
lndia11 Geotechnical Jrmmal, Volume (-1). 1998 

Analysis of Circular Plate on Elastic Half-space 
- A Coupled FE-BE Approach 

J.J. Mandai' and D.P. Ghosht 

Introduction 

T he flexural behaviour of finite plates resting on elastic half-space is of 
interest in the analysis and design of raft foundation. The analysis of 
finite plates should take into consideration both continuity conditions 

at the interface and boundary conditions prescribed at the edges of the plate. 
An analytical description of the interaction problem related to the finite plates 
should take in to account the fo llowing factors. 

(i) The type of the plate 

pi) The type of the supporting medium 

l(i ii ) The types of the boundary cond itions 

(iv) The types of loading 

As far as the ana lysis of circu lar plate on elastic half-space is concerned, 
the earlier method of analysis (Borow icka, 1936, 1939; Gorbunov-Possadov, 
194 1) is based on representation of contact stress by means of power series 
in terms of the radial co-ordinate. lim ited to a finite number of terms. 
Zemochkin ( 1939) analysed the axisymmetric problem of a circular plate 
rest ing on elastic half-space by considering wmpatibility of disp lacements 
between elastic halfspace and the plate along a series of concentric circular 
regions. Brown ( 1969) analysed a uniformly loaded circular plate, resting on 
elastic half-space. It was demonstrated that for the plate with large relative 
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stiffness, the maximum moment varies to a large extent with the number of 
terms included in the power series solution. Hemsley ( 1987) determined the 
fl exural response of an elastic circular raft. for different types of ground 
support in the form of prescribed contact pressures. Results show wide 
disparity in the computed rait behaviours using different ground models. 

The application of finite element technique to the circular raft in 
fi'iction-less contact with an isotropic layer is presented by Hooper ( 1974). 
Hooper ( 1975) extended the solution to account for the transverse isotropy of 
the soil medium. Varadarajan and Arora ( 1982) investigated a circular footing 
resting on the surface of sand by stress dependent non-linear finite element 
method . Melerski ( 1997) presented a numerical technique for e lastic 
interaction between an axisymmetric circular raft and cross-anisotropic media 
by finite element method. 

Boundary integral equation method is used to investigate the plate on 
elastic foundations (Winkler model) for different edge conditions by 
Katsikadelis and Armenakas ( 1984 ). Puttonen and Varpusuo (1986) used the 
boundary element method to investigate circular plate problems on elast ic 
foundations (one and two parameter) for different loading conditions. 
Katsikadelis and Kallivokas (1986) used the boundary element method for 
analysis of clamped circular plates on Pasternak-type elastic foundation. 
Sapountzakis and Katsikadelis ( 1992) applied the boundary element method 
for analysis of simply supported and clamped thin circular plates for linear 
as well as non-linear variation of sub-grade reaction. Wang Jianguo et al. 
(I 993) analysed clamped thick circular plates on a Winkler fou ndation. All 
the analyses are restricted to Winkler or two parameter foundation models 
and for a plate having different boundary conditions. They have used direct 
boundary element formulation for the solut ion of the problems. 

The Present Study 

In this present paper, a FE-BE (finite e lement-boundary e lement) 
coupling technique is used to analyse the circular plate on elastic half-space 
problems. The half-space response is based on the solution given by Mndlin 
( 1936) for a point load in half-space. which allows to take into account the 
effect of embedment of the plate. The plate and the half-space are two 
separate models in unilateral and fric tio11less contact at the interface. 
Plate-half-space interface is discretised into two dimensional isoparametric 
quadrilateral quadratic elements and the plate is discretised into eight noded 
isoparametric plate bending finite elements (Figs. I a and I b) based on 
Mindlin 's plate bending theory which allows for transverse shear deformation. 
Each node of the plate-bending element has three degrees of freedom, namely 
vertical displacement and two orthogonal rotat ions (Fig. 2a). It can be used 
for both thin and thick plates: the deformation of the plate in XZ plane is 
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FIGURE l(a) : Circular Plate on Elastic Continuum - Discretisation of Soil 
Foundation System in Plate Finite Elements and Soil Boundary Elements 
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I<' IGURE l(b) Two-Dimensional lsoparametric Quadrilateral 
Quadratic Element 
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FIGURE 2(a) : Degrees of Freedm and Stress Resultants for the 
lsoparamctric Pla te Bending Finite Element 
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FIGURE 2(b) Deformation of the Plate in XZ Plane 
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shown in Fig. 2(b ). The same discretisation scheme is used for the half-space 
to maintain a node to node correspondence between the plate and the 
half-space. The stifffiess matrix obtained from the boundary element method 
(by inverting the flexibility matfix) is coupled with the plate stiffness matrix 
obtained from finite element method after proper transformation to get 
stiffness matrix of the plate-half-space system. Thus a solution can be obtained 
for any load distribution on the plate. Once the deformations of the plate are 
obtained the stresses can be obtained by back substitution. Reduced and 
selective integration techniques are used to get appropr iate results. 

A computer programme is developed on the basis of the procedure 
described above in which discretisation is automatic and requires very nominal 
data input. lt allows for most of the practical load cases and produces accurate 
results. With slight modification it can be used for plate of any shape and 
flexibility. The effectiveness and the usefulness of the proposed method and the 
developed computer programme are demonstrated by numerical examples. 

Mathematical Formulation 

Due to the singularities in the expressions from the Mindlin's solution 
for the displacement, it is not possible to constitute the stiftl1ess matrix in its 
usual sense . On the other hand , the displacement field due to a distributed 
load obtained by integration of these expressions over a finite area is regular 
everywhere. Hence, it is possible to express the nodal displacements in terms 
of nodal stress intensities. This relation may be evaluated by directly 
integrating the Mindlin 's singular express ions (1936) for a concentrated load . 
The Cartesian displacement vector at a point P due to traction distributed 
over an infinitesimal area ds(Q) at Q may be written as: 

( l) 

where U;; (P, Q) represents the displacement at P in the i th direction due to 
traction · t/Q) in the j th direction at Q. integrating over the entire 
half-space~structure interface the expressions for displacement at P may be 
written as: 

The traction vector at an arbitrary point Q is related to the 
corresponding nodai components by the in terpolation: 

t,(Q) (3) 
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where shape function and 

( t J c corresponding traction at the nodal point. 

So the Eqn. (2) can now be written as : 

(4) 

In the present formulation the boundary (surface) of the solution domain 
is divided into a number of interconnected two-dimensional isoparametric 
quadrilateral quadratic elements. In the natural co-ordinate system the equation 
takes the form 

M 8 +1+1 
ui(P) = Il:(tJc J Juii(P,Q)Nc(~ 1 ,;2 ) J(;I,;2 )d; 1 d;2 (5) 

m=lc=l -1-1 

where Jacobian of transformation and 

M total number of elements. 

Integrat ing the above expression for each node one by one and after 
subsequent assembly in the global array, the displacement vector may be put 
in the form 

{(uJJ = [Al{(tJJ (6) 

where {(u;)J nodal displacement, 

{(ti)J stress intensity vectors, 

[A] soil flexibility matrix. 

As the displacement vanishes as r- oo, the rigid body mode is naturally 
excluded from the solution. Hence, the relation between the distributed nodal 
stress parameter ( ti )c and displacement ( u.)c is unique and non-singular. 
Thus the inverse relation can be expressed as: 

(7) 
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Coupling of BE and FE Matrices 

For coupling BE & FE matrices. nodal tractions should be transformed 
into equivalent nodal forces. This can be done by equating the work done 
over an element by equivalent nodal forces and tractions. It is possible to 
write a transformation matrix [M] to transform the global nodal forces to 
global nodal traction vectors. 

(8) 

where {(F;)J = nodal force vectors due to half-space reaction. 

Now Pre-multiplying Eqn. (7) by [M] 

(9) 

or 

But, neither the nodal force vectors nor the displacements are known till the 
nodal force vectors are related to the externally applied loads. These 
relationships are derived from equations of equilibrium as described below. 

lsoparametric plate bending elements are used in the present formulation. 
They can be used for analysis of both thin and thick plates. The same 
discretisation is used as for the boundary element so that a node to node 
correspondence is obtained. As explained earlier. the half-space contact 
pressure is represented by nodal force vectors at the nodes. So from the 
kinematics of the plate-half space system, it can be written as: 

(I 0) 

where assembled stiffness matrix of the plate, 

( U; )c generalised displacement at the nodes and 

{ P
0

} applied external load at the nodes. 
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Substituting the value of (F, )c from Eqn. (9) 

where 

KP {(uJJ = -[ MA -1]{(u;)J +{Po} 

::. [ KP + M A -l ]{(u;)J = {Po} 

::. {(uJJ = [KP + MA -lr{Po} 

::. {(uJJ = [K ps r{Po} 

[ Kps] = [ KP + M A -I] = combined stiffness matrix 

(II) 

By solving the above equation displacement parameters can be obtained. 

Computation of Stresses 

Once the displacement parameters are known, the stresses can be found 
out by back substitution. In the finite element analysis using the displacement 
method, the stresses are discontinuous between the elements, because of the 
nature of the assumed displacement variation. Experience has shown that in 
case of isoparametric elements the integration (Gauss) points are the best 
stress sampling points. The nodes, which are the most useful points for the 
outputs and interpretation of stresses, appear to be the worst sampling points. 
Barlow ( 1976) has shown that for two dimensional isoparametric elements the 
2 by 2 Gauss integration points are optimal stress sampling points. Local 
stress smoothing technique as demonstrated by Hinton & Campbell (1974) is 
used to extrapolate stress values computed at Gauss points to nodal points. 
a 1 .. • a 8 are smoothed nodal values and a 1 .. ·a 1v are the stresses at Gauss 
points as shown in the Fig. 3(b). 

In the computer programme, the smoothed stress resultants are then 
modified by finding the average of the nodal stress resultants of all the 
elements meeting at a common node. 

Numerical Examples and Discussions of Results 

On the basis of the mathematical formulation and numerical procedures 
presented in the previous sections, a computer program has been developed 
to analyse the elastostatic contact between a circular plate and homogeneous 
elastic half-space. 

For presentation and discussion of results it is appropriate to use a 
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FIGURE 3(a) : Natural Co-ordinate System used in Extrapolation of 
Stresses from Gauss Points 
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0"1 · · · O"tv - Gauss point values 

a-, ... <Te - Nodal point VQiuu 

FIGURE 3(b) : Extrapolation Matrix to Obtain Nodal Stresses from Gauss 
Point Stresses (Hinton and Campbell, 1974) 
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FIGURE 4 Vertical Displacement of a Uniformly Distributed Circular Plate 
Resting on Elastic Half-space (ft, = pi> = 0.15) 

relative stiffness parameter, K, for the plate-elastic half-space system [as used 
by Brown ( 1969)] 

where E, elastic modulus of the half-space, 

P, Poisson 's ratio, 

hp thickness, 

Er modulds of elasticity and 

ac radius of the plate. 

When the value of the parameter K = 0, the plate can be considered to be a 
completely flexible one, and K = 100 represents a very stiff plate (almost rigid). 

The vertical deflections for different relative stiffness parameter under a 
uniformly distributed load are shown in Fig. 4. 
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Completely flexible plate 011 homogeneous lw(f-space 

The bounding solutions for a completely flexible plate are given by 
those cases where the load is appl ied directly to the half-space (elastic 
constants E. and fl.). For a uniform stress q applied normal to the surface 
over a circular area of radius ac, from the Boussinesq equations maximum 
surface displacement wor and maximum differential surface displacement 
between the centre and edge of the loaded area W od can be written in the 
non-dimensional form by 

W0 , E,/[ I - fl;] q ac = 2.0, and 

respectively. The corresponding values by the present formulation are 1.984 
and 0.714 respectively (Fig. 4). 

Completely rigid plate 011 homogeneous lwlf-space 

For frictionless contact, from the Boussinesq equation for normal surface 
displacement w or for the loaded surface is 

The corresponding value by the present formulation is 1.5 14 (Fig. 4) 

Plate with finite jlexihility 011 llomoge11eous half-space 

. The differential deflections with relative plate stiffness are compared 
with the corresponding values obtai ned by Brown ( 1969) for plate Poisson's 
ratio (flp) = 0.15 in Fig. 5(a). In Fig. 5(b) the variation of the differential 
deflections with relative plate stiffness is shown, for va lues of 
fl 1, = 0.15 and 0.3. The differential defection changes rapidly with plate 
stiffness in the region near K = I . 

The radial moment ( M,) distributions with relative plat~ stiffness are 
compared with the corresponding values obtained by Brown (1969) for plate 
Poisson's ratio (ft,,) = 0.30 in Fig. 6(a). In Fig. 6(b) the variations of 
bending moments (M, and M.) with relative plate stiffness' are shown for 
values of plate Poisson's ratio = 0.3. 
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FIGURE S(a) : Comparison Differential Deflection with Plate Stiffness 
of a Uniformly Loaded Circular Plate Resting on Elastic Half-space 
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FIGURE S(b) : Variation of Differentia l Deflection with Plate Stiffness of a 
Uniformly Loaded Circular Plate Resting on Elastic Ha lf-space 
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FIG URE 6(a) : Comparison of Radial Moment Distribution (M,.) for 
Various Plate Stiffnesses of a Uniformly Loaded C ircular Plate Resting on 

Elastic Half-space (uP = 0.30) 

0 . 1.------------------------~ 

N ... 
008 

~0.06 
...... -r:: 
Cll 
E O.OL. 
0 
~ 

Q02 

D-----D Mt 

o--- -o Mr 

FIGURE 6(b) : Bending Moment Distribution (M. and M,) for 
Various Plate Stiffnesses of a Uniformly Loaded C ircu lar Plate Resting on 

Elastic Half-space (u1, = 0.30) 
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Maximum moments are compared for different stiffness parameters with 
the values obtained by Brown ( 1969) in Fig. 7(a). The variation of the 
maximum moments with relative plate stiffness is shown for values of plate 
Poisson's ratio = 0.15 and 0.3 in Fig. 7(b). As with the differential defection, 
the maximum moment changes rapidly with plate stiffincss in the region near 
K = I. . 

The comparison of the computed results with those obtained by Brown 
( 1969) shows the applicability of the present formulation for wide range of 
rigidity of the plate in terms of relative stiffness parameters and plate 
Poisson's ratio. 

Effect of plate thickne!iS and depth of embedment 011 respom;e 

To study the influence of plate thickness on response, an analysis is 
carried out for a centrally loaded (5000 kN) circular raft of diameter 6m, 
Poisson 's ratio = 0.2 and elastic modulus = 0.25 x 105 MN/m2

• resting on 
a soil having modulus = 25 MN/m2 and Poisson 's ratio = 0.3, for different 
plate thickness's. The results are graphically presented in Fig. 8. 

The effect of embedment depth on the settlement for a particular 
raft-soil system (same as above with a thickness of 0.7 m) is shown in Fig. 9. 
The settlement reduces with increase in the depth of embedment. So a choice 
of depth of embedment for a particular raft-soil system can be made for a 
permissible value of settlement depending upon the serviceability. 

Conclusion 

The FE-BE coupled approach can be used very effectively in the 
solution of unilateral contact between plates and elast ic half-space foundations. 
The results presented here amply demonstrated the accuracy of the proposed 
numerical method. It utilises the advantages of finite element and the boundary 
element techniques by coupling. It is devoid of problems encountered in 
finite element analysis due to the infinite extent of the half-space or 
representing it with Winkler foundations. 

It can be used to analyse plates of any shape and size under the action 
of any type of load by proper discretisation . Since Mindlin 's half-space 
so lution is used as the fundamental solution, the effect of embedment of the 
plate in the half-space can also be considered. This is suitable for analysing 
both thin and thick plates resting on an elastic half-space. This formulation 
will be very useful for design and analysis of raft foundations since it does 
not impose any restriction regarding loading and thickness of the plate. 
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FIGURE 7(a) : Comparison of Maximum Moment with Various Plate 
Stiffnesses of a Uniformly Loaded Circular Plate Resting on 

Elastic Half-space (pP = 0.30) 
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FIGURE 7(b) : Variation of Maximum Moment with Various Plate 
Stiffnesses of a Uniformly Loaded Circular Plate Resting on 

Elastic Half-space (/,lp = 0.30 and li,, = 0. 15) 
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FlGURE 8 Settlement of a Centrally Loaded Circular Raft 
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Notations 

(A] 

Radius of the plate/raft 

Half-space flexibility matrix 

Modulus of elasticity of the plate/raft 

Modulus of elasticity of half-space 

Poisson's ratio of the plate/raft 

Poisson's ratio of half-space 

Thickness of the plate/raft 

Transformation matrix (to transform the BE matrices 
to equivalent FE matrices for coupling) 

Radial deflection of the plate 

Differential deflection of the plate 

Relative stiffness parameter 

Nodal displacement vector 

Nodal traction vector 

Nodal force vector due to half-space reaction 

Plate stiffness matrix 

Half-space stiffness matrix (from BEM) 

FEM equivalent half-space stiffness matrix 

Combined (plate- half-space) stiffness matrix 
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Appendix 

Mindlin's Expressions 

The X 1 and X2 components of displacements due to the force normal 

to the interface u ,· and U2• are gtven by (Fig. 10): 

x, -c + (3-4,u)(x3 -3) 
rJ r J 

I 2 

4(1- ,u)(1-2,u) 6cx 3 (x3 +c) 

r2 (r2 + x3 + c) + ri 

The X3 component of displacement u ; is given by: 

3-4,u 8(1-,u)
2
-(3-4,u) 

- - + -------

p 
U 3• = -16_n_G ~( 1--,u--:-) 




