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Introduction 

In the past few years the study of the dynamic response of burieed 
pipelines to seismic excitation has become important. Cast iron and steel 
pipes are now being slowly replaced by pipes made of the composite 
materials like reinforced plastic mortar (RPM). Unlike conventional isotropic 
materials, the strength and stiffness of a composite/orthotropic material in 
different dierctions can be controlled at the stage of fabrication of compositt:'4 
pipes. In the past four to five years Upadhyay et al. , (1988) and Rao et al., 
( 1989) have presented some research papers on the seismic response of 
buried orthotropic pipes/shells. These analyses have revealed that the 
introduction of orthotropy largely affects the dynamic response of buried 
pipelines. In all these works it has been assumed that the shell remains 
perfectly bonded to the surrounding medium, but in practice this idealization 
is never true. Chonan (1981) and Dutta et al., (1984) have studied the effect 
of bond imperfection between the shell and the surrounding medium on the 
dynamic response of buried shells. Both of these papers, however, have been 
concerned with shells of isotropic material only. Recently, Dwivedi et al. , 
~ 1989, 1990) have studied the axisymmeetric dynamic response of an 
imperfectly bon~ed buried orthotropic cylindrical shell subjected to p-wave 
and s-,~ave exc1tat1on, wherein effects of bond parameters on the radial and 
ax1a~ displacements have been discussed in detail. In both of these papers 
a thick shell theory formulation including the effects of shear deformation 
and rotary inertia was used. 

For the dynamic case the auther (1987) has compared the response of 
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a buried orthotropic cylindrical shell as obtained from thick and thin shell 
theories under different surroundng soil conditions. However , in this work 
the shell is assumed to be perfectly bonded to the surrounding medium of 
infinite extent. In another paper, Chonan (1981) has compared the result of 
thick and thin shell theories for an imperfectly bonded cylindrical shell. but 
this paper is Limited to an isotropic shell only. 

For orthotropic pipes/shells, these appears to be no work available in 
which the response of imperfectly bonded buried thick and thin cylindrical 
shells are compared under different soil conditions. The main objective of 
comparing the results of thick and thin shell theories in this paper has been 
to study the nature of variation of difference betwe,en the two results as bond 
parameters are charged in different surrounding ground conditions. It is also 
of interest to see how the changes in results due to variation in bond 
parameters compare with differences in results of thick and thin shell 
theories. It is found that variations in bond parameter have a more significant 
effect on the shell response than the choice of shell model. 

Formulation and Governing Equations 

The description and details of the formulation of the problem of 
dynamic response of a buried infinitely long thick orthotropic circular 
cylindrical shell including the effect of shear deformation and rotary inertia. 
imperfectly bounded to a linearly elastic, homogeneous and isotropic infinite 
medium, and subjected to a p-wave excitation, have already been presented 
by Dwivedi et al. (1989). Therefore, only those descriptions and equations 
are given, which are thought to be necessary and sufficient for the sake of 
completeness. 

Thick Shell Equation 

A thick cylindrical shell with mean radius R and thickness h 
imperfectly bonded the surrounding medium was considered. A cylindrical 
polar coordinate system (r, 0, x), x coinciding with axis of the shell, was 
defined. The stress-strain relation of the material of the shell was taken in 
the form 

u"" = Exii: xx+ Ev,e 99 

l1 9 9 = Ev,e xx+ Eo,e 90 ( I ) 

where E," E81' E.1 and G, 1 are the four independent elastic moduli of 
the shell material. 
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An imperfect bond between the shell and the soil was considered and 
it was assumed that this bond, which joined the shell and the continuum 
together, was thin, elastic and inertia-less. This implied that the stresses at 
the shell-soil interface were continuous. To take the elasticity of the bond 
mto account, the normal and shear stresses in the bond were assumed to be 
proportional to the relative normal and tengentiaJ displacements between the 

shell and the continuum, i.e. 

· 1 (J -
rr r=R+h/2 -

(2) 

. , 
(J -

rx r=R+h/ 2 - ( S + Z -' ){d(il+ dC•l_ u-(r-R)\V }f 
X XJt X X X 

r- R+h/ 2 

where a· and er" are, respectively, the normal and shear stresses at 
the outer surfa;e of the ~hell due to the motion of the surrounding medium, 
and were calculated from the displacement field (incident + scattered) 
obtained for the medium, from Singh et al., (1987). S, and Z, are the 
stiffness and damping coefficients of the bond in the radial direction and Sx 
and Z are the stiffness and damping coefficient of the bond in the axial 
directi~n. U and U are the components of the displacement field in the 
medium with super;cript i and s denoting the incident and the scattered 
field, respectively. --' 

In reference (Dwivedi et al. , 1989) the shell was excited by a 
longitudinal wave of wavelength A (=27t/~) and speed c moving along the 
axis of the shell in the medium, and the final response equations were 
obtained in the matrix from 

[A] {M} = {F} (3) 

where 

T I ___ C C I 
{M } = I U, V, W,-3 ,-4 I 

L Ru0 Ru
0

J 

u = u.fuo 
v = h9) /2u 

X 0 

~nd ~ 3 and _C4 • are arbitary constants. u
0 

is a constant depending on the 
intensity of mc1dent p-wave, and having the dimension on length. 
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The terms of matrices [A] and {F} are already given in reference 
(Dwivedi et al., 1989) but for readability these are reproduced here again 

All = - ip h '7 ,/ '7 3 

A12 = 2ik 2p 

A -h[{1 (Fi.)2} / 2k2
] 

2 (1 h " = - +U '1 2 11,+P +n + - 2 

A 15 = 

h 
6 A, ,, A,, = - A ll, 

(I+% J_;-[-2iPrK1(a 1)), 

.-/µr(c)2 p 2I.(a ,) 
Jrl,(a,) 
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where n 2 
= (p 0hR./Gx1)w 2 = /J 2h(c)

2 
-.

2pµ is the non-dimensionalized 

frequency of the shell · with 
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h = h/R, 

P=Po/Pm, 

µ = µ /G.i, 

c = c/c,, 
fJ = , R = 2rr R/ A , 

-r
2 

= c//c/ = 2(1 - vm)/(1 - 2 vm) 

( vm being the Poissonns ratio of the surrounding medium) and 

c
1 

= { ( .l + 2µ ) /pm} ½ and c2 = { µ /pm} ½ as longitudinal and shear wave 

speeds, respectively, in the medium depending upon the Lame's constants (A 
and µ) and the density, Pm , of the medium (soil). 

The other constants appearing in equation ( 4) were defined as 

a 1 = (l + h/2)r, 

r = fJ ✓I - (c/c,)2
, 

a 2 = ( I + h/2)o , 

o = {J ✓1-(c/c2 )2 , 
C = C{J, 

k = rr/./12 (shear correction factor) . 

., - E /E ., = E /E and ., = G 1 /E 1 were the non-dimensionalized 
'I l - 91 xJ ' ' I 2 y) xi ' I 3 X X 

orthotropy parameters of the shell. , • = µ /S,R and r. = µ /Z,c, were the 
non-dimensionalized stiffness and damping coefficients of the bond in the 
axial direction and , , = µ /S,R and r, = µ /Z,c1 those in the radial 

·direction. 

The displacement vector {M}, contains the non-dimentional axial and 

radial displacement components ( U and W) of the shell which are expressed 

in terms of intensity of p-wave. I. and K. (n= 0, 1) are the modified Bessel 
functions of first and second kinds. When the arguments of I and K are 
imaginary (for c/c1 > 1.0), these functions become . J. and Y. • respecti~ely; 
K. can, of course, be alternatively expressed in terms of the Hankel function. 
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Thin Shell Equations 

The geometrical cordinates and notations for the description of various 
quantities remain the same for the thick shell model. By following the 
procedure detailed in the paper by Dwivedi et al. (1989), the final response 
equation for the thin shell can be expressed as 

[A' ] {M'} = {F'} 
(5) 

which is identical to equation (3). 

The elements of -the matrices [A'], {M'} and {F'} are found as 

A, - -A A'= - A A2'1 = A31 ' A2'2 = All ' 13 - 14' 14 IS ' 

A A 
2 A A' A A' - A A' = A A;3 = 34' ;. = h 25' 31 = 41' 32 - 43 ' 33 44 ' 

A A A' A A' - A A' - A A' = A ;4 = 4S' 41 = St ' 42 - S3' 43 - S4' 44 SS' 

Results and Discussions 

Results are presented here mainly to study the effect of the bond 
parameters ~ , ~ , r and r on the nature of variation of difference 
between the •results ol thick a~d thin shell theories under different soil 
conditions and different angles of wave incidence. For this purpose only one 
bond parameter has been varied at a time, keeping the other parameter 
fixed. The effects of soil condition and angle of wave incidence have been 
shown by changing µ and 0 respectively. While studying the effect of 
imperfect bonding the orthotropy parameters have been kept constant as 
ri1= 0.5, rti= 0.05 and rt

3
= 0.02. Some other parameters which are taken to 

be constant throughout are h = 0.10, p = 0.30 and vm = 0.25. The bond 
parameters have been varied between zero and are hundred. 
~. = ~. = r, = r, = i 0 represent the condition of a perfect bond between 
the shell and the surrounding soil. When one of these parameters is varied, 
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the other three are kept at zero. A ·nearly grazing angle of incidence is 
represented by 0 = 5°; and 60° represents a general incidence angle of 
the wave. Corresponding to soft, medium hard and very hard ground 
conditions, µ has been taken to be 0.01, 0.1 and 1.0, respectively. 

Figure 1 shows the comparison of axial displacement (D) for two 
shell models under a very hard soil condition, for a nearly grazing angle 
of incidence ( <P = 5° ) as the axial stiffness parameter ~. is varied. Results 
are not shown for other soil conditions (i.e. µ = 0.01 and 0.1) as both the 

shell models give the same value of axial displacement, irrespective of 
variation in the parameter ~. - The Fig. l shows that there is some difference 
in axial displacement of two shell models when the value of ~. is very low 
or when there is a perfect bond between the shell and the surrounding soil. 
At higher values of ~. this difference vanishes completely. However, the 
axial displacement is largely affected by changing the axial stiffness 
parameter ~ • . As the angle of incidence is increased to 60° it is observed 
from Figs. 2 & 3 that in medium hard (µ = O.'l) or very hard (µ = 1.0) 

surrounding soil the axial displacement as obtained from the two shell 

theories differs only when ~. is very low. The value of U is greater with 

the thin shell theory approximation. This difference in D as the choice of 
shell model is charged from thick to thin is visible only for smaller value 
of t , and when the soil is medium hard or very hard. 

Figures 4 & 5 show the comparision of axial displacement for the two 
shell models as r is varied under different soil conditions. Results are . 
shown for one value of <P ( = 60°) only as no difference in D is observed 
for the grazing angle of incidence. For a medium hard soil (µ = 0.1) there 

is little difference in U and for a low value of r ( = 0.1 ). However, this 
X 

difference U for the two shell theoriees is comparable with the perfect bond 
condition, i.e. r, = o (Fig. 4). From Fig. 5 exactly similar behaviour is 
observed when the surrounding medium is very hard, but the difference in 

D is visible even for r = 1. Once r is more than 1.0 it becomes 
immaterail whether a thick or thin shell theory formulation is incorporated. 

The difference in U for the two shell models increases with increasing 
value of '3, but this is true only when r, is very low (= 0.10). It is also 
observed that the difference between the axial displacement of the two shell 
models are comparable to differences obsreved due to change ii:l nature of 
conduct between the shell and the soil. i.e.. from perfect bond (f = 0) 

X 

to imperfect bond er, = 0. 1). However, displacement D is significantly 
affected by variation in the axail damping parameter r .. 

Figures 6 & 7 show the comparison of radial displacement W for a 
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grazing angle of incidence (= 5°) under different ground conditions and 
radial stiffness parameter ~, Fig. 6 shows that soft and sandy soil 
conditions, differnces in radia! displacement for two shell models exist at 

higher values of ~' . This difference in W goes on increasing witJ:-, 
increasing value of ~, . For a perfect bond or when ~' is very low (= 0. J ), 
both the shell theories give the same value of radial displament. The same 
conclusion stands true for all other soil conditions, however, result has been 
shown only for a case when the rigidity of the ground is comparable to that 
of the shell (Fig. 7). Fig. 8 predict that at higher angle of incidence 
(<I> = 60°) the nature of changes in differences of radial displacement for two 
shell models remains the same as discussed for the grazing angle ·of 
incidence. 

It can be observed from these Fig. (6-8) that the differences in W 
due to two shell models are significantly visible only when radial stiffness 
parameter ~ is high (= JO or 100) and this difference is augmented the as 

r ' 
soil becomes harder and harder. This difference in W trends to increase 

wuth increasing ~- Irrespective of soil conditions the difference in W 

decreases with incresing angle of incidence. The change in the value of W 
is very much more prominent when coompared to the changes in · the 

difference of W obtained from two shell theories. However, the changes in 

W are comparable to the difference in W when value oft is 10 or 100. 
This trend is visible irrespective of <I> or µ . 

Figures 9 & 10 show the results for varying the radial damping 
parameter r, , when the angle of incidence is <I> = 5° and 60°, respectively. 
The results are shown for a fixed soil condition (µ = 1.0), as for other 

values of µ the difference in W is not very prominent. As appears from 

Fig. 9, the magnitude of the diiference in W obtained from two shell 
theories is varying wuth variation in value of radial damping parameters 
r . The amplitude of radial displacement is more with the thick shell 
theories assumption when there is a perfect or nearly a perfect bond between 
the shell and surrounding medium. However. this difference is to small to 

be neglected. For r , = JO or 100 the amplitude of W is higher with thin 

shell theory approximation and the difference in W seems to be increasing 
rapidly with increasing value of ~- From Fig. IO it is evident that at a 

higher angle of incidence (<I> = 60) the difference in W. for r = IO or 100 
increasing value of ~- Fig. 9 & IO reveal that the differe~ce in radial 
displacement decreases with increase in angle of incidence and the significant 
changes in difference of radial displacement occur only at higher value of 
r 
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Conclusions 

Based on the results discussed through Figs. 1-10. the main conclusions 
of the paper are as follows. 

I. For all the angles of incidence and under soft surrounding soil, 
the variation in r or I' does not produce any difference . in axial 

':,X X 

displacement, D, as obtained from two shell theories, whereas a difference 

in radial displacement, W , is obtained as ~' or r, is varied. 

2. The differences in axial displacements for the two shell models 
are visible only for smaller values of ~. and rx, but the difference in radial ~ 

displacement is observed when ~' or r, is high or very high. 

3. Variation in bond parameters bring out prominent changes in the 

values of displacement ( W and U) compared to the differences in W or 

D, obtained by thick and thin shell theories. 

4. The difference in displacements (W and D) for the two shell 
models increases, at the smaller wavelength, as the surrounding soil 
becomes harder. 

5. For the wavelength in the range of ~ < 0.50 dispacements are 
not very different. whether a thick or thin shell model is used. 

References 

CHONAN, S., (1981), " Dynamic response of a cylindrical shell imperfectly bonded 
to asurrounding continum of infinite extent" . J. of Sound and Vib., Vol. 78, 
pp. 257-267. 

DUTTA, S.K .. CHAKRABORTY, T. and SHAH, A.H., (1984), ' "Dyanmic response 
of pipeline to moving load" , Earth. Engg. and Struct. Dynamics, Vol. 12, 
pp. 59-72. 

DWIV_EDI. J.P._ AND UPADHYA Y. P.C .. (1989), "Effect of imperefect bonding on 
the ax1symmetnc response of buried or1hotropic cylindrical shells". J. of Sound and 
Vib .. Vol. 135. pp. 477-486. 

DWIV~DI, J.P. AND UPAJ>HYA Y. P.C .. ( 1990). "Effect of fluid preesence on the 
dynamic response of 1mperfcctly bonded buried orthotropic cylindrical shells", J. of 
Sounding and /lib., Vol. 139, pp. 99-110. 

RAO. P. V. M.'. SINGH, V. P. AND lJPADHYAY. P. C .. (1989), " Axisymmetric 
stresses 111 buried th111 orthotropic cylindrical shells due to p-wave loading" 
Composite Stmclures. Vol. 13, pp. 209-216. ' 

SINGH. V. P .. UPADHYAY. P C. AND KISHOR. B .. (1987) .. ;A comparison of 
tl11ck and th111 shell theory results for buried orthotropic cylindrical shells" . J. of 



DYNAMIC RESPONSE OF BURIED THICK AND THIN SHELLS 121 

Sound and Vib., Vol. 119, pp. 339- 345. 

SINGH, V. P., UPADHYA Y, P. C. AND KISHOR, B., (1987). ,;On the dynamic 
response of buried orthotropic cylindrical shells", J. of Sound and Vib .. Vol. 113, 
pp. 101-115 . 

UPADHYAY, P. C. AND MISHAR. B.K., (1988), ;'Non-axisymmetric dynamic 
response of buried orthotropic cylindrical shells", J. of Sound and Vib. , Vol. 121, 
pp. 149-160. 

UPADHYAY, P. C. AND MISHAR B.K., (1988), " Non-axisymmetric 
dynamic response of buried orthotropic cylindrical shells due an incident shear 
waves", J. of Sound & Vih., Vol. 125, pp. 227-239. 




