the factor of safety. As the 
determination of the critical shear surface requires analysis of a number of 
trial shear surfaces, a sound and efficient solution procedure is needed. The 
study reported here is specifically concerned with the technique of solving 
the slope stability equations. 

A method of solution based on a two-variable Newton Raphson 
technique has been proposed by Morgenstern and Price (I 967). ln this 
method, it is necessary to put a number of intermediate controls on the 
variables to guard against nonconvergence and premature termination. 
However, intermediate controls may not be effective in all cases and their 
provision might reduce the efficiency of the numerical scheme. Furthermore, 
reservations have been expressed regarding the usefulness of the Newton 
Raph~on technique in. finding the zeroes of a function (Hamming, 1962), 
espectally where funct10ns of an unknown nature are involved. Wright (1969) 
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has proposed a soluticn scheme which is also based on the Newton Raphson 
technique. 

The simplest method of solution is presented by Spencer (1967) wherein 
each factor of safety equation is solved independently and plotted against an 
indicator of the interslice slope inclination. Thus, this is a numerical-graphical 
procedure. Subsequently Spencer ( 1973) has suggested outlines of an iterative 
scheme which is essentially the same as his previous procedure but can be 
used without graphical plotting. 

The scheme involves certain prerequisites, e.g., an initial guess for the 
unknowns, an algorithm to iterate over each variable by turns to satisfy the 
equilibrium equations and an appropriate convergence or termination criterion. 
Some guidelines for the selection of these have been suggested earlier 
(Bhattacharya and Basudhar, 1992). An essential feature of Spencer's scheme 
is that at each iterative step it requires the satisfaction of a physical condition, 
corresponding to either force equilibrium or moment equilibrium. This 
restriction might lead to nonconvergence of the numerical scheme in cases 
where the choice of the initial guess is unreasonable in respect of equilibrium 
requirements. Such an unforeseen situation can arise in any intennediate cycle 
of iteration. 

With this in view, a new approach is proposed in this paper for solving 
the factor of safety equations associated with methods of analysis satisfying 
complete equilibrium conditions such as the Spencer method (1973). The 
problem of finding the two unknowns from the two nonlinear equations has 
been formulated as a mathematical programming problem. In contrast to 
Spencer 's solution technique, in the proposed formulation the numerical 
scheme is not forced to satisfy physical conditions like the force and the 
moment equilibrium conditions at each step during the progress of 
minimization The solution procedure has been developed with particular 
reference to the Spencer method of analysis ( 1973). With a little modification, 
the same can be coupled with other methods having the same model of 
fonnulation (e.g. Morgenstern and Price method, 1965) and the GLE method 
(Fredlund et al. , 1981 ). 

Formulation of the Slope Stability Equations 

In the present study, Spencer's ( 1973) method of analysis has been 
extended to include the effect of external forces. As shown in Fig. 1, an 
external concentrated force acting anywhere on the ith slice is replaced by 
force components Pe, and Oe, together with a moment Me, . The external 
force can be either a surface force or a body force and is assumed to act at 
a height he, from the midpoint of the slice base. 
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FIGURE l : Definition Sketch 

For any method of analysis similar to the Spencer (1973) method, which 
satisfies all conditions of equilibrium, the formulation may be summarized as 
follows: 

Find F and q which satisfy the following requirements 

Force equilibrium 

(1) 

Moment equilibrium 

(2) 

where referring to Fig. t, Z
11 

and M11 are the external balancing force and 
moment respectively. Both Z., and M

11 
are functions of the variables (F, 8) 

The . first variable is the value of overall factor of safety F; the second is the 
interslice force characteristic angle () which, together with the coefficients ~' 
determines the slopes, O;, of the interstice forces in accordance with the 
following expression 

(3) 

where the suffix i denotes the ith interstice boundary (Fig. 1) . The coefficient 
k in the Spencer method is equivalent to the interslice force function f(x) in 
the f\1orgenstem and Price method. If n is the number of slices, (n-1) values 
are chosen or prescribed by the user for k; e.g., if k is taken to be unity 
throughout, then the interstice forces will be parallel and their slope o; relative 
to the horizontal will be each equal to 8. 

--
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FIGURE 2 : Forces on a Typical Slicce 

For the expressions for Z" and M" the original work of Spencer (1973) 
may be referred. More detailed expressions including external forces and 
moments are also available (Bhattacharya and Basudhar, 1992). In the Spencer 
method of analysis the positions of the points of action of the interslice 
forces (and hence the line of thrust) are obtained as part of the solution. 
Referring to Figs. 1 and 2, the positions of the lines of thrust for total stress 
and for effective stress have been given by Spencer (1973) and Bhattacharya 
(1990). 

Proposed Method of Solution 

Problem Formulation 

Since, for a given shear surface, it is required to find F and () such that 
Z" and M., are both zeros or small enough to be· considered negligible, the 
problem may be formulated as one of nonlinear constrained optimization as 
follows: 

Find D = (F, or (4) 
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Such that 

f(D) = Z~ + M~ -+ Min. (5) 

Subject to the side constraints 

(6a) 

(6b) 

where, D the vector of decision variables, F and q; these may 
be normalized by dividing them by their initial 
values. 

f(D) the objective function, 

g/D) the jth inequality constraint function. 

F 
0 

appropriate lower bounds on F. 

q
0 

appropriate lower bounds on q. 

Choice of the Objective Function 

The logic behind taking (z~ + M~) as the objective function is as 

under: 

(i) The minimum of a sum of squares is zero. 

(ii) The sum of the squares of these terms will be zero only when the 
terms are individually zero. 

Thus, by minimizing ( Z~ + M~) both the equilibrium conditions, viz., 
z = 0 and M = 0 can be satisfied. The optimal decision vector will give 

n n 
the factor of safety F and the interslice force characteristic angle fJ associated 
with a given shear surface. 

Scale Factor 

Because of the difference in the order of magnitude of Z and M the 
objective function ( Z~ + M~) may become considerably ecc~ntric a~d as 
such it may take large number of iterations to converge. In such cases it is 
generally advisable to introduce a scale factor to reduce the eccentricity (Fox, 
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1971 ). Therefore, a quantity Sr has been introduced such that in the modified 
objective function defmed as 

f(D) = Z2 +S M2 
n f n (7) 

The contributions of the terms Z~ and Sr M~ are of the same order 
of magnitude. The same scale factor as used by Morgenstern and Price ( 1967) 
has been adopted in the present formulation and is given by 

(8) 

Further, the objective function as a whole may be normalized as foll~ws 
in order to make the magnitudes of the objective function and the constramts 
of nearly the same order. 

(9) 

Constraints 

The inequality constraints in equations (6a) and (6b) are imposed to 
avoid search for negative values of F and 0 apart from saving a lot of 
unnecessary computations by restricting the search zone. Similarly, upper 
bounds on F and 0 may also be put as constraints if a prior assessment can 
be made. For example, the inclination (/3) of the steepest part of the slope 
may be considered as an upper bound on e. 

Alternatively, an upper bound on 0 may be obtained based on the 
requirements that F should be less than the least of the calculated values of 
factors of safety along vertical interfaces for the entire sliding mass. For 
slopes acted upon by a system of arbitrary external forces, however, the 
inclinations of the interslice forces O; (Eqn. 3) may not be all positive. Besides 
this, for some typical system of loading the restriction e ~ f3 may not hold 
good. In such situations the imposition of the constraints on 0 may be 
avoided. 

Based on the authors' experience in solving a variety of problems it 
may be stated that the imposition of the constraints on e may not be necessary 
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at a~l .for convergence. But the imposition Of these constraints helps in 
restnctmg the search zone and generally results in less computational efforts. 
It ~ay be. ~ointed out that the proposed procedtire is quite flexible in respect 
of tmp~s1t10n or removal of one or more constraints from the general 
formu.lattOn presented above. Such changes can be incorporated at will without 
affectmg the flow of the numerical scheme. This flexibility is rather common 
in any penalty function formulation . 

Method of Solution 

The problem formulated above is solved by using the sequential 
unconstrained minimization technique also known as the penalty function 
method. In this method the constrained minimization problem is transformed 
into a sequence of unconstrained minimization problems. 

The interior penalty function method (Fiacco and McCormick, 1968) is 
applicable here because a feasible starting point is readily available. The 
Powell method (Powell, 1964) of conjugate directions for multidimensional 
search and the Quadratic interpolation method for unidimensional search have 
been adopted. The Powell method is very stable and quadratically convergent. 
In most cases the Interior Penalty Function method is the most efficient 
means of solving a problem. However, in a number of cases it is preferred 
because of its simplicity rather than its efficiency. These methods are available 
in any standard text book on optimization (Fox, 197 1; Rao, 1984). 

Initial Feasible Decision Vector 

Earlier studies (Bhattacharya and Basudhar, 1992) have shown that an 
initial guess for F may be chosen as the factor of safety given by the Ordinary 
Method of Slices while an initial guess for (} may be chosen as half the 
inclination of the slope surface in radians. 

Computer Programs 

Computer programs have been developed by the authors for the 
proposed solution scheme as well as for Spencer's scheme. For the latter 
scheme, as mentioned before, an algorithm is required to adjust F and (} such 
that z. and Mn become negligible. ln the prog ram which has been developed, 
there is provision for two algorithms, na;nely, (i) the Method o f Bisection 
and (ii) the Modified Regula Falsi technique. The computed values have been 
obtained by using DEC-I 090 and HP-9000/800 computer systems. 

Illustrative Examples 

To demonstrate the power and efficiency of the proposed equation 
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FIGURE 3 : Slope Section in Example Problem 1 

solver, three example problems, a simple slope in homogeneous soil 
conditions, a zoned dam section resting on a thin shear zone and an 
embankment on soft clay have been taken up for study. 

Example Problem I : A Homogeneous Slope 

Figure 3 shows a homogeneous slope with a given potential shear 
surface. The shear surface is circular for the major portion but it has to be 
considered a general surface as it terminates at the bottom of a vertical 
tension crack of depth ~ = 0.3H1 and runs parallel to the crest with water 
pressure acting on it. The same problem was earlier solved by Spencer 
( 1973). This example, therefore, can be utilized as a test case to valid~te the 
proposed scheme. Following Spencer ( 1973), the number of slices has been 
taken as 16 and the interstice forces have been assumed to be all parallel 
i.e., k; = I for all the interstice boundaries. The decision variables F and (} 
have been normalized by dividing these by their respective initial values. An 
initial step length of 0.1 has been used in the unidirectional search by the 
quadratic fit method. Following some guidelines (Bhattacharya and Basudhar, 
1992) the starting value of F has been chosen as 1.30 which is close to the 
value 1.34 determined by Ordinary Method of Slices and the starting value 
for 0 has been chosen as 0.15 which is nearly equal to the half of slope 
inclination. 

In Table 1 detailed results are presented. The decision vector, the 
objective function and the composite function values and the values of the 
constraint function at the beginning and at the end of minimization are also 
presented along with the solution. Rounded off to two decimal places, the 
solution has been obtained as F = 1.45 and () = 0.26. Corresponding to this 
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Table 1 Detailed Results for Example Problem 1 

Item Starting Point Optimal Point 

Factor of safety, F 1.30 1.45491 (1.46) 

lnterslice force angle, 9 0. !5 0.257302 (0.26) 
Normalized design vector, D 1.0, 1.0 1.1192, 1.7153 

Constraints, g_; -1.30, - 0.15, -0.17 -1.4549, -0.2573, -0.0827 

Balancing force, z. 0.5765 X 103 -0.6982 X 10_. 

Balancing moment, M" 0.2989 X lOs -0.476 1 X 10"3 

Scale factor, Sr 0.373 X 10"0 0.3956 X I 0"2 

Objective function, f 0.2886 0.4540 X IO·I l 

Penalty parameter, r 1.0 X 10"3 1.0 X 10-l 

Composite function, 1/J 0.3091 1.6663 X JO-s 

Note g1 = -F; g2 = -9; g3 = 9 - {3 
z. and M" are in kN/m and kN-m/m respectively. 

0 value tan 0 = 0.2631. The F and tan q values are in close agreement with 
those reported by Spencer (I 973) as given in parentheses in Table I. 

Results obtained from the present analysis regarding the lines of thrust 
(Fig. 4) with respect to total stress (L/H), the lines of thrust with respect 
to effective stress (L'/H) as well as the normalized values of the normal 
components of the resultant interslice forces for effective stress (Z') had 
been computed and compared with those reported by Spencer (1973) . 
However, for the sake of brevity these are not presented here. It is seen that 
the I ine of thrust for total stress ( L/ H) and the normalized z; values are 

FIGURE 4 Forces on an l nterslice Boundary 
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Table 2 Comparison of Time of Computation (Example Problem I) 

Method of Solution · Obtained Solution CPU Time 
DEC 1090 

F (} (rad) (Sec.) 

Spencer's scheme using the 1.45487 0.257289 4.36 
Method of Bisection 

Spencer's scheme using the 1.45499 0.257290 2.40 
Modified Regula Falsi Technique 

Proposed scheme 1.45491 0.257302 1.60 

identical to those reported by Spencer (1973); the line of thrust for effective 
stress {L'/H) differs only at three interstice boundaries near the top end of 
the slip surface by a small margin (3 - 4%). 

In order to test the efficiency of the proposed scheme with regard to 
the time of computation, the same problem has also been solved by 
employing the program developed for Spencer's scheme. Two algorithms 
have been tried, namely, the Method of Bisection and the Modified Regula 
Falsi Technique. The results obtained in both cases are almost identical with 
those obtained by using the proposed technique (Table 2); the time of 
computation in each case has also been presented in the same Table. It is 
observed that the proposed scheme is the fastest of all the adopted schemes. 
The scheme has consumed only 37% of the CPU time required by the 
Spencer scheme using the method of Bisection and 67% of the same when 
the Modified Regula Falsi Technique is used. This difference assumes 
significance in the search for critical shear surface which involves a large 
number of such function evaluations particularly when the computations are 
performed O? personal computers. 

Example Problem 2 : A Zoned Dam with a Thin Shear Zone in the 
Foundation 

. Figure 5 shows the downstream slope of a zoned dam section with a 
given shear surface, an assumed phreatic line and the material properties for 
the different zones. The special feature of the problem is that the dam is 
founded on a thin shear zone whose shear resistance is at the residual state. 
For this slope, it can be expected that the major portion of tbe critical slip 
surface would lie along the weak shear zone. Based on this judgment, a trial 
slip surface as shown in Fig. 5 has been selected. The assumed phreatic line 
has been treated as a piezometric surface for the calculation of pore water 
pressures at different slice bases. 

It is worth mentioning that the attempt to solve this problem by using 
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Thin sh•or zon~ ( 0.3 m thick) 
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Notf : Figures encircled indicate z~nt' nos. 

FIGURE 5 : Slope Section in Example Problem 2 

the program SSOPT (Baker, 1979), which employs Spencer's scheme to 
evaluate a trial slip surface, has not been successful because of 
nonconvergence of the iterative scheme. 

The results obtained by using the proposed scheme with a total of 15 
slices and parallel inter slice forces are presented in Table 3. To investigate 
how far the results are sensitive to the initial guess, two sets of initial guesses 
for F and 9 have been tried. in the first set a value of 1.6 for F (which is 
somewhat close to the factor of safety for the given surface obtained by 
using the Ordinary Method of Slices) and a value of 0.1 for (} (which is of 
the order of slope angle for the outermost sloping boundary of the dam 
section) have been chosen. In the second set F and (} have been arbitrarily 
chosen as 1.0 and 0.5 respectively. Both the solutions have converged to 
identical values. The Zn and Mn values at the starting point and at the optimal 
point are also presented in Table 3. Thus it is evident that the final solution 
is independent at the starting point design vector. The associated line of 
thrust positions for total stress have been found to be reasonable although no 

Table 3 Results of Example Problem 2 

Initial Values Final Values 

F (} z. M. F (} z. ~ 

1.6 0.1 0.280287 0.262730 2.34 126 0.244166 -0.16235 0.222778 
x to• X 106 X 10'1 X 10'2 

1.0 0.5 0.21878 -0.16589 2.34126 0.244166 -0.16236 0.222771 
X 101 

X 107 X 10' 1 X 10'2 

--

... 
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FIGURE 6 : Slope Section in Example Problem 3 

special effort was directed in the formulation towards obtaining an acceptable 
line of thrust. Detailed studies regarding this study are not presented here for 
reasons of space and brevity. 

Example Problem 3 : Embankment on Soft Clay 

While Example Problems 1 and 2 presented above demonstrated the 
power of the proposed scheme to solve a homogeneous case and a typical 
nonhomogeneous case, Examp le Problem 3 illustrates a situation where 

.. Spencer's scheme encountered a lot of convergence difficulties but the 
proposed scheme showed smooth convergence. 

Figure 6 shows a section of the Saint Alban test embankment founded 
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on soft clay together with the undrained soil properties, the ·observed failure 
surface marked S2 and another potential shear surface marked S1, both S - and 
S2 being circular in . shape. This embankment, alongwith three ~ther 
embankments, was brought to failure as part of a research program. Pilot et 
al. ( 1982) presented details of this research program and reported about the 
observed failure surface S2• With a view to comparing the observed and the 
calculated failure surfaces, they carried out a total stress analysis using the 
Bishop Simplified Method and arrived at a critical slip surface S1• Later on, 
for a similar investigation, Talesnick and Baker (1984) reanalyzed the 
embankment using the program SSOPT (Baker, 1979). They approximated 
the field vane shear strength profile by a system of layers with uniform 
strength as shown in the figure. The purpose of the present study is to 
evaluate the factor of safety of both the surfaces S1 and S2 using the Spencer
suggested scheme as well as the proposed scheme and thus to study the 
relative merits and demerits of the two methods. In each analysis the sliding 
mass has been divided into 20 slices. 

Case I : Reanalysis of the Surface S1 

Table 4 presents the results of the studies conducted. With the Spencer
suggested scheme, three trials were made, corresponding to three different 
initial guesses for F and (:} till convergence was achieved at the third trial. 
Both trials 1 and 2 were observed to fail in the said scheme during the first 
iteration cycle. Detailed investigation revealed that in the process of adjusting 
itself to make Mn negligible, the parameter (:} began to assume negative values, 
leading to divergence. To guard against this, an intermediate control was 

Surface 
Mark 

s, 

sl 

Table 4 Results of the Reanalysis of the Surfaces S, and 81 

(Example Problem 3) 

Solution Scheme Trial Initial Guess Solution Convergence 

No. 
F q F q 

Spencer's Iterative I 1.50 0.25 - - No 

2 1.25 0. 15 - - No 

3 1.20 0.025 1.1657 0.0531 Yes 

Proposed I 1.50 0.25 1.1659 0.0530 Yes 

Spencer's Iterative I 1.50 0.25 - - No 

Iterative 2 1.20 0.25 - - No 

Scheme 3 1. 10 0.25 - - No 

Proposed I 1.50 0.25 1.2091 0.0426 Yes 
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incorporated in the program such that whenever () become negative it was set 
to zero and the iteration would restart. However, such a control did not meet 
with success in this case. Convergence was finally achieved in the third trial 
for which the initial guess (F = 1.20, (} = 0.025) was closest to the solution 
(F = l.l657, () = 0.0531). 

In sharp contrast to the above, using the proposed scheme it has 
been possible to achieve convergence in the very first trial even though 
the corresponding initial guess (F = 1.50, () = 0.25) was farthest from the 
50!Ution (F = 1.1659, 0 = 0.0531). The superiority of the proposed 
scheme is thus evident at least in the respect that the solution is not 
dependent on the starting point. For the same surface, a factor of safety 
of 1.20 has been reported by Pilot et al. ( 1982) as well as Tales nick and 
Baker 1984). The small difference in the present solution (F = 1.17) may 
be attributed to a possible error in reproducing the geometry of the slip 
surface and the subsoil strength profile. The number of slices used in the 
reported analyses are also not known. Another reason may be the 
differences in the adopted techniques. 

Case II : Reanalysis of the Surface S2 

The results of the reanalysis of the surface marked S2 are also presented 
in Table 4. As evident from the table, even with each of the three trials 
taking a different initial guess, the Spencer-suggested scheme fails to converge 
to a solution. Trials I and 2 fall during the first iteration cycle, as was 
observed in the previous analysis of the surface st. In the third trial, however, 
the iteration proceeds in a different manner. The first iteration cycle is 
completed giving F = 1.18 and () = 0.066. However, the second cycle fails 
also in the same fashion as before and hence no convergence is achieved. 

On this occasion too, in the very first trial with a remote initial guess 
(F = 1.50, 0 = 0.25), the proposed scheme yielded a convergent solution 
(F == 1.2091 - 1.21 , (} = 0.0426). Talesnick and Baker (1984) have-reported 
a value of F = 1.28 for the same surface. The small difference in this case 
may also be attributed to the factors mentioned in Case I. 

Conclusions 

• 
Based on the studies conducted the following conclusions are drawn. 

The proposed numerical method coupling Spencer's method of analysis 
with the nonlinear programming technique of optimization has proved 
to be efficient and powerful in solving the stability equations for general 
slip surfaces. The method works successfully even in those cases where 
the commonly used solution scheme falls to converge. 
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• For the problems studied, starting with initial guesses for the factor of 
safety of the order of the value as determined by the Ordinary Method 
of Slices and the interstice force characteristic angle of the order of the 
slope inclination, the proposed equation solver has been found to yield 
unique solutions. 
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Notation 

b 

bav 

c 
c' 

em 

cu 

D 

D 

F 

f(D) 

gj(D) 

H 

~ 

h 

k 

L 

L' 

M 

~ 

n 

P. 

-

width of slice 

average width of slices 

Cohesion, in general 

effective Cohesion intercept under drained condition 

C'IF = mobilized effective cohesion 

Cohesion Intercept under undrained condition 

force due to pore water pressure on inter-slice 
boundary 

design or decision vector 

overall or average factor of safety 

objective function 

Inequality constraint function 

height of the inter-slice boundary 

height of the embankment 

mean height of slice 

coefficient for slope of Inter-slice force 

height of Inter-slice force for total stress above slip 
surface 

height of inter-slice force for effective stress above 
slip surface 

Moment, in general 

external stabilizing moment 

number of slices 

external vertical force on a slice 
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Q. external horizontal force on a slice 

M. external moment on a slice 

Su undrained shear strength 

T force due to water pressure in tension crack 

u pore water pressure 

W weight of slice 

~ depth of tension crack 

Z interslice force 

zn external stabilizing force 

Z' force due to effective stress normal to inter-slice 
boundary 

a slope of base of slice 

b slope angle 

g bulk unit weight 

gw unit weight of water 

q angle determining slope of inter-slice forces 

d slope of interslice force 

fu angle of shearing resistance under undrained 
conditions 

r angle of shearing resistance with respect to effective 
stress 

-! 




