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Introduction 

In many problems of earthquake engineering and dynamic soil-structure 
interaction, numerical modelling of wave propagation is necessary. The finite 
element method based on discretisation of the domain is one of the popular 
numerical techniques because of its effectiveness in handling spatial variation 
of mechanical properties of the domain and of complex geometries. 
Semi-analytical finite element approach was first proposed in finite element 
literature by Wilson ( 1965) to tackle axisymmetric problems under 
asymmetric loading. This formulation has been employed by Desai and Patil 
(1977), Randolph (1981) and Kuhlemeyer (1979) for analysing laterally 
loaded piles. Desai (1983) studied the behaviour of caisson foundations 
subjected to axial and lateral loads. Dynamic soil-structure interaction 
analysis in time domain using finite element method requires special 
boundary treatment to represent the se1ni-infinite extent of the soil medium 
in order that the stress waves are not reflected at the boundaries. 

Many of the transmitting boundaries that could be used in direct time 
domain analysis have been outlined in Wolf (1988). Simplest and widely 
used transmitting boundary is the stai1dard viscous boundary proposed by 
Lysmer and Kuhlemeyer (1969). When the role of the surface waves is not 
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significant the viscous boundary approach is straightforward. However, where 
the effects of surface waves are to be considered the dashpot characterisation 
used in modelling the boundaries become frequency dependent thus rendering I 
the direct time domain approach cumbersome. Extrapolation algorithm was 
proposed by Liao and Wong (1984) for the wave propagation study in a 
linear elastic half-space under plane strain idealisation subjected to vertical 
transient and harmonic loads on the surface of the half-space. _Liao and Liu 
(1992) presented the numerical instabilities of this algorithm for one 
dimensional wave · propagation analysis in a bar using frequency domain 
approach. Shridhar and Chandrasekaran (1992) studied the applicability of 
extrapolation algorithm for problem of one dimensional_ wave propagation in 
an infinite bar resting o~ spring bed and an elastic half-space under the 
action of suddenly applied vertical concentrated load. 

In this paper the results of wave propagation studies in homogeneous 
and two layered medium subjected to uniformly distributed surface shear 

. load over a circular area are presented using semi-analytical finite element 
formulation, The half-space is discretised by using eight noded quadrilateral 
~lements and the artificial boundary conditions are implemented by using 
first order extrapolation algorithm. The surface shear loads considered in the 
present study are : 

(1) Suddenly applied shear load at time t:: 0 and thereafter maintained ' 
constant and 

(2) Shear load varying sinusoidally with time 

Semi-analytical Finite Element Formulation 

Consider the axisymmetric idealisation of the half-spaoe shown in 
Fig. 1. If the external loads are symmetrical about 0 = 0 plane, then the 
displacements may be expressed in the form of finite Fourier series. The· 
radial, vertical and circumferential components of displacements for eight 
noded quadrilate~al element may be represented as, · 

L 8 

u(r,z,O)= LLNiun;~s,rO 
n= I i= I 

L 8 

v(r,z,0)= LLN;Vn;cosn0 
n= I i=J 

L 8 

w(r,z,0) = LLN;wni sinn0 
n=I i=I 

(1) 
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wnere u, v and w are the displacements in r, z and 0 directions 
respectively, 

- - and w are the amplitudes of displacements for the nth u,.,, v,., ni 

harmonic at node i, 

N; is the shape function for the node i, and 

L is the total number of harmonics required to represent the load. 

For uniform density and elastic properties in the. circumferential 
direction, the orthogonality of trigonometric functions can be exploited to 
represent the general three dimensional problem into a series of uncoupled 
two dimensional problems. The complete solution is then simply the 
superposed solutions of all individual uncoupled two dimensional finite 
element solutions. For the present problem it would be sufficient to consider 
only n = 1 term in the formulation for the w{lve propagation study in an 
elastic half- space under the action of uniformly distributed surface shear 
load applied over a circular area. Following the standard procedure 
element stiffness matrix for n = 1 can be derived for eight noded element 
(Cook et al., 1989). 

Lumped element mass matrix is derived based on special lumping 
scheme suggested by Hinton et al. (1976). The idea behind this procedure 
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is to use only the diagonal terms of the consistent element mass matrix but 
to scale them in such a way that the total mass of the element is prese~ed. 

The lateral force Q act_ing_ on the . free surface of the half-space may 
be replaced by a uniformly d1stnbuted shear stress q over a circular area of 
radius r0 . T he components of stress on an element are in r, z and e 
directions are, 

!
dq, ) [ cos0] dq, =qr drd0 0 

dq8 - sm 0 
(2) 

Equation (2) represents harmonic load term when n = 1. Using 
the principle of virtual work the equivalent nodal loads at nodes i, j and 
k (Fig. 1) may be obtained as, 

(3) 

Transmitting Boundaries Using Extrapolation Algorithm 

The method is based on the concept that the displacements on the 
artificial boundary at a given time step are extrapolated based on the 
displacements at earlier times along a line normal to the artificial boundary 
in the region 's interior, thus allowing free transmission of waves across 
the boundary. Using quadratic interpolation in the time domain. the 
transmitting formula for the first order extrapolation may be written as 
(Liao and Liu, 1992). 

where { u r 1
} = Displacement of the boundary node J at time 

= (p + 1) M, p is an integer and ~t is the time step 

{ u1} = Displacement vector along the line normal to the 

node J (Fig. 2) 

(4) 

(5) 

-, 

I 

'1 
I 
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FIGURE 2 
Artificial Boundary and Node Points Required for Ertrapolation Algorithm 

where 
(2 - s )(I - s) 

!2 =s(2-s) 
s(s-1) 

(6) t, = l3 =---
2 2 

M 
and s=C - (7) .Llx 

The value of the apparent wave velocity c. to be used in equation (7) 
is the S-wave velocity for problems of two dimensional elastic wave 
propagation. The significance of the apparent wave velocity lies in 
representing the phase velocities of waves impinging on the artificial 
boundary at various angles which is different from the physical velocity 
(P- and S-wave velocity) depending upon the material properties of the 
medium. Thus the artificial boundary condition, equation (4) can easily be 
implemented into dynamic finite element analysis. 

Equation of Motion and its Solution in Direct Time 
Domain. 

The equation of motion for the elastic half-space may be written as, 

[M]{u}+[K]{u} = {Q(1)} 

where [ M] is the mass matrix, 

► [ K] the stiffness matrix, 

{ (j} the acceleration vector, 

{ U} the displacement vector and 

{ Q( t)} the external load vector. 

(8) 
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The solution of equation (8) can be obtained by carrying out the integration 
in direct time domain Different schemes for carrying out the integration of 
equation (8) have been outlined in Bathe (1982). In the present study the 
explicit __ method of time integration based on central difference approximation 
has been used. The stability and accuracy of the solution is based on the 
consideration that the time step ~t chosen is less than the critical time step 
(At)critical which depends upon the time required for the fastest wave to travel 
between two successive nodes. The time step ~t adopted in the present work 
is one third of (~t)criticaJ . 

Elastic Half-space Subjected to Suddenly Applied Surface 
Shear Load 

Response of Homogeneous Elastic half-space 

Consider the homogeneous elastic half-space discretised by using eight 
noded elements shown in Fig. 1 under the action of uniformly distributed 
suddenly applied surface shear load of unit intensity over a circular area of 
radius r

0
• The response of the homogeneous elastic half-space is given in 

the form of variations of radial displacements with time at different locations 
on the vertical symmetry boundary and on the free surface (Fig. 3). The 
corresponding static solutions are also indicated in Fig. 3. The variations of 

· radial displacements with time at different locations along the free surface 
(z = 0), at varying radial distance (r = 0.0, 1.0, 2.0, 3.0 and 4.0) from 
Fig. 3, shows that the radial displacements attain peak amplitudes and later 
tend towards static solution. The peak amplitudes of the radial displacements 
tend to decrease with increase in the radial distances (Fig. 3). Similar 
behaviour of the responses of the radial displa~ments can be examined 
from Fig. 3, at various locations on the vertical symmetry boundary (r = 0), 
at different depth(z = 1.0, 2,0, 3,0, 4,0 and 5,0). No reflections from the 
artificial boundaries can be detected iri the foregoing analysis. . 

Response of Two Layered Medium 

Consider the two layered medium under the surface shear loading as 
shown in Fig. 4 such that the S-wave velocity Y.1 in the upper layer is . half 
of the S-wav:e velocity v.2 in the lower layer. Waves travelling in such a 
medium will produce reflections and refractions at the , interface of the 
medium and hence result in transmission of waves at a wide range of 
incident angles on the boundaries. Also multiple reflections within the 
medium can cause out of plane motions resulting in Love wave modes. 
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Therefore the wave propagation studies in such a medium will be a severe 
test for the performance of the numerical model. Finite element idealisation 
adopted is same as in the case of the homogeneous soil medium. The 
response of the two layered medium subjected to suddenly applied surface 
shear load of unit intensity over a circular area of unit radius r

0 
is shown 

in Fig. 5 in the form of time histories of radial displacements at various 
locations on the free surface and on the vertical symmetry boundary. From 
Fig. 5, the variations of radial displacements with time at various locations 
on the vertical symmetry boundary (r = 0) with varying vertical distances 
(z = 1.0, 2 .0, 3.0, 4.0 and 5.0), it can be observed that the radial 
displacements attain peak amplitudes and later tend towards the static 
solution and also the amplitudes of the radial displacements tend to decrease 
with increase in the vertical distances. Similar nature of the behaviour can 
be observed for the responses of radial displacements at various locations on 
the free surface (z=O) with varying radial distances (r = 0.0, 1.0, 2.0, 3.0 
and 4.0). 

I 
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Elastic Half-space Subjected to Sinusoidal Surface Shear 
Load 

Response of Homogeneous Elastic Half-space 

Consider the homogeneous elastic half-space idealised by using eight 
noded rectangular elements shown in Fig. 1. The homogeneous soil medium 
is subjected to uniformly distributed surface sinusoidal shear load having 
unit amplitude with an exciting frequency of 1.25 rad/sec applied over a 
circular area of unit radius r

0
. The results of the analysis are presented in 
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the form of time histories of radial displacements (Fig. 6) and shear stresses 
computed at di1ferent locations in the medium (Fig. 7). It is obseived from 
the analysis that at di1ferent locations (z = l., 2.0, 3.0 and 4.0) along the 
vertical symmetry boundary (r = 0), that the radial displacements become 1 
harmonic having stable amplitude once the initial phase is over. Also the 
amplitudes of the radial displacements tend to decrease with depth. Similar 
nature of the behaviour of the radial displacements can be seen at various 
locations on the free surface (z = 0) at different radial distances (r = 0.0, 1.0, 
2.0 and 3.0) (Fig. 6): It can be observed from Fig. 7, that shear stress at a 
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given point also becomes harmonic having constant and stable amplitude. 
Also the amplitudes of the computed shear stresses tend to decrease with 
focrease in the distance from the loaded area and no reflections from the 
artificial boundary can be detected (Fig. 7). 
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Response of Two Layered Medium 

Consider the two layered medium shown in Fig. 4 and subjected to 1 
uniformly distributed surface sinusoidal shear load having unit amplitude 
with an exciting frequency of 1.25 rad/sec applied over a circular area of 
unit radius r

0
• The finite element discretisation used in this case is the same 

as in the previous problem of the homogeneous soil medium. It can be 
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observed from Fig. 8, that the responses of radial displacements at different 
locations along the vertical symmetry boundary (r = 0) with v arying vertical 

distances (z = 1.0, 2.0,3.0 and 4.0) become hannonic having constant and 
stable amplitude. Responses of shear stresses are shown in Fig. 9 at various 
locations in the medium. the response of shear stresses also become harmonic 
wave having constant and stable amplitude. _Also it is clearly seen from 
Figs. 8 and 9 that the peak amplitudes of radial displacements and shear 
stresses decrease with increase in the distances from the loaded area and 
reflection free finite element solutions are obtained. 
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Conclusions 

. Semi~analytical finite element fonnulation for wave propagation studies 
m homogeneous and layered mediwn subjected to swface shear loads based 
on time domain approach has been presented. The semi infinite extent of 
the soil medium has been modelled by using first order extrapolation 
algorithm. For the half-spaces subjected to suddenly applies surface shear 
load over a circular area the responses of displacements attain peak 
amplitudes and later tend towards the static solution. it is found that the 
extrapolation algorithm supports static load components for surface shear 
loads having non-vanishing time average. The usefulness of the methods has 
been demonstrated by considering surface shear loads varying harmonically 
with time in which the responses relating to displacements and stresses 
·become harmonic waves. The amplitudes of displacements and stresses tend 
to decay with increasing distances from the loaded area and reflection free 
finite element solutions are obtained. The presented numerical procedure is 
extremely useful in the analysis of axisymmetric dynamic soil-structure 
interaction problems involving asymmetric loading . 
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