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Bearing Capacity of Clay with Variable Surcharge 
of Finite Extent 
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Introduction 

The ultimate bearing capacity of a footing resting on or in the soil 
is estimated using Terzaghi's (1943) approach based on the general 

shear failure mechanism. This approach is generalised (Vesic, 1973) 
to include the effects of shape and depth of footing, the eccentricity and 
inclination of the load, the compressibility of the soil, etc. The expression 
for the ultimate bearing capacity, qu, of the foundation, is written in the 
form 

(1) 

where c, cf,, and y are respectively the cohesion, the angle of shearing 
resistance, and the unit weight of the soil, Ne, N9 , Ny -the bearing capacity 
factors, Sc, S9 , S1 - shape factors, and de, d9 , dy - the depth factors, 
etc. Eq. (1) gets simplified as 

(2) 

for the undrained condition (i.e. </>u = 0, c = cu) of the soil. It is implied 
in Eqs. l and 2 that the surcharge stress is uniform and extends to 
infinity. Also each of the terms in Eq. 1, is minimised individually to 
arrive at the minimum values of the bearing capacity factors. In th.is 
note, the bearing capacity of a footing on a soil in an undrained condition 
but with surcharge varying with distance and extending to only a finite 
distance beyond the footing, is estimated. Three types of variation of 
surcharge stress, viz., uniform, linear and exponential decay, are consi­
dered. 
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This theory is applicable for the estimation of the bearing capacity of a 
clay layer overlain by a stiffer layer (Meyerhof, 1974, problem) and in the 
case of reinforced foundation beds. The shear stresses mobilised by the 
upper (granular/stiff) layer get redistributed (Fig. I) into the lower soft 
as surcharge stresses (Madhav and Poorooshasb, 1987). Another possible 
instance of surcharge of finite extent is for loads near the edges of highway 
pavements. 

The variation of vertical stress on the interface of a two layered system, 
loaded by a uniform circular load, is shown in Fig. 2 (Fox, 1948), for 
different modular ratios (E1/E2). In case of a homogeneous deposit, the 
vertical stresses are relatively high beneath the loaded area. The stresses 
tend to become uniform with increasing values of the modular ratio. 
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FIGURE 1 Definition Sketch : (a) Bearing Capacity Problem and 
(b) Types of Surcharge 
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FIGURE 2 Vertical Stress on Interface of Two Layered Soil- Circular Uniform Load 

In other words, the applied stresses get distributed to the soil outside of 
the loaded area. These stresses decrease in intensity with distance and 
are negligible beyond a finite distance. The vertical stress on the lower 
soil layer outside the loaded area can be considered as a surcharge stress 
extending to a finite extent. 

ANALYSIS 

Case A : Uniform Surcharge 

Consider (Fig. 3a) a footing of width, B, resting on a soft clay with 
undrained cohe~ion, cu. It is proposed to estimate the ultimate bearing 
capacity, qu, when a uniform surcharge stress of intensity, q,,0, (Fig. 3b), 
exteends to a distance Bs on either side of the footing. Following Skempton's 
(l 951) t/>u= 0 analysis, the failure surface is assumed to be circular and starts 
from one of the edges of the footing. Depending on the location of its 
center and the radius, the fai lure surface may end within or outside the 
extent of the surcharge stress. 'Fhe two cases correspond to : 

Case A (i): B + B, > 2R sinO and failure arc ends within the extent of 
the surcharge stress; 

Case A (ii) : B + B, > 2R sin O and failure are extends beyond the sur­
charge stress, where R and O are the radius and half the angle subtended 
at the center of the trial arc. For subcase A(i), the surcharge stress extends 
beyond the point where the failure arc ends. This situation corresponds 
to the conventional case where the surcharge stress is assumed to extend 
to infinity for which case the ultimate bearing capacity, qu, is given by 
Eq. 2. For subcase A (ii), moments of all forces about the center, 0, 
can be summed for equilibrium as 

M 0:= qu B(R sin O-B/2) + q,0 B, (R sin 0-B-B,/3)-2cu R2 8 = 0 (3) 
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CASE A UNIFORM 

FIGURE 3 Improvement in Bearing Capacity-Uniform Surcharge 

Solving for qu. 

where 

with Ne = 2R28/(R sin 8-0.5) 

No = lJ, (-R sin 8 + I + B,/3)/(R. sin 8--0.5). 

(4) 

(5) 

(6) 

(7) 

R = R/B, B., = Bs/B, and Rq = qs0/cu. Ne* is a composite bearing capacity 
factor that depends on Ne, Rq, and Nq, and is minimised with respect 
to the radius R, and the angle 8. Herein the trial arc which minimises 
Ne"' is determined unlike the conventional analysis in which the contri­
butions of cohesion and surcharge stress are minimised separately. 

Case B : Surcharge Stress decreases Linearly with Distance. 

The SLtrcharge stress decreases linearly (Fig. 3b) as 

q,(x) = qs0 (1-x/B,) (8) 

The analysis follows on the same lines as in Case A except that subcase 
B(i) i.e. when the surcharge stress extends beyond the failure arc also 
needs to be considered. 

Case B(i) : B + B, > 2 R sin 0 

ii. = {(I - X,JB,) X, (1 + X,/2-R sin 8) + X; (1 + X,/3-R sin 8)/ 
2lis}/(R sin 0-0.5) (9) 

where Xe = 2 R sin 0-B, and x, = Xe/B. 
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Case B (ii) : B + Bs < 2 R sin 0 

..,. f{q = il. (l + iis/3- R sin B)/(2R sin 0- 1.0) (10) 

Case C : Surcharge Stress decreases Exponentially with Distance 
The surcharge stress varies with distance as 

q,(x) = qs0 exp (-a' x) = q,0 exp (- 11X) (11) 

where a. is a decay parameter, and a = a' B. Since in this case, the 
surcharge theoretically extends to infinity (i.e. B. - oo ). only subcase C(i) 
need be analysed. The moment equilibrium equation is 

No= [{(1 - exp (- aX, + I) (X, + l)}- (R sin 0- 1) (I - exp (-a x,)J/ 
(2R sin 8- 1.0) (12) 

where Xe = (2R-sin 8 - 1 ). In all th e above cases, the increase in bearing 
capacity, ~(BCR), due to partial surcharge is expressed in percentage fcrm 
as 

(13) 

Results 

The composite bearing capacity factor Ne* is minimised with respect 
to the radius R and half angle, 8, subtended at the center of the trial arc. 
A direct search method is adopted for the minimization and the accuracy 
of the results ensured with a convergence criterion of O. 000 I. A parametric 
study is carried out for the three types of surcharge stress variation : A­
Uniform; B - Linear Decrease; and C-Exponential Decay, the maximum 
surcharge stress ratio, Rq, varying from O to 5, and the surcharge stress 
extending from O to 5B. 

The increase in bearing capacity ratio, ~(BCR), is evaluated for the 
three variations considered and presented in Figs. 3 to 5. In all these 
cases, the bearing capacity increases with both B, and Rq ratios. In case 
of uniform surcharge (Fig 3), the ratio ~ (BCR) increases rapidly with 
B, and once the maximum value of ~(BCR) is reached corresp onding to 
Nq of 1.0, it remains constant as surcharge extending beyond the critical 
failure are is equivalent to one extending to infinity. The maximum values 
of ~(BCR) are 9 %, 18 %, 27 %, and 36 % (Fig 3) for Rq values of O. 5, 
1.0, 1.5, and 2.0 respectively. The maximum values of ~(BCR) corres­
pond to Bs values of 1. 12, 1 . 42, I . 68, and 1 . 8 for the above values of Rq. 
This result signifies that larger the intensity of surcharge stress, i.e. larger 
the value of Rq, the farther should it extend for the 6(BCR) to reach the 
maximum value. 

If the surcharge stress decreases linearly with distance (Eq. 8), the 



282 

50 -

,: 
:;- .30 ~ 
..) 

D 

<J 20 -

10 -

0 

INDIAN GEOrncHNICAL JOURNAL 

1-0 JO l.·0 

FIGURE 4 Improvement in Bearing Capacity- Linear Decrease of Surcharge 

FIGURE 5 Improvement in Bearing Capacity-Exponential Decrease of Surcharge 

.6.(BCR) values increase gradually with B, (Fig 4) and attain their maxima 
asymptotically. The maximum ~(BCR) values are 8. 3 %, 15. 5 % and 
31 % respectively for Rq values of 0.5, 1.0 and 2.0. Even in this case, 
the distance B,, beyond which ~(BCR) remains nearly constant increases 
with the intensity of maximum surcharge stress, Rq. 
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FIGURE 6 Critical Circles for Case c-Exponential Decrease of Surcharge 

Case C corresponds to exponential decrease of surcharge stress with 
distance. The parameter, a, signifies the decay of surcharge stress with 
distance. Smaller the value of a, slower is the d.ecrea~e in surcharge 
stress and vice versa. If B, is defined as the distance at which the sur­
charge stress is one percent of the maximum value, a values of I, 2, 5, and 
10 correspond to B, values of 4.6, 2.3, 0.92, and 0.46 respectively. The 
surcharge stress values beyond these distances are negligible. The 
ll(BCR) values increase with the surcharge stress ratio, Rq, (Fig. 5), and 
decrease rapidly with increasing values of a. The critical circles which 
give the minimum values of Ne* for different values of a (Case C) are 
depicted in Fig. 6. The surcharge stress intensity at any distance is higher 
for decreasing values of a. The critical circles are deeper and extend over 

- larger widths with decreasing a-values. For a decreasing from 10 .0 to 
1 . 0, the maximum depth of the critical arc increases from O. 67B to O. 95B 
and the lateral extent increases from 2.05B to 2.95B from the left edge 
of the arc. Thus, if the surcharge stress extends over larger wid.th, the 
critical arc becomes significantly larger and deeper, and contributes to 
larger increase in bearing capacity. The improvement in bearing capacity 
could be much more in case of nonhomogeneous soils in which the strength 
increases with depth. The increase of bearing capacity of reinforced 
foundation beds, in part, is contributed by the stiff granular layer sprea­
ding the load over wider area on the soft soil below which, in turn, act s 
as a surcharge stress. 

Conclusions 

The conventional approaches for the estimation of bearing capacity 
of foundations on soil, consider the surcharge stress to be uniform and 
of infinite extent. This note presents a simple theory for the bearing capa­
city of a footing on a cohesive soil in an undrained condition with sur­
charge stress of finite extent and whose variation with distance is constant, 
linear or an exponential decrease. The composite bearing capacity factor, 
Ne*, is minimised and obtained as a function of the maximum value, Rq, 
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and relative extent, B,, of the surcharge stress. Resulrs are presented 
quantifying the improvement in bearing capacity ~(BCR). The critical 
failure circle is shown to extend deeper into the ground with increasing 
extent of the surcharge stress. 
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