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Introduction

Sands in general are assumed to be isotropic with respect to shear
strength. Sokolovski (1965) has used the methods of characteristics to solve
several problems in geotechnical engineering when soils are isotropic with
respect to shear strength. Several angular sands exhibit anisotropy in angle
of internal friction. The object of the present paper is to study the effect of
anisotropy on ultimateé bearing capacity. The studies of Oda and Koishikawa
(1979) and Tatsuoka et al. (1989) indicate friction, ¢. Based on the studies,
Oda and Nakayama (1989) proposed the variation of ¢ for Toyoura sand as
given in Fig. 1. The usual methods like limit equilibrium and limit analysis
cannot be used for determining ultimate bearing capacity for such cases as
the variation of direction of major principal stress in the soil is not known.
The method of characteristics can be used for these cases. The ultimate
bearing capacity of a strip footing placed on this type of soil is arrived at
herein using the method of characteristic approach. In the method of
characteristics the failure surfaces are arrived at and the equations of
equilibrium are fully satisfied. In Fig. 1, y is the angle between bedding
plane and direction of major principal stress.
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FIGURE 1 : Strength Anisotropy of Toyoura Sand
Assumptions 72

(i) The footing is a two dimensional one.
(i) The footing is smooth,

(iii) The sand is anisotropic with respect to angle of internal friction
and is given in Fig. 1 calculated using yield function.

(iv) Mohr-Coulomb failure condition is valid for the soil.
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FIGURE 2a : Angle Between the Direction of Major Principal Stress and the
Direction of Major Fabric (Bending Plane)
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FIGURE 2b : Failure Mechanism for Anisotropic Sand

Failure mechanism used

Figure 2a shows a strip footing placed on an anisotropic sanq with
direction of major fabric of sand inclined at an angle w with horizontal
r - axis (Points A and B are at the two edges of the footing). Let & be an
angle between major principal axis and horizontal r-axis. Since the soil is
at failure and the shear stress along Br and Ar’ is zero, @ =0 along Ar'

and Br. As the footing AB is smooth, & = 7/2 along AB. Considering two

points which are similarly placed in zones zBr and z'Ar’, the values of r

and r; z’ and z will be the same. For an isotropic soil, the value of & at
these two points will be the same. However, for an anisotropic soil, the
values of ¢ at these two points will be different since the angle between the
direction of major principal stress and major fabric will be different for the
two points. Referring to Fig. 2a for rBZ system, the angle between direction
of major principal stress and direction of major fabric is (8 +w ). For r'Az’
system, the angle is Abs(@-w). For both the cases, & increases from 0°
along Br and Ar' to 90° along base of footing AB. Hence, the pressure
distribution for =0 or 90 will not be symmetrical with the centre line of
the footing. Taking this into account, and as the footing is smooth the
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failure mechanism shown in Fig. 2b is used to arrive at the ultimate bearing
capacity of the footing. Similar failure mechanism was assumed by Mandel
(vide Harr, 1966) in arriving at bearing capacity of a footing with structures
on either side of the footing by using the method of characteristics.

Equations along the characteristics

The equations of equilibrium for plane strain problem are

ﬂ.;._ah:o 4
or oz
and
2, T @
dz o
where 7 = body force per unit volume of soil in
vertical z axis direction
o, = normal stress in horizontal r-direction
= o(1+sing cos28) 3
o, = normal stress in z direction
= o(1-sing cos26) G0}
7, = shear stress
= o sing sin28 (5)
+0
and ¢ = angle of internal friction of soil which depends on &, the
angle between directions of major principal stress and r
axis.

Substituting the expressions for o, g,, and 7, in the equations of
equilibrium after modification, and using the total differentials of o and @,
the equations along the characteristics are obtained. Along (6-x) family,

dz
s tan( 60— u) )
and

Z 7]
do-20ctangdd —y(dz—tangbd:)—a[;?dz-gfdr]zo ®)
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Along (6+u) family,

dz
E=taﬂ(9+ﬂ) ©)

and

o, é
do+20 tangdd —y(dz+tan¢dr)+a(—£dz—£dr}=0 (10)

where u = 450_%

The above equations are non dimensionalized for ultimate bearing
capacity problems by dividing the lengths by B (=width of footing) and
dividing the stresses by the characteristic stress ¥B. For nondimensional
variables symbols, the respective dimensional symbols with prime have been
used. For example non-dimensional z is z’.

Boundary conditions

1.  Shear stress 7, = 0 along Br and Ar’ (Fig. 2a)
2. Normal stress along Br and Ar'= q,
3.  Shear stress along AB = 0.

From condition 1, & = 0 along Br and Ar’. From condition 2, o along Br

9. >
and Ar' = m . From condition 3, @ along AB = %

Analysis at singular points A and B (Fig. 2a)

At points A and B, the (8—u) characteristic shrinks to a point and
along it we have

do-2ctangdf=0 (11)

Integrating Eqn. 11 and using the values of q, and 6 along Br, the
value of o for any given value of @ at the singular point can be obtained
from
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lno=lpd— To
n {(1 S[n¢&:0 }+J2tﬂ.ﬂ¢gd6 (12)
where ¢ = non dimensional o

q, = non dimensional g,

value of ¢ at @

o

Analysis along characteristics

Knowing the values along Br and Ar’ the values of r, z, o and & at
the points of intersection of the (€+x) and (6-u) characteristics are
obtained by expressing the equations along the characteristics in finite
difference form and solving them. Considering points 1, 2 and 3 (Fig. 2b)
such that the values of r, z, o and & are known at points 1 and 2 and the
values at point 3, which is the point of intersection of the characteristics
passing through points 1 and 2 are to be determined. Representing the
values of the variables at points 1, 2 and 3 by the variable with the
corresponding subscript (for example, value of z at point 3 is z,;), and
expressing the four characteristic equations in terms of these and solving
them, by direct substitution, the following expressions are obtained for values
at point 3. By solving Eqns. 7 and 9,

r, tan(6, — u) -1, tan(6, +u) -z, +z,

Iy =

: tan(6, —4)~tan(6, +2) =
and

Zy =12, +(r3 ‘rz) tan(gz —ﬂ)
Solving for @ and o from Eqns. 8 and 10,

6. = —¥s i\/Ys2 -4y (0, - 0y )tan’ ¢,

, =

2(0'7._0'1)“1“2 ?, W

and

o, = Y1~ 0, 6;tang, _Yato, 0, tan ¢,

Y, +6;tang, Y4~ 65 tang,



where  y,
Y2

h £
Y4
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o,(1+6, tang, - B, ) +A,
1-6, tang, +B,
02(1—62m¢3+32)+A3
1+ 8, tang, -
(¥s +Y,0, +¥, 01 +y, )tang,
Y2¥3 =N Y.

=2, +(1; - 1 )tan,
cos gs(r; — 1) +(2z, — 2, )(1-sings)
2,-2,-(r,—1,)tang,

cos gs(ry —1,) ~ (23 - 2, )(1-sin ;)

AleMe. =y, e
2{31_3(23 Z]) (923(1'3 r])}
‘;‘{_Z? 3(23—22) =5 %3(5"&)}
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To obtain the values of o at the bottom of the smooth footing, in
addition to using the equations along the (6 —u ) characteristic, the conditions
@ = n/2 and z = 0 are used. Knowing the values of o and @ at the
bottom of the footing the normal pressure on it is obtained. For obtaining

better accuracy of values at the intersections of the characteristics, the
procedure by Larkin (1968) has been used.

Determination of Bearing Capacity Factors N, and N,

The average bearing pressure q is expressed as

q=05yBN, +q,N,

(17)
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FIGURE 3 : Typical Nondimensional Normal Pressure Distribution

where B = width of the footing
N, and N, = bearing capacity factors.

Dividing Eqn. 17 by the characteristic stress B,

qQ'=05yN, +q;N, (18)
The failure mechanism shown in Fig. 2b, which gives minimum total force
on the footing, is used to find q'. Taking q’,= 1.0, the nondimensional
normal pressure along the footing are determined to get q' of Eqn. 18. Next
the stresses along the footing are determined once again but with y =0,
which gives N, as

q'=N, (19)

Knowing N, from Eqn. 19, N, is determined using Eqn. 18.

Results and Discussion

Figure 3 shows a typical nondimensional normal pressure distribution
on the footing It is seen that when w #0° and 90°, the maximum pressure
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TABLE 1
Bearing Capacity Factors N, and N,

Sl w Nr Nq 0.5 N7 + NI| Location of
No
g Max. Pr.
‘1 0° 294 192 337 0.5
2 15° 280 181 321 0.69
3 30° 254 166 293 0.795
4 45° 228 151 265 0.864
5 60° 224 156 - 268 0.822
6 75° 238 172 291 0.705
7 90° 243 183 305 0.5
Prandtl : N_ = Eﬂ gmund
9 |\ 1-sing

for ¢ = 51°, N, =386

for ¢ = 4265°, N_ = 93.96 (Average N, = 240)

for ¢ = 45° N st = 390

is away from the centre line of the footing. Table 1 gives the values of N,
N,, the average nondimensional bearing pressure and the location of the
maximum pressure on the footing. It also gives the values of Prandtl (1920)
and Meyerhof (1951). It is seen from the table that the bearing factor N,
varies by about 25% and N, varies by about 21% when y changes from 0°
to 90°. The average nondimensional bearing pressure changes by 21% and
the location of maximum pressure shifts from the centre line by a maximum
of 0.346 B when y is changed from 0° to 90°. The values of N, and N,
given by the present analyses are less than the values of Prandtl and
Meyerhof.

Conclusion

The results of the study show that the ultimate bearing capacity can
vary by 25% and the maximum pressure on the footing can be away from
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the centre line by 0.364 B due to anisotropy in angle of internal friction of
Toyoura sand.
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Nomenclature
The following symbols are used in this paper :

B = width of footing
q

= average bearing pressure

q' = nondimensional average bearing pressure
q, = surcharge '
q’, = nondimensional surcharge
N,, N, = bearing capacity factors
r = radial coordinate

r, r,, ; = radial coordinates at points 1, 2 and 3 respectively
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z-coordinate
z-coordinates at points 1, 2 and 3, respectively
body force per unit volume of soil

angle between r axis and direction of major principal
axis

4°-%
(o, + O'Z%

values of o at points 1, 2 and 3, respectively
normal stress along footing base

nondimensional normal stress along base of footing
normal stresses in r and z directions, respectively
shear stress

angle of internal friction of soil; and

angle between direction of major principal stress and
bedding plane in Fig. 1

angle between bedding plane and r axis in Fig. 2





