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Earth Pressure - A Comparative Study 

by 
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Introduction 

Choosing an appropriate method for either minimizing or maximizing 
a function subjected to inequality constraints arising out of analysis of 
stability problems is an art. Fox (1971) has provided guidelines for such an 
exercise. In such problems, it is extremely difficult to obtain . an initial 
feasible design vector and, as such, the interior penalty function method 
(Fiacco and McCormick, 1968) can not be used. In such cases the problem 
has to be solved by using either the exterior penalty function method or 
obtaining an initial feasible design vector following a procedure outlined by 
Fox and using the interior penalty function method. Even when the interior 
penalty function method is used, owing to the 'long step' nature of the 
unconstrained optimization algorithms the path may be diverted into 
infeasible regions. In such cases the function is set to an arbitrary high 
value and the minimization procedure is left to correct the situation on its 
own. Sometimes this approach presents numerical difficulties. Therefore, 
Basudhar (1976) has ·suggested th<:; use of the extended penalty function 
method enunciated by Kavlie and Moe (1971). This readily accepts infeasible 
design points and needs no special treatment Another reason for the choice 
made is the availability of well established unconstrained minimization 
techniques in the literature (Fox, 1971; Rao, 1984). As exact gradient of the 
function is not available in such an analysis. Basudhar was guided by the 
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suggestion made by Fox and used the nongradient technique viz. Powell 's 
method of conjugate direction for unconstrained minimization with Quadratic 
fit for linear minimization. But when the design variables and the constrai.nts 
are too many arising out of consideration of more number of elements 
adoption of a gradient based technique may be necessary. In this connectio~ 
the Fletcher-Reeve's (FLRV) method of conjugate gradient and 
Davidon-Fletcher-Powell (DFP) variable metric method with finite difference 
approximation of the gradient are worth mentioning. However, the use of 
Conjugate gradient method has been discouraged by Fox unless the problem 
is very large and well conditioned. For ill conditioned problems variable 
metric method is likely to work better as compared to other gradient and 
nongradient methods. Like all other numerical methods the . efficiency of 
these optimization algorithms is problem oriented. As such, it is necessary 
to make a critical appraisal of these algorithms in order to pick up the most 
suitable one. In the following sections such a study has been reported with 
reference to the stability analysis of a retaining wall previously studied by 
Lysmer (1970). Basudhar (1976) and Basudhar et al. (1979). 

, Another objective of the paper is to · demonstrate that the stress field 
is extensible which is one_ of the primary requirements for the solution to 
be a true lower bound. None of the studies as mentioned above include such 
investigations. 

Statement of the Problem 

Fig. I shows a rough retaining wall of 3.05 m height. The backfill 
consists of dry sand. The unit weight of sand (y) is 16.018 kN/m

3
• The 

objective is to find the most efficient unconstrained minimization method for 
isolating the maximum passive earth pressure acting on the wall. The 
different values of angle of wall friction (6 = 20°, 26.56°, 14°) and the 
effective . angle of shearing resistance of the sand (6 = 40° and 34°) have 
been considered. For a direct comparison of the re~ults of the present study 
with those of Lysmer (1970) the identical problem previously solved by him 
using linear programming has been aqopted here. Lysmer used FPS units; 
the decimaJ places appearing in the height of the wall and unit weight of 
sand are due to the conversion of the units. 

General Method of Analysis 

The soil mass under consideration is discretized into a finite number 
of triangular elements. All nodal points and elements are then numbered in 
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some arbitrary order as shown in Fig. 1. The encircled digits and the digits 
in the square refer to the element numbers and the node numbers 
respectively. The primed node numbers refer to the extended mesh. The 
material properties are specified for these elements. This is followed by 
choosing a linear stress field ensuring the element equilibrium (Lysmer, 
1970). It has been demonstrated by Singh and Basudhar (1993) and Lysmer 
(1993) that satisfying the no-yield constraints only at the comers of each 
triangular element is the sufficient condition for the solution to be a true 
lower bound. Interface equilibrium is satisfied by matching the normal and 
shear stresses at the element interfaces. This leads to a set of linear equality 
constraints. The boundary conditions also yield a set . of linear equality 
constraints. The no-yield Mohr-Coulomb condition is i_ncorporated directly 
in the analysis. In addition, · no tension constraints on the principal unknowns 
(normal stresses on the element sides), cr-, are imposed. Compressive stresses 

J . 
have been taken to be positive in the analysis. As such the no-tension 
constraints are of the ~ - cri $ 0. 

In general, as many stress fields will satisfy the condition of static 
admissibility, the isolation of the stress field which optimizes the objective 
function (in the present case, the bearing capacity) is imported. It is a 
nonlinear programming problem which can be stated in a standard form as 
follows : 

Find Dm such that; 

Subject to ~ (Dm) $ O (Nonlinear no-yield condition and 
no-tension constraints) 

and, = O (Interface shear stress and boundary 
shear stress equality constraints) 

(1) 

(2) 

(3) 

where, Dm is the design vector whose elements are picked out of the 
principal unknowns, cri . 

The system of linear equations [ Ii (Dm)J is not column regular and a 
non trivial solution can be obtained in terms of some free parameters. The 
number of such free parameters treated as design variables can be determined 
from the total number of principal unknowns and the rank of the coefficients 
matrix. By expressing the design variables in terms of the basic variables 
the linear equality constraints are eliminated. The problem, thus turns out 
to be one of nonlinear programming subjected to inequality constraints only. 
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Following the suggestions made by Basudhar et al. (1979) the 
constrained optimization problem is converted to an unconstrained one using 
the extended penalty function method (Kavlie and Moe, 19'71). Sequential 'l 
unconstrained minimization of the composite function so developed is carried 
out for a decreasing sequence of the penalty parameter. (rk) to isolate the 
optimal solution. The adopted techniques are Powell's conjugate direction 
method (POWELL), Fletcher-Reeves conjugate gradient method (FLRV) and 
Davidon-Fletcher- Powell variable metric method (DFP). For linear 
minimization Quadratic interpolation (QFIT) and Cubic interpolation (CFIT) 
techniques have been used. These methods are available in any standard 
text book on Optimization (Fox, 1971; Rao, 1984). The composite function 
\If (D, rJ is developed by blending the objective function and constraints as 
follows : 

M 

lfl(D,rk) = F(D )+rk LH[ g1(D )] (4) 
J = I 

The function H[ g 1 ( D)] is chosen as : 

{

1/giD) ;giD):::;O 

H[ gi (D )] = [2 ·A-giD )]/ ,i2 ; giD) > A (5) 

(6) 

The penalty parameter (rk) is · decreased sequentially at (k+l)th 
minimization cycle as follows 

(7) 

In this approach infeasible starting points are readily acceptable to the 
minimization algorithm, which makes it a powerful technique for solving 
various engineering problems even if an initial feasible design vector is 
difficult to guess. 

Boundary Conditions and the Objective Functions 

Boundary conditions : 

As shown in Fig. 1 the following boundary conditions are imposed. 
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2) 1'12 - 0"12 tano :<,; 0 

3) T21 - 0"21 tano S 0 

Objective function: 
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(8) 

At the limiting state the passive earth pressure on the wall will be the 
minimum value of (cr12 + cr21 ). So as per the present formulation it is 
equivalent to the minimization of - (cr12 + cr21 ) . Detailed analysis procedure 
of finding the passive earth pressure on retaining walls subjected to the 
boundary condition as described above has been presented in details by 
Basudhar et al. (1979). As such, for the sake of brevity this is not reported 
here. 

Results and Conclusions 

The results are obtained on HP-9000/850s computer system. In 
Figs. 2(a) and 2(b) the performance of the various algorithms used in 
analysis has been studied in terms of the number of function evaluations 
required to achieve the optimal objective function values (normalized with 
yH) and the penalty parameter (rk) for the case when q, = 40° and 6 = 20°. , 
The effect of initial design vector on the final solution and efficiency of the 
technique has also been studied and presented in the figures. Two initial 
design vectors designated by I and 2, in the figure have been used. It can 
be seen from Fig. 2(a) that for starting point l , only POWELL algorithm 
converges to a solution which is close to 8.97 (Lysmer, 1970) at about 
2500 number of function evaluations and a corresponding rk being equal to 
IE-08. It can be seen that DFP and FLRV converge to feasible solutions 
quite far off from the Lysmers' values. 

It is seen from Fig. 2(b) that the variations of penalty term has a great 
influence on POWELL as compared to DFP and FLRV beyond rk= 0.1. A 
near optimal solution has been used as a starting point 2 for DFP and 
Fl.RV to check whether there is any improvement or not. The study as 
depicted in Figs. 2(a) and 2(b) show that DFP with QFIT and CFiT 

,. converges almost to the same results as given by POWELL where as FLRV 
diverges. 

Another initial design vector 3 was also considered. This resulted in 
the initial objective function value, 8.97, obtained by Lysmer. As depicted 
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TABLE 1 
Non-clhnenslonal Vertlcle Stress ( o/ yH ) Value3 for the Elements at 

the Correspondlnc Node3 for ; - 40° and 5 = 2()0 

Element Nodal Lysmer Present Study 
Number. Point (1970) 

Powel DFP FLRV 

QFIT CFiT 

I 0.000 0.000 0.000 0.000 0.000 

1 2 3.886 3.901 5.632 5.626 4.583 
(3.881) (3.894) (2.665) 

3 3.200 3.227 4.463 4.458 3.523 
(3.210) (3.222) (2.3 14) 

1 0.000 0.000 0.000 0.000 0.000 

2 3 3.200 3.075 1.589 1.613 1.535 

(3.062) (3.077) (2.209) 

4 2.333 2.385 1.465 1.454 1.413 
(2.377) (2.392) (1.821) 

1 0.000 0.000 0.000 0.000 0.000 

3 4 2.333 2.126 1.425 1.415 1.376 

(2. 157) (2.182) (1.712) 

5 1.410 1.535 1.366 1.357 1.224 

(1.509) (1.512) (1.367) 

1 0.000 0.000 0.000 0.000 0.000 

4 5 1.410 1.261 1.102 1.107 1.144 

(1.254) (1.232) (1.173) 

6 0.937 0.964 1.007 1.038 0.959 

(0.970) (1.003) (0.979) 

1 0.000 0.000 0.000 0.000 0.000 

5 6 1.020 1.024 1.027 1.032 1.038 

(1.024) ( 1.028) (1.035) 

7 0.459 0.490 0.493 0.489 0.502 

(0.490) (0.488) (0.503) 

1 0.000 0.000 0.000 0.000 0.000 

6 7 0.500 0.500 0.500 0.500 0.500 
(0.500) (0.500) (0.500) 

8 0.000 0.000 0.000 0.000 0.000 

Note Values in the parantheses correspond to Design Vector 2. 
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TABLE 2 
Non-dimensional Vertlde Stress ( a/yH ) Values for the Elements at 

the Correspondlni: Nodes for ; = 40" and 6 • 20" 

Element Nodal Lysmer Present Study 

Number Point (1970) 

Powel DFP FLRV 

QFIT CFiT 

1 0.000 0.000 0.000 0.000 0.000 · 

I 2 8.970 8.590 6.674 6.671 6.016 

(8566) (8.553) (6555) 

3 8.320 7.970 6.188 6.185 5.617 

(7.943) (7.927) (6.159) 

1 0.000 0.000 0.000 0.000 0.000 

2 3 8.320 7.970 6.074 6.071 5.538 

(7.937) (7.923) (6.155) 

4 7.340 7.060 5.755 5.748 5.237 

(7.033) (7.016) (5.579) 

l 0.000 0.000 0.000 0.000 0.000 

3 4 7.340 6.995 5.745 5.738 5.228 

(6.978) (6.964) (5.552) 

5 5.860 5.752 5.271 5.270 4.757 

(5.705) (5.677) (4.722) 

1 0.000 0.000 0.000 0.000 0.000 

4 5 5.860 5.478 5.007 5.020 4.678 

(5.449) (5.397) (4.528) 

6 4.260 4.426 4.609 4.631 4.017 

(4.426) (4.492) (3.753) 

1 0.000 0.000 0.000 0.000 0.000 

5 6 4.750 4.667 4.691 4.604 4.335 
(4.642) (4.595) (3.973) 

7 2.070 2.141 2.165 2.108 1.858 
(2.129) (2.103) (1.708) 

1 0.000 0.000 . 0.000 0.000 0.000 

6 7 2.300 2.297 2.273 2.281 1.825 
(2.282) (2.291) (1.659) 

8 0.000 0.000 0.075 0.117 0.000 
(0.001) (0.066) (0.000) 

Note Values in the parantheses correspond to Design Vector 2. 
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TABLE 3 
Non-dlmemlonal Vertlcle Stress ( ..._1yu) Values for tlie FJ---. at 

the CorrespondJn& Nodes ror ; = 40" and 6 = 20" 

Element Nodal Lysmer Present Study 
Number Point (1970) 

Powel DFP FLRV 

QFIT CFiT 

1 0.000 0.000 0.000 0.000 0.000 

1 2 3.250 3.128 2.429 2.429 1.994 
(3.115) (3,122) (1.979) 

3 2.680 2.547 1.503 1.504 1.277 
(2,539) (2.543) (1.646) 

1 0.000 0.000 0.000 0.000 0.000 

2 3 2.680 2.517 0.928 0.935 0.879 

(2.509) (2.514) (1.626) 

4 1.840 1.656 0 .726 0.719 0.695 

(1.754) (1.754) (1.185) 

1 0.000 0.000 0.000 0.000 0.000 

3 4 1.840 1.627 0.706 0.699 0.676 

(1.643) (1.649) (1.131) 

5 0.715 0.768 0.464 0.463 0.412 

(0.742) (O.n3) (0.602) 

1 0.000 0.000 0.000 0.000 0.000 

4 5 0.715 0.494 0.200 0.214 0.332 

(1.486) (0.443) (0.408) 

6 0.169 0.064 0.004 0.038 0.004 

(0.051) (0.018) (0.041) 

I 0.000 0.000 0.000 0.000 0.000 

s 6 0.040 0.057 0.044 0.024 0.163 

(0.057) (0.034) (0.151) 

7 0.110 0.039 0.046 0.073 0.001 

(0.038) (0.063) (0.012) 

I 0.000 0.000 0.000 0.000 0.000 

6 7 0.000 0.000 0.019 0.029 0.000 
(0.000) (0.0 16) (0.000) 

8 0.000 0.000 0.000 0.000 0.000 
(0.000) (0.000) (0.000) 

Note Values in the parantheses correspond to Design Vector 2. 
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TABLE 4 
Stress Field and the Stress-Stren&t)t Ratios at the Nodal Pobats with 

Starting Pobat 3 usm« POWELL ( ; = 40° and 5 - :ZOO ) 

Element 

Number 

1 

2 

3 

4 

5 

6 

f 

40 

34 

34 

Nodal (a/yH) {a/yH) ( ~,/yH) Stress-Srength 

Point Ratio 

l 0.0000 0.0000 0.0000 -
2 10.5900 17.4337 8.3286 0.9994 

3 8.9243 11.2393 5.0418 0.6372 

1 0.0000 0.0000 0.0000 -

3 8.6921 5.4349 3.8809 0.8593 

4 7.1690 3.1313 2.0897 0.7703 

1 0.0000 0 .0000 0.0000 -
4 6.9106 2.0955 1.5718 0.9867 

5 5.6865 1.4383 0.6955 o.~s21 

l 0.0000 0.0000 0.0000 -
5 5.5541 1.2932 0.5504 0.9978 

6 4.3716 0.9670 0.0690 0.9859 

1 0.0000 0.0000 0.0000 -
6 4.5355 1.0079 0.0129 0.9800 

7 2.2042 0.4953 0.0188 0.9704 

l 0.0000 0.0000 0.0000 -

7 2.2792 0.5000 0.0001 0.9919 

8 0.0004 0.0000 0.0001 · -

TABLE .S 
Comparison of the Present Study with the\ Values Reported by 

Lysmer (1970) 

d Obj~ctive Function Value % Difference 

Lysmer (1970) Present Study 

20.00 8.97 10.59 18.06 

26.56 6.94 7.11 2.45 

14.00 5.37 7.11 32.40 
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in Fig. 2 the starting point 3 converges to an optimal objective function 
value equal to 10.59 corresponding to 1184 number of function evaluations 

1
, and rk being equal to lE-06. The predicted earth pressure value is 18.06% 

higher than the value obtained by Lysmer (1970). 

As lower bound analysis involves the generation of statically admissible 
stress field, it is of interest to study the state of stress at the limiting state 
in the soil medium (corresponding to the optimal solution). Stress values at 
different nodal points are also presented and compared with those reported 
by Lysmer (with $ = 40° and 5 = 20°) in Tables 1, 2 and 3 just for the sake 
of completeness. The study supports the conclusions as drawn regarding the 
relative efficiency of these methods. 

The complete stress field along with the stress-strength ratio at the 
nodal points obtained by using POWELL is shown in Table 4 for the starting 
points 3 ($ = 0.40° and 5 = 20°). The stress-strength ratio is defined as : 

where, cr. and cr z are the normal stresses on the plane through a 
nodal point in x and z directions respectively. 

-rzx is the shear stress acting on zx plane through a nodal 
point. 

(9) 

The ratio close to unity signifies the limiting equilibrium state. From 
this consideration it may be observed that for the chosen mesh pattern most 
of the ·nodal points are very near to the limiting state signifying that ~e 
obtained solution is excellent. -

To demonstrate that predicted earth pressure values are true lower 
bounds the mesh pattern of Fig. l has been extended as shown in the figure. 
For starting point 3 the extended mesh pattern yields a value 10.35 which 
is only 2.26% lower from the value 10.59 obtained earlier. For all practical 
purposes this deviation may be considered as negligible and hence the stress 
fieJd is extensible and statically admissible throughout the medium. 

Table 5 presents a comparative study of the present solutions with 
those reported by Lysmer (1970). It is observed from the table that there is 
an improvement over the lower bound solutions as obtained and reported by 
Lysmer; the order of magnitude of the percent difference between the 
solutions ranges from 2.45 to 32.40%. 
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Conclusions 

The following conclusions can be drawn based on the results and 
discussions presented above : 

2) 

3) 

4) 

The comparative study of the ditferent unconstrained minimization 
algorithms reveals that POWELL (conjugate direction) method is the 
most suitable technique for isolation of the optimal value of passive 
earth pressure. 

Davidson- Fletcher- Powell ·variable metric method and Fletcher- Reeves 
conjugate-_ gradient method are not recommended for solving such 
problems where exclusive analytical expressions for gradients are not 
available. 

For such problems non-gradient methods are superior and quite 
efficient is isolating the optimal lower bound than the gradient based 
techniques which may even diverge and terminate at points which are 
quite far off from the optimal value. 

The predicted earth pressure values are much better than the values 
reported by Lysmer (1970). The improvement in the results ranges 
from 2.45 to 32.40%. 
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Notations 

3i = Coefficient to cri in linear function to be optimized 

D = Design vector 

F(D) = Objective function. 

gj = Inequality constraints. 

H = Height of the retaining wall. 

I = Equality constraints. 
J 

M = Total number of inequality constraints 

fk = Penalty parameter 

6t = Transition tenn between two penalty tenns 

6 = Angle of wall friction. 

'Y = Unit weight of the soil. 

cr- = principal unknown 
J 

crii, 't;j = Normal and shear stresses at nodal point on side 

connecting nodal points i and j . 

~ = Internal friction angle of soil. 




