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Dynamic Lateral Response of Piles 

Introduction 

by 

K.K. Chattopadhyay* 

D.P. Gosh** 

Pile foundations are nowadays used frequently_ Co support _a !arge number_ 
of structures e.g., heavy machinery foundation, tall bmldmgs offshore 

structures, nuclear power plants, etc. It is important to study the effect of 
dynamic loading due to operating machine, wind, waves and earthquake on 
the structures with compliant foundations particularly when such structures 
are constructed on sites having poor soil conditions. The performance of 
such dynamically loaded structures largely depends on the interaction between 
the pile and the surrounding soil. The complexity of soil-pile interaction 
phenomenon has created a lot of interest on the dynamic response of pile 

foundations. 

During last two decades many analytical studies on the dynamic response 
of single pile subjected to horizontal surface loading are reported. Concept , 
of equivalent cantilever by Hayashi ·et al., (1965), Prakash and Sharma (1968) 
and others relies on experiments and other evidence for energy dissipation 
or number of other factors. Yoshida and Yoshinaka (1972), Prakash and 
Chandrasekharan (1973) used discrete model and subgrade reaction theory 
in their analysis. Dynamic winkler foundation type approach presented by 
Kagawa and Kraft (1980), Dobry et al._ (1982), Penzien et al. (1964), and 
Penzien (1970) used lump mass model to represent the soil-pile system. In 
more recent approaches Novak (1974), Kobori et al. (1977) and Novak and 
Nogami (1977), Novak and Aboul-Ella (1978), Velez et al. (1983) and others 
~sed m_ore generalized continuum mojel to account for dynamic soil-pile 
mterachon and make use of elastic and viscoelastic wave propagation. Novak 
and S_heta (1980), Novak and Mitwally (1988) and El-Marsafawi et al. {1992) 
have introduced the concept of weak zone in their nonlinear analysis. Blaney 
et al. -\1976~, Kuhlemeyer (1979), Roesset and Angelides (1979) have utilized 
dynamic finite element technique and a consistent boundary matrix to simulate 
the effect of the far field. 
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All these methods, e.g., continuum model, finite element .method, etc., 
in~erpret th~ dynamic soil-pile interaction as a frequency dependent complex 
sllffness or impedance functions established at the pile head. The real part 
of complex stiffness exhibits the stiffness and inertia characteristics of the 
soil-pile system and the imaginary part express the energy dissipation due to 
both geometric (radiation) damping and material (hysteretic) damping. The 
objective of this paper is to develop an approximate method which accounts 
for the soil-pile interaction for piles fully embedded in homogeneous soil 
medium, under coupled horizontal and rocking vibration in a relatively simple 
way. This method can be utilized by the practicing engier to predict the 
lateral dynamic response of pile foundations. 

Theoretical Analysis 

For the analysis of coupled horizontal and rocking vibration of pile 
supported footing, the proposed method assumes that (i) the pile is vertical, 
linearly elastic and of circular cross-section, fully embedded in homogeneous, 
isotropic and ·linearly hysteretic semi-infinite soil medium, (ii) perfect bonding 
exists between the pile and the surrounding soil while there is no contact 
between the footing and the soil, (iii) the soil reaction on pile tip is equal 
to that of a viscoelastic halfspace reaction. 

Side Soil Reaction 

A pile section at any depth Z (Fig.l) under steady-state horizontal motion 
11(Z,t) due to harmonic hori zo ntal force P0 e wt and/ or momen,t 

P(t) = P
0 
e wt acting at its head in the vertical plane, where, P0 and M 0 are 

the amplitudes of forcing functions, w is the circular frequency, t = time 
and i = v(-1), encounters a horizontal soil reaction (rotatory soil reaction 
is neglected). The complex horizontal soil reaction Su (Z, t) per unit length 

of pile may be expressed as: 

Su (Z, t) = fku (Z) + iwCu (z)] 11(Z, t) (1) 

where the stiffness coefficient ku (Z) per unit length of pile, varying with 
depth, computed by using Mindlin's (1936) solution (Saha and Gosh, 1986). 
The stiffness coefficient k" (Z) is expressed as; 

' 

where 

ku (Z) = l6n'G, (1 - v) If (3 - 4v) I r0 + 1 I R~ + I I ro 

2 3 '{ 
0 

'l 3 + (3 - 4v) r0 I R 2 + 2Z - 1 - 3r; I Ri J I R 2 

+ {4(1-v) (l-2v)l[R2 + 2zJ }{l -r~ [R~ + 2zRiJ}J (2) 

Gs = shear modulus of soil 

v = Poisson's ratio of soil 
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FIGURE 1 (a) Dlscretlsatlon. of Pile Embedded In Homog,,neou_s Medium, and (b) I 

r0 = radius of the pile 

R2 = v(,i + 4Z~) 

element 

Equivalent viscous damping coefficient Cu (Z), per unit length of pik~ 

comprises of radiation damping, Cu, and material damping, Cum (Z ) and 
expressed as; 

(3) 

Viscous damping component due to energy radiation (radiation damping), 
per unit length of pile projected on a vertical plane is assumed to be equal 
to the equivalent viscous damping per unit length of a rigid square plate of 
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side = 2a which is equal to the diameter of the pile (2r0), resting on an elastic 

halfspace and vibrating in vertical direction. It can be expressed as 

(4) 

in which G, is the shear modulus of the soil medium CV2 is the halfspace 
damping parameter in vertical-mode of vibration which is function of Poisson's 
ratio (v) of the soil and dimensionless frequency aP = wa IV., where V. is the 
shear wave velocity of the soil. 

Wong and Luco (1976) have given compliance function for massless rigid 
square plate, vibrating vertically on an elastic halfspace for ·v = 1/3. These 
compliance function are normalised for the effect of Poisson's ratio as 
suggested by Rucker (1982) to obtain normalized halfspace parameters. The 

expression for normalized damping parameter C :. can be written as 

C ~z = 1 · 7629 aP + 16 · 125 a ! - 53 · 5227 a ~ + 95 · 8953 a ; 

- 97 · 5389 a ! + 56 · 4098 a : - 17 · 2907 a ~ + 2 · 1801 a : (5) 

Once the normalized damping parameter is known from Eq. 5, the 
damping parameter Cv2 for any Poisson's ratio is determined as follows: 

Cv2 = C ~2 / (1 - v) (6) 

Material damping due to hysteretic action in the soil material is generally 
specified as a frequency independent damping into {3. For a given soil f3 is 
mainly a function of the amplitude of induced shear strain (Hardin and 
Drnevich, (1972). It is well known that the exact distribution of material 
damping has no substantial effect on pile response as long as the average 
value of f3 over the pile length remains the same. Hence in the present 
analysis the damping ratio, {3, is taken to be constant. The material damping 
can approximately be related to /3 (Gazetas and Dobry, 1984) using 

(7) 

Tip Reactions 

For relaxed pile tip, motion of the pile tip generates soil reactions. The 
soil reactions action on the pile tip for horizontal translation and rocking 
motions are assumed to be equal to the viscoelastic halfspace reactions. These 
reactions can approximately be obtained from elastic halfspace reactions on 
rigid circular disc in horizontal and rocking modes of vibrations respectively. 
The soil reactions for unit amplitude of motion of the pile tip can be 
expressed as 

Horizontal Reaction 
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Rocking Reaction 
where 

(8b 

c r, = cj, - /3Cj2 (8c) 

(8d) C J2 = ½2 + 2/3Cj1 

Gb shear modulus of the soil below pile tip 

Cj1, Cj2 = elastic halfspace stiffness and damping parameters 
respectively, in horizontal(j = u ) and rocking (j = 1/J) 
mode, are functions of .v and dimensionless fequency 
a Ob = wro / Vb , Vb being the shear wave velocity in the 
soil below tip. 

Halfspace parameters in horizontal mode ( Cu1 & Cu2 ) and rocking mode 

( C,p1 & C,p2 )are derived after Arnold ct al. (1955) and Moore (1975) respec 

tively. Expression for these parameters arc as follows; 

8 

cji = I a1a:ii, (9) 
I =O 

The coefficients a 1 of the polynomials for j = 11 and j = V' and i = 1 ,2 

are given in Tables 1 and 2 respectively, for different values of v. 

When 

(i) Ru, -+ 001 then II (1) -+ 0 (10) 

i.e. the horizontal motion of the pile tip vanishes which corresponds to 
hinge tip condition, where 1 is the length of the pile and 

(ii) Ru, and R,p, - oo, then 11 (l) and 1/' (1) -+ 0 (11) 

i.e. at the tip both horizontal and rocking motion of the pifc vanishes, 
corresponding to fixed tip condition. 

Equation of Motion 

The embedded pile is· discretized into a number of clements as shown 
in Fig.la. Governing differentiai equation of horizontal motion of i'h element 
(Fig. lb) is 

u 211 (Z, t) + vu (Z, t) iJ~11 (Z t) 
Ill---'--'- C --- + El ' 

i)/2 i)( iJZ I 

IKlZ) + io.,Cu (Z) ) 11(z, I) = 0 (12) 

whcr~, m = mass per unit length of pile, c = coefficient of pile internal 
dampmg, £ = Young's modulus of pile material and / = moment of inertia 



DYNAMIC LATERAL RESPONSE OF PILES 55 

TABLE l 
Coefficient ( a 1 ) for Halfspace Stiffness and Damping Parameters in Horizontal Mode 

Cul cu2 

al Poisson's Ratio (v) Poisson's Ratio (v) 

0.25 0.33 0.40 0.25 0.33 0.40 

ao 4.8117 4.9919 5.1363 0.0000 0.0000 0.0000 

al -0.0237 -0.2666 -0.3229 2.6517 2.7221 2.7410 

al 0.3293 2.4657 1.6252 0.4129 0.3962 0.7360 

a3 -0.4414 -8.6713 -1.4472 -0.4002 -0.411 -0.5369 

- ,a. -1.2354 17.5108 -2.4356 0.0212 .-0.5861 -0.2748 

C15 1.8856 -23.6073 3.5514 0.4211 0.7806 0.6885 

a. -0.4976 19.3192 -0.7002 -0.1357 -0.2161 -0.1869 ,, 

a7 -0.3841 -8.4427 -0.7474 -0.2286 -0.1775 -0.1651 · 

as 0.1724 1.5000 0.2875 0.1187 0.0924 0.0800 

TABLE 2 
Coefficients u

1
) £or Halfspacc Stiffness and Damping Parameters in Rocking 'I-l ode 

C~-1 Cv,2 

"1 Poisson·s Ratio (>') f'o isson·s Ratio (>') 

0.25 0.33 0.40 0.25 0.33 0.40 

Clo 3.5903 -l.160-l -l.6592 0.0000 0.0000 0.0000 

al 0.0442 0.1540 e.3253 0.1402 0.1862 0.2257 

a, -3.1681 1.2512 5.0929 -1.3206 -2.1306 -2.8239 

U.; 13.9574 -13.9884 -38.3061 10.3798 15.7100 20.2794 

a .j -39.0952 37.4635 104.08!0 -31.57-l I -48.5119 -63.0589 

CL 5 58.0007 -53.3897 -150.2913 52.9503 82.23-12 107.43-18 

a6 -46.0276 43.8411 121.9951 -48. 7489 -76.3972 -100.2298 

Cl7 18.6417 -19.3834 -52.4408 23.0217 36.4197 47.9837 

Cls -3.0381 3.524 9.2800 -4.3517 -6.9583 -9.2104 
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of pile cross section. The harmonic motion 

u (z,) = 11 (z) e"t<JJ1 (13) 

where u(z) is the complex amplitude of horizontal motion of depth z of ;th 

element. 

Neglecting· the coefficient of pile internal damping and combining the 
Eqs. 12 and 13 the complex amplitude of horizontal motion can be expressed 
as 

z z z ._, z 
11(z) = C1 coshl h + C! sinhl 11 + C3 cos.l.,; + c~ s11v.,; (14) 

in which C., Ci, C.1, C4 = integration constants, h = height/length of the 
c le me nt and the complex frequency parameter, 

). = h [; / - {mw2 
- ku(Z) - iwCu(Z)} r~1 

The moment M , and horizontal t ransverse force H are 

M = - El d 211 (z) 
dz2 

Numerical Solutio11 

(15) 

(16) 

(17) 

The impedance function of the embedded pile can be obtained from the 
expression for complex amplitude of horizontal motion by employing ~atrix 
stiffness me thod. This method is based on the formulation of cle ment dynamic 
stiffness matrix (Novak and Aboul-E lla, 1978). 

Element Dynamic Stiffness Matrix: Coefficient of the element dynamic 
stiffness matrix can be evaluated from Eqs. 14, 16 and 17. Applying horizontal 
displacements u = 1 and rotations ,If' = 1 at the ends of an element one 
at a time, the element dynamic stiffness matrix for horizontal translation and 
rotation [kd], is 

FdA) ;1,2 

F4 (A) /h 
Fs (A) ;1,2 

- F3 (A) /h 

where the dimensionless functions, 

F4 (A) /h F~ (A) /h2 

F2 (A) F.1 (A) !h 
F.1 (A) /It F6 (A) /112 (18) 

F 1 (A) -F~ (A) /h 
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= - ~ ). ( coshl. sin,l - sinh,l. cod) 

1 2 = - ¢ ). ( cosh ,l - cod ) 

= · ~ ). 2 
( sinh ,t sin). ) 

F5 (A) = ~ ,l.3( sinh,l + sin,") 

F6 (A) =- ~ ,l.3 (cosh,l. sin,l+sinh,l. cos,l) 

¢ = cosh,l. cod - 1 

The structural ( overall) dynamic stiffness matrix [K], which relates the 
nodal force {X} and displacements { o i of the embedded pile, is obtained 
by assembling the element dynamic stiffness matrices along with appropriate 
tip condition. Pile tip ·condition has a significant effect on the dynamic 
behaviour particularly on short pile. Hence nodal force and displacements 
can be related as, 

(19) 

Complex Stiffness of Pile Head: Complex stiffness of the pile at its head 
\S the external force required to produces unit horizontal displacement or 
'rotation at its head. Hence, 

Kuu Ki,,, !11=1 !11=0 

K'.µu ~lplp 
~•1 =0 ~•1 =1 

0 0 112 II 2 

0 0 = [K] 1/-'2 t/'2 (20) 

0 0 U n +1 lln +1 
0 0 11'.v-+1 1/-',, +1 

where, ~"' ~ are the external complex horizontal force and moment 

required to produce unit horizontal displacement and rotation at the pile 
,'nead, termed as complex horizontal and rotational stiffness respectively . 
.. ~.,, = K!ft,u is te rmed as complex cross stiffness u i, 112 •••••••••• un + 1 and 

11-'1, 1f2•·············1P,, + I are the nodal_ horizontal and rotational displacements, n 
being the number of elements. 

Complex pile head stiffnesses may be written as: 

Horizontal stiffness XC = K + i cv C uu uu uu 
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EI 
where true stiffness Kuu = real K..u = 7fu1 

0 

and equivalent horizontal damping 

1. .,., Elf, 
Cuu = w ,mag n."" = ,77V ui 

'o s 

fu1,J), = dimensionless horizontal stiffness and damping parameters. 

Rotatory stiffness ~1/1 .= K,w + i w C,1/'I/' 

E l 
where true rotatory stiffness Kl/-'1/' = real ~ 'If' = - ,.-flf•I . n 

. 1 . ,,,c EI f 
and equivalent damping, Crprp = w unag /\. 1/'I/' = V y·2 

' 
/,pi,Jrp2 = dimensionless cross stiffness and damping parameters. 

Cross-stiffness 

El 
where true cross stiffness Kurp = real K;,rp = -., fc1 

'o 

and equivalent cross da~ping 

l. ,A: Elf. 
Cul/J = W Jmag l\.urp .= - V cl 

'o s 

f c1, fci = dimensionless cross stiffness and damping parameters. 

Response of Pile Supported Footing 

(21) 

(22) 

(23) __,.. 

(24) 

(25) 

(26) 

Once the stiffness and damping constants at the head of a pile are 
established, the stiffness and damping constants at the center of gravity (C.G) 
of the footing can be expressed as; 

~u = Kuu 

C~u = · Cuu 

K/,prp = K,prp + Kuu.Z~ - 2J(_ul/•.Zc 

C'fl/1 ~ Ciprp + Cuu.Z~ - 2Kurp.Zc 

~1/1 - Ku,p - Kuu.Zc 

c(;l/1 = Cu,p - Cuu.Zc 

(27)-

where the superscript f indicates the respective magnitudes of stiffness and 
damping constants of the footing and Z, is the distance between the pile 

head and the C.G. of the footing. With the stiffness and damping constants, 
obtained from Eq._ 27, the response cf the footing under coupled excitation 
may be determined as that for a shallow footing. Generally c;uch response 
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are expressed in terms of dimensionless sliding amplitude A u and rotational 
amplitude, A 111 [Saha and Ghosh, 1982). 

Comparison with Experiments 

In order to check the validity and accuracy of the proposed approximate 
theory, the theoretical results are compared with the reported experimental 
results of Novak and Grigg (1976) for response of footing (mass = 453.1 
kg, mass moment of inertia 111, = 17.97 kg ni2), supported on single black 

steel pile (outer diameter = 0.06 m., flexural rigidity = 56880.5 N ni2, 
slenderness ratio = 77.9) embedded in homogeneous soil medium (Poisson's 
ratio = 0.25, unit weight = 1792.0 kg/m3 and shear wave velocity = 175.0 
m/sec), under horizontal excitation. details of the test description are available 
in literature (Novak and Grigg, 1976). Figures 2 and 3 show the experimental 
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FIGURE 2. Comparison or Experimental and Theoretical Response or Single Pile Founda
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FIGURE 3 Comparison of Experimtntal and Theoretical Response of Single Pile founda-
tion Under Lalerol F.xcitalion (Sliding nnd Rocking Componenl). 

and theoretical response for sliding and rocki ng components of the pile 
supported footing. The predicted curves are given for /3 = 0.01. It, is observed 
that the experimental first .and second. resonant freque ncies arc 7.0 Hz and 
36.0 Hz while the predicted values are 8.6 and 32.5 Hz. The theoretical 
sliding component has a good match with the experimental resonant amplitude. 
For rotational component, it is seen that the first resonant amplitude while 
the second resonant is in good agreement. Since in any dynamic analysis the 
determination of resonant frequency rat her than amplitude is more relevant, 
this simple method may· be used to predict the dynamic response of pile 
supported footing. 

Theoretical Results and Discussion 

The effect of wave velocity ratio V, I Ve ,Ve being the compressiona l wave 

velocity in the pile, and material damping on the response of footing (mass 
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= 5400.0 kg, Zc = 0.50 m and height of excitation above C.G. of footing = 
0.75 m), supported on fixed tip single concrete pile (,

0 
= 0.15 m) are 

presented in Fig. 4. It is observed that the resonant frequencies and amplitude 
increase , with the increase of wave velocity ratio while material damping 
redu:ces the resonant amplitude and its effect on resonant frequency is 
insignificant. 

The variation of dimensionless stiffness and damping parameters of fixed 
tip concrete pile with dimensionless frequency a 0 are shown in Fig. 5. The 

horizontal stiffness parameter ifu1) decreases with the frequency and becomes 
negative at a0 :::: 0.85. This trend is obst:rved irrespective of slenderness ratio 
(/ / r0), wave velocity ratio and Poisson's ratio of soils. The rotational stiffness 

,parameter (J'i'i), initially decreases gently with frequency but the trend is 
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FIGURE 4 Effect of Wave Velocity Ratio and Material Damping (ft) on Dynamic 
' Response of Fixed Tip Pile. ' 
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reversed at higher frequency (a0 > 0.6) where as the cross stiffness parameter 

ifci) sharply decreases upto a0 ::::: 0.6 and becomes more or less constant 

wiLhin the frequency range 0.6 < a0 < 0.85, followed by decreasing trend 

(a0 > 0.9). The damping parameters ifu2J,p'JJfcz) decreases at lower frequency 

range followed by an increase at a 0 ::::: 0.2-0.3 and a decreasing trend for 
f ,p2 and fc2 beyond a 0 ::::: 0.7. 

Figure 6 illustrates the· variation of dimensionless stiffness and damping 
parameters with wave velocity ratio for fixed tip concrete pile at a given 
frequency. The magnitude of these parameters increases with the increasing 
wave velocity ratio. The variation of cross stiffness and damping parameters 
is very sharp and nearly proportional to wave velocity ratio compared to the 

.. 



'en 
a: 
l&.I 
t-
l&.I 

~ 
a: 
~ 
CL 

c,:, 
z 
ll. -~ . ;. 
'< 
Q 

.Q 
z 
~ 

"' "' II.I 
z 
I&. 
I&. -~ 
"' 

DYNAMIC LATERAL RESPONSE OF PILES 

0.07 

..!..: 50, ac,:0.3 
/ 

0.06 -fct ro 

lJ =0.33, ft a0J)5 

o.os 

~ 0.04 
/j t.,, .,(f, 

1/ 
0.03 fau2 

//~1ii' 0.02 

.~r---
..,,...----✓ 0.01 

V / 
........-: 

0.000.00 0.01 0.0'2 0.03 0.04 o.os 
WAVE VELO CITY RATIO 

FIGURE 6 Variations or Stiffness or Damping Parameters with Wave Velocity Ratio 
V,/Vc. 

63 

horizontal and rotational stiffness and damping parameters. 

Typical variation of dimensionless stiffness and damping parameters with 
slenderness ratio at a given frequency and wave velocity ratio for a fixed tip 
, "tvncrete pile are shown in Fig.7. The stiffness parameters decrease and 

- damping parameters increase sharply with increasing slenderness raiio upto 
20.0 and becomes constant at / / r

0 
:::::: 30.0. 

Conclusions 

An approximate method of analysis is presented for determining the 
dynamic response of laterally loaded pile. The proposed method uses Mindlin's 
static solution and theory of plate vibration over elastic halfspace along with 



64 

0.08 

V, 
a:: 
"' ... 
w 
% 0.06 < a:: 
< 
Q,, 

\!) 

z 
Q. 
% 
~ 0.04 

Q 
z 
< 
V, 
V, 
uJ 
z 0.02 ~ 

~ .... 
V, 

0.00 O 

INDIAN GEOTECHNICAL JOURNAL 

V -t-= 0.05, 0 0 * 0. 3 1 1) = 0.33 ,ft :0.0 5 
C 

20 40 . . 60 SJ 100 
SLENDERNESS RATIO 

FIGURE 7 Variations or Stlffntss and Damping Param~ters with Slenderness Rallo 
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correspondence principle of viscoelasticity for estimating impedance function. 
The theoretical results are compared with the reported experimental results. 
The effect of various factors on stiffness and damping parameters are studie<!A, 
From the above discussion the following conclusions are tentatively drawn. 

1. The proposed method of analysis can predict satisfactorily the response 
of footings resting. on a single. pile subject to horizontal excitation. 

2. Material damping has a significant effect on resonant amplitude 
whereas negligible effect on resonant frequency. 

3. The dimensionless stiffness and damping parameters are found to be 
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frequency dependent and vary with the wave velocity ratio and 
slenderness ratio (/ / ,0 s 30). 

ReferencH 

ARNOLD, R.N. BYCROFT, G.N. and WARBURTON, G.B. (1955): "Forced Vibration 
of a Body on an Infinite Elastic Solid'. Joumal of Applied Mechanics, ASME. Vol.22, No. 
3 pp. 391-400. 

BALNEY, G.W. KAUSEL, E. and ROESSET, J.M.(1976): "Dynamic stiffness of Piles". 
Proc. 2nd lnL Conf on Num. Methods in Geomechanics, Virginia Polytechnic a11d Stare 
University, Blacksburg. Virginia, pp. 1001-1009. · 

DOBRY, R. and GAZETAS, G. (1986): "Dynamic Response of Arbitrarily Shaped Foun
dations'. Journal of Geotechnica/ Engineering,. ASCE, Vol.112, No. 2. pp. 109-135. 

DOBRY, R VICENTE, E. O'ROURKE. M.J. and ROESSET, J.M. (1982): "Horizontal 
stiffness and Damping of Single Piles". Joumal of the Geoccc/111ica/ Engineering Dil·isio,4 
ASCE, Vol. t08, No. GT3, pp. 439-459. 

EL-MARSAFAWI, H., HAN, Y.C. and NOVAK. M.(1992): "Dynamic &-periments on 
Two Pile Groups'. Joumal of Geocec/11iical Engineering, Vol. 118, No. 4. pp. 576-592. 

GAZETAS, G. and DOBRY, R. (1984): "Horizontal Response of Piles in Layered Soils". 
Journal of Geoteclmical E11gineering, ASCE. Vol. 110, No. 1. pp. 20-40. 

HARDIN, S.O. AND DRNEVICH, V.P.(1972): "Shear Modulus and Damping in Soils". 
Journals of Soil Mecha11ics and Fou11da1io11 E11gi11ceri11g, ASCE. Vol. 98, SM6, pp. 603-624. 

HAYASHI, S., MIYAZAWA, N. and YAMASHITA, 1.(1965): "Horizontal Resistance of 
Steel Piles Under Static .and Dynamic Loads". Proc. 3rd World Con[. 011 Eanhquake Engg., 
Vol. 2. 

KAGAWA, T. and KRAFT, L.M.(1980): "Lateral Load-deflection Relationships of Piles 
Subjected to Dynamic Loadings". Soils and Foundations, Japanese Society of Soil Mechanics 
and Foundation Engineering, Vol. 20, No. 4. pp. 19-36. 

KOBORI, T., MINAI, R., and BABA, K.(1977): "Dynamic Behaviour of Laterally Loaded 
Pile'. 9th lnL Con[. on SMFE, Speciality Session, No. 10, Tol-.-yo. 

KUHLEMYER, R.L. (1979): "Static and Dynamic Laterally Loaded Floating Piles". Journal 
of Geotechnical Engineering, ASCE, Vol. 105, No. GT2, pp. 289-304. 

LYSMER, J.(1980): "Foundation Vibrations With Soil Damping". Proc., 2nd Asce Con[. 
ON Civil Engg. and Nuclear Power, Knoxville, TN, Vol. II, Paper 10-4, PP: 1-18. 

M'NDLJN, R.D.(1936): "Force at a Point in the Interior of a Semi-infinite Solid". Joumal 
of Physics, Vol. 7, May, pp. 195-202. 

MOORE,'P.J.(1975): 'Vibrations of Rigid Circular Footings on Elastic Bases". Proc. First 
Baltic Cvnf 011 Soil Mecha11ics and Found E11gg., Gdansk, pp. 274-287. 

NOVAK, M.(1974): 'Dynamic Stiffness and Damping of Pile:;". Canadian Geoteclmica/ 
Journal, Vol. 11, No. 4, pp. 574-598 

NOVAK, M. and ABOUL-ELLA, F.(1978): "Impedance Function of Pile in Layered 
Media". Joumal of the Engineering Mechanics, Dfrisio11s, ASCE, Vol. -104, No. EM6, pp. 
643-661. 

NOV AK, M. and GRIGG, RF. (1976): 'Dynamic Experiments with Small Pile Foundations". 
Canadian Geotechnical Joumal, Vol. 13, No. 4, pp. 372-385. 



66 INDIAN GEOTECHNICAL JOURNAL 

NOV AK. M. and NOGaMI, T,(1977): "Soil-pile Interaction in Horizontal Vibration" 
International Joumal of Eanhquake Engineering and Structural Dynamics, Vol. 5, pp. 263-281. 

N~~AK. M. and MITWALLY, H.(1988): "Transmitting Boundaty for Axisymmetrical 
Dilation Problems•. Journal of Engineering Mechanics, ASCE. Vol. 114, No. 1, pp. 181-187. 

NOVAK, M. and SHETA, M. (1980): "Approximate Approach to Contact Effects of Piles•.· 
Proc. ASCE, National Convention on Dynamic Response of Pile Fou11dations, Analytical 
Aspects, pp. 53-79. 

PENZIEN, J.(1970): "Soil-Pile Foundation Interaction•. Chapter 14, Eanhquake Engineering, 
Ed. Wiegel, F.L, Prentice-Hall, Englewood Cliffs. 

PENZIEN, J, SCHEFFEY, C. and PARMELEE, R.(1964): "Seismic Analysis of Bridges 
on Long Piles". Journal of the En!i-neering Mechanics Division, ASCE. Vol. 90, No. EM3, 

pp. 223-254. 

PRAKASH, S. and CHANDRASEKHARAN, V.(1973): "Pile Foundation under Latera:,-1>
Dynamic Loads". Proc. 8th /CSMFE, Moscow, Vol. 2.1, pp.199-202. 

PRAKASH, S. arid SHARMA, H.D. (1968): "Behaviour of R.C.C. Pile Under Dynamic 
Lateral Loads in Cohesionless Soils:" Symp. 011 Deep foundatio11S, ASfM, -California. 

ROESSET, J.M. and ANGELIDES, D.(1979): "Dynamic Stiffness of Piles". Proc. Numerical 
Methods in Offshore Piling, l11Stitute of Civil Engineers, London, pp. 75-81. 

RUCKER, W.(1982): "Dynamic Behaviour of Rigid Foundations of Arbitraty Shape on a 
Halrspace•. International Journal of Earthquake Engineering and Structural Dynamic, Vol. 
10, PP· 2n-293. 

SAHA, S. and GHOSH, D.P. (1986): "Dynamic Lateral Response of Piles in Coupled 
Mode of Vibration•. Soils and . Foundations, Japanese Society of Soil Mechanics and 
Foundation Engineering, Vol. 26, No. 1, pp. 1-10. ~ 

VELEZ, A., GAZETAS, G., and KRISHNAN, R.(1983): "Lateral Dynamic Response of 

Constrained Head Piles•. Journal of Geotechnical E11gi11eering, ASCE, Vol. 109, No. 8, pp. 
1063-1081. 

WONG, H.L and LUCO, LE.(1976): "Dynamic Response of Rigid Foundations of Arbitrary 
Shape•. International Journal of Eanhquake Engineering and Structural Dynamics, Vol. 4, 
pp. 579-587. 

YOSHIDA, I. and YOSHINAKA. R.(1972): "A method to Estimate Modulus of Horizontal 
Subgrade Reaction•. Soils and Foundations, Japanese Society of Soil Mechanics and 
Foundation Engineering, Vol. 12. No. 3, pp. 1-17. 




