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Introduction

Technical and Industrial progress is accompanied by setting up of
heavy machines, offshore towers, nuclear power plants etc even at
sites having poor soil conditions. Invariably, under such circum-
stances deep foundations are adopted to transmit the load to the
surrounding as well as the deeper soil strata, Use of piles may be
necessary in four cases: (1) if the total pressure on the soil, both
static and dynamic, is larger than the bearing capacity of the soil;
(2) if the natural frequency of vibration of the foundation is to be
increased; (3) if the amplitude of natural or forced vibration is to
be reduced; and (4) if the residual dynamic settlement of the foun-
dation has to be decreased.

Pile foundations subjected to dynamic loads experience various
modes of vibration viz. vertical, horizontal, rocking and translational
in nature and the behaviour of piles under these modes of vibrations
is very complex and yet to be fully understood.

Brief Review of the Work Done

During the last decade the development of different methods of ana-
lysis of pile foundation started with the concept of elastic half-space. An
analytical solution which has been widely accepted treats the foundation
soil system as an oscillating body resting on a semi-infinite, homogeneous,
isotropic, elastic half-space. Reissner (1936) established the theoretical
basis for studying the response of a footing supported by an elastic
half-space. The effects of contact pressure beneath the footing oscillating
vertically were studied by Sung (1953) and Quinlan (1953). Arnold et al
(1955) studied the forced vibration of arigid body resting on a semi-
infinite elastic medium. They have analyzed four modes of vibrations viz.
vertical, horizontal, rocking and translational and showed that the
amplitude can be obtained for any mass in terms of known constants of
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the system.and fundamental functions f1 and /2 (Reissner’s  displace-
ment functions) which depend on the exciting frequency factor and
pm_sson"s ratio of the medium. Hsich (1962) modified the Reissnet’s
basn:. (.hﬁ“erepﬁal equation for geometrical damping for vertical motion of
a  rigid mrculgr footing. Baranov (1967) proposed an approximate
solution to take into consideration the effect of embedment by considering
the dynamic reaction below the foundation base as well as along the sides
of the foundation. He observed that the effect of embedment of footing
reduces the maximum amplitude and increases the resonant frequency of
the foundation. Isakovich and Komarova (1968) analysed the longi-
tudinal-flexural modes of vibration in a curved slender rod, the axis of
the rod forming a plane curve. He derived the wave equation with the
help of vector calculus. Novak and Baradugo (1972) extended. Bar_anov’s
approach to study the effect of embedment on the vertical vibration of
footings and presented a steady state solution in terms of frequency
dependent spring and dash pot constants. Novak (1974) utilized
Baranov’s approach to propose an analysis for soil-pile interaction. He
assumed that the soil is composed of a set of independent infinitesimally
thin horizontal layers that extend to infinity. When a pile element under-
goes a complex horizontal displacement at any depth inside the soil mass
of shear modulus G, it is acted upon by a horizontal soil reaction. He
also analyzed the dynamic soil reaction for vertical motion of pile.

The basic concept of the governing wave equations which describe
coupled flexural and extensional vibration of curved beam-column in a
plane has been modified and utilized for the analysis of initially curved
marine conductors by Fischer (1975). He considered the external dynamic
force to be repetitive in nature. The vertical soil resistance of pile has
been modelled as static skin friction and assumed horizontal guides
resist the horizontal movement. Novak and Grigg (1976) reported the
experimental results of small pile foundations under dynamic loading
conducted in the field, the soil being fine silty sand followed by gravels.
The black steel pipe piles of 6cm and 9cm diameters were used as test
piles. Experimental results were compared with the theoretical solution
of Novak (1974).

Novak and Aboul-Ella (1978) considered the soil as a continuum
and accounted for dynamic soil pile interaction, the energy dissipation
being through propagation of elastic waves. Mizuhata and Kusakaba
(1984) have introduced the concept of weakened zones around the piles
to explain the Complex dynamic soil-pile interaction phenomeron. Wolf
El{]d Von Arx (1978) and others have utilised finite element technique to
discretise soil around the pile and consistant boundary matrix to stimulate
the effect of the far field. Saha (1985) investigated the straight pile taper
pile and under reamed pile for vertical, horizontal and rocking mode of
vibrations. He also analysed the pile supported footings. For vertical

g
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vibration he assumed only vertical displacement and lateral movement
was restrained. Nogami (1986) presented a procedure for time domain
analysis of axial response of single piles where a time domain soil-pile
interaction force is formulated through a simple mechanical idealization
of the soil medium developed from the dynamic behaviour of a plane
strain continuous clastic medium. Gazetas (1984) has analysed the
kinematic seismic response of single piles and pile groups. Recently an
overview has also been presented by Novak (1991) using continuum as
well as Winkler-type models. Ghosh et al (1992) analysed the piles with
enlarged base and also reported the experimental vertical response curves
for footings supported on model piles with enlarged base.

It can be seen that dynamic analysis of piles has been restricted to
straight, vertical piles with either vertical or horizontal movement under
cither vertical or horizontal vibration. One dimensional wave propa-
gation theory in elastic rod was adequate to analyse this problem.
However, due to several reasons piles may either bend from the vertical
axis or be exposed to dynamic eccentric vertical loads which may induce
both longitudinal and transverse motions. A generalised theory for the
analysis of piles having coupled flexural and extensional vibration is
necessary to solve such a problem.

Scope of Study

The basic governing wave equation for curved beam-column in a
plane has been modified and utilised for analysing the straight vertical
pile in this paper. Floating as well as end bearing piles have been con-
sidered. The main objective of the study is to investigate the dynamic
effect of periodic vertical loads on a single vertical pile wherein vertical
as well as lateral movement of pile are allowed. The computer-aided
analysis by finite difference technique has been developed which con-
siders soil-pile interaction in a relatively simpler way. It is restricted
to piles embedded in a homogeneous half-space.

METHOD OF ANALYSIS

The method as suggested by Saha (1985) to analyse the dynamic
behaviour of pile and pile foundation under vertical harmonic motion
assumes the pile movement along vertical direction ignoring the flexural
movement of pile. The present analysis is similar to Saha’s approach
and it has been extended to study the vertical and horizontal movement
of pile under vertical vibration. Two dimensional wave equations which
describe coupled flexural and extensional motion of straight vertical
piles have becn prescnted here. It has been assumed that (1) the pile
is perfectly elastic, vertical, circular in cross-section and has a perfect
contact with soils, (2) the soil is a linearly elastic, isotropic, homogeneous
and semi-infinite medium, and (3) the soil reaction acting on the tip is
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equal to that of an elastic half-space. The finite difference numerical
technique has been used. This method transforms the problem of pile
vibration into a computer-oriented procedure of matrix structural analysis
(Salvadori and Baron (1962)).

Fig. 1 (a) shows the differential segment of a curved pile along with
forces, moments, and displacements. An element of length dz has been
considered for analysis (Fig. 1).

Fand F - dF = axial forces
Q and Q + dQ = shear forces

!

FIGURE 1 (a) Differential segment of curved pile shoiwng sign convention for forces,
moments and displacements

2=0
(at pile top) N

6, 15 the angle ot
nclination of the
pile axis with the
ver tical

\N
Z=1\
(at pile tip)

FIGURE 1(b) A portion of the planner curve of the pile axis. The stiffness shows positive
directive
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M and M + dM = bending moment
X, y = displacement along the pile axis and normal to it respectively,

To satisfy the Compatibility condition the following equations may be
written,

z Fa.\'fu[ == 0-. z Qn.rmmf = 0, and 2 M= 0

dF
F+ —— dZ— Fcosdf — Qsindf = 0 (1)

0+ de Q cos df + Fsin df = 0 (2)

M+—‘midz M—FR+(F+ EdZ)R-O 3)

After applying curved-beam theory (Pippard and Baker (1968)),

Foxiar = A B (x! — ) )
anrmu.' = — El(qz yl s yll:l,) (5)
M= E1GEy+ ©

Substituting Eqgs. 4 and 5 in Eqs. 1 & 2, the following relationships
are Wwritten,

px=AE[x + (a4 — ) y' + a® 5 y1 7
py=AE[nxt—npy—a 2yt —a® ] (®

The basic wave equations which describe coupled flexural and exten-
sional vibration of curved beam-column in a plane may be modified for
curved pile and presented in the partial differential form as,

2
o 520 ;"f’” —aE[ 20 22D 4 a2 — ) 2D

P Z2E0 ]y . WD) 4 k) =0 ©)

2 2%
2 y(z,
g a}yjz L —ax [ 7 -———ax(z’l) — 2 pzt) —

0% y(z,t) 2%y (2,1 3y(z,
7 it a£4) te '_‘"ygr)+y(z,r)=0

(10)

a’ y

Where, P = linear density of pile material

() =23()orand () = 3()ez -
= I/4
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I = central moment of inertia of pile cross section
A == cross sectional area of pile

£ = Young’s modulus of elasticity of pile material
n = Initial curvature of pile

¢ = co-efficient of pile material damping

ky (z.1), ky (z,t) = side soil reaction per unit length of pile and
described by complex soil stiffness associated with vertical and
horizontal displacement of pile respectively and represented as,

kx (2,f) = [Fx (2) + iwey] x (z,1) (11)
ky(z,t) = [Fy(2) +iwely (2.1 (12)

Where, F, (z) and F, (z) = Elastic stiffness functions dependent on
depth for vertical and horizontal displacements respectively and are
derived from Mindlin’s (1936) solution (Figs. 2(b) & (¢) Yot G =
Viscous damping functions for vertical as well as horizontal displacements
respectively; and x, y = displacement along pile axis and normal to It

respectively.

When the pile element undergoes vertical as well as horizontal trans-
lation, the phenomena may be considered similar to the operation of a
disk vibrating horizontally as well as vertically on a semi infinite elastic
half-space. The equivalent viscous damping parameters arc calculated
as suggested by Hsieh (1962) for horizontal and vertical modes of vibra-
tions and are presented in Figs. 3(a) & (b).

Differential equation of motion

When a pile is subjected to both vertical and horizontal harmonic
excitations, the motion of the pile is resisted by distributed complex side
soil reaction ky (z, t) and k, (z, t) acting along the length of the pile
and a concentrated vertical soil reaction R (r) at the pile tip Fig. 2(a).
The distributed soil reaction appears in the equation of motion for
an element dz and the concentrated reaction represents the boundary
condition at the tip. Assuming that the pile is undergoing complex
vertical and horizontal vibrations, the complex vertical and horizontal
displacements may be written as,

X (2,) = x (2) e
|

¥y (z’t) ==y {Z) et

~
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FIGURE 2 (a) Both vertically and horizontally excited discretised pile; (b) variaticn of
stiffness function F, (#); and (c) variation of stiffness Function F, (z);
Where, x (z) and y (z) are the complex amplitude in axial and lateral
directions of pile at depth :z.
i = 4/—] and t = time
Substituting the above in Egs. 9 & 10 and assuming the
initial curvature for the pile axis as infinity and neglecting the material

damping, the differential wave equations of damped longitudinal-flexural
modes of vibration for straight pile, are obtained as under:

AE[ O @y 2 o IOy

dz dz dz3
[ 6w — Fy(2) + iwe(2)] x(z) = 0 (14)
() _ o 4 3000 . 20°3(2)
A E[n 2z a* 7® 22 N :l s

[ew? — A En*—Fy(2) —iwc(2)]3(2) =0 ; - (19)
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FIGURE 3 (a) Hal-space stiffness (C,;) and damping (C,,) parameters for horizontal
mode of vibration.

Analysis of single frec head pile with pile tip free

This case is similar to free-head floating pile. For vertical vibration,
the complex stiffness of pile at pile head is defined as the end force
providing a unit displacement of the pile head. Therefore, the first
boundary condition is,

at, z =0 x(2) = x 0 =1 (16)

As the pile head is free the bending moment and shear force are
zero. Therefore,

( 23y 3% )(z
—E1 {4 aa;(z) £ ”a;‘2( )}r:o 17
E[{ P z) + fi;ﬁ-’) } il -

Now at the pile tip the motion of the pile generates a concentrated
reaction equal to the axial force, so,

Faxia} = R(t) f, e

AE {a—ai_(f)_ —ny(2) } = — Gbry(tq + Cya) %(2)2m1 (19)

.
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FIGURE 3 (b) Half-space stiffness (C,,;) and damping (C,.,) parameters for vertical mede
of vibration

Where, G, = shear modulus of soil below the pile tip. When G,
tends to a very large value or infinity in comparison with the shear
modulus of surrounding soil, the pile may be considered as end bearing.

x(2)2—1 = complex amplitude of the pile tip.

Cai€. = half-space parameters in vertical mode of vibration

depending on dimensionless frequency,

ay = r, W,

vy = shear wave velocity below pile tip and

w = circular frequency.

Finite difference solution
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For simplicity and convenience the finite difference numerical tech-
nique is adopted for the solution of fourth order differential wave
equations. For this purpose the pile length is divided into number of
clements with 0 to » nodes. In formulation of the set of finite diffe-
rence equations, the boundary conditions are also satisfied.

A set of 2 x n simultancous equations so obtained may be written
in the form, '

[4]{W} =B} ‘ (20)

Where, the complex co-efficient matrix [4], the complex disp}aceme_nt
vector {W} and load vector {B} are determined from the respective finitc

difference equations.

Suitable computer programs in fortran iv have been developiiﬁ;z
generate the matrices for the equatioq (20) and for_ subsequgnt $0 I
of the complex simultaneous equations on a high speed comp

(CYBER 840) for complex nodal displacements.
The nodal deflections at any depth z are,
x(z) = x7 -+ Xy } n
Wz2) =y + e
Where, x;, yy and x,, y, are the real and imagina.ry p:arts of complex
displacement. Therefore, the real amplitude of motion is,
x(z) = [x% + x3]'/% and, ‘ (22)
W) =Di + p1e

and the phase angle in X-direction is,

$(z) = tan™* -fi and in Y direction is,
1
0(z) = tan ;WE
B4l

Now, the complex vertical and horizontal pile stiffness may be written
as,

ki = ky 4 iwcg and 3)

k; = ky + Ewc,,

——

Where the real part of the complex stiffness is related to the stiffness

-
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co-cfficient and imaginary part to damping. Where, ki, ky, cx and ¢,
may be expressed as,

EA E A
ki = A fa Cp == ™ Sz

& and : P \ ' (24)
ky = ey Cy = oz !

s s Vs J

Here f,1, fy. and f,,, f, are the dimesionless pile stiffness and
damping parameters respectively under coupled modes of vibration and

are presented in Figs. (4) and (5).
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FIGURE 4 Variation of stiffness and damping parameters of piles with slenderness ratio
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Ja=— ah [—3x, + 4 X33 — xp4]

Vs
f\z=_m’[”3xn2+4xu—x22] | (25)

$

"y

fn=— 2% [—3 yu+ 4y11“‘y21]

Vs

== e

["3.1’02“{‘4}’:2"“)’22)

Where, xp;, X153, Xpy and yy;, yia. ¥y are the real part of complex
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displacement in vertical as well as lateral direction respectively at nodes
0,12, ete. .and x5, Xy X and Yoz, Y1a: Voo are the imaginary parts of
complex displacement at nodes 0,1,2 etc,

Equivalent Stiffness and Damping co-efficient of Pile Supported
Footing:

The stiffness and damping co-efficient of individual piles are used to
determine equivalent stiffness and damping co-efficient of a footing
supported on piles. For footing supported on piles subjected to complex
vertical and horizontal excitation,

P(f) = P, e and Q1) = Q, e (26)
The steady state responses are,
x(t) = x,cos (wt - ¢) and y(t) = ¥, cos (wt + ¢) (27)

The real force amplitudes for rotating mass type excitation for both the
cases are,

P, = mex e, w* and Q, = m.y e, w? (28)

m,yex and myey being the eccentric mass moments in both the
directions. The amplitudes of vertical and horizontal displacement of the
footing are given as,

Yo = T ng)}:n—{— (wex) ] - ][
e — » > -

o l

Vo = [(ky — ng)z + (wcy)a]u.' J

where, M = total mass of footing.

The dimensionless amplitude, Ay, and A,, at frequency w is written
as,

Mx, w2 ]
Axx = Me, €X 2[3_1(: ..w2 }24ﬁ i WCx }2J] 12 e ]!
M M
rGo
A)’)’ = M =r :Pd . 2 /2 r
o T T
1M M J

DISCUSSION OF THE RESULTS

Using Hsieh’s (1962) solution the variation of half-space parameters
Cas Cua, C,; and C,, with dimensionless frequency, a, have heen
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generated and presented through Figs. 3(a) and (b) for various values of
Poisson’s ratio. They are used to determine the viscous damping func-
tions‘ in horizontal and vertical modes of vibration. For horizontal mode
of vibration, stiffness parameter, C,, decreases whereas damping para-
meter C,; increases with increase in dimensionless frequency. a, (Fig.
3{a)). For vertical mode of vibration, the stiffness parameter, C,; de-
creases and C,, increases with increase in a, (Fig. 3(b)).

Using appropriate Egs. fiy. fae. f3: and f,. have been evaluated and
shown in Fig. 4 for a typical case of v,=0.30, Vs/Vc=.03, a, = 0.30 for
floating and end-bearing piles. f,, and f;, are found to be independent
of the end condition of the pile. [, decreases with increase in slender-
ness ratio, 1/r,. Stiffness function f,, decreases upto 1/r,=40 and three-
after it increases with increase in slendezess ratio. The damping func-
tion f.. for floating pile decrecases gradually upto 1/r,=40 and remains
practically constant thereafter and f,» decreases steeply upto F/ry=40
and subsequently increases. In case of end bearing® pile the damping
function f,, decreases with increase in l/r, and the damping function
{2 decreases very steeply upto 1 /r,=40 and subsequently increases gra-

dually with increase in 1/r,.

Fig. 5 shows the variation of stiffness and damping parameters in
vertical and horizontal directions, fy, fxa and f,;, fi» respectively. with
Vs/Ve. In case of floating and end bearing piles for typical values of
y,=0.4, 1/r,=20 and a,—0.30, f,, and f,, are almost independent of tip
conditions. The stiffness parameter fy, increases with increase in velocity
ratio, ¥s/Ve. Stiffness parameter, f,; in horizontal direction marginally
increases upto Vs/Fc=0.02 and thereafter decreases gradually. End
conditions significantly influence damping parameters f,, and f.. For
floating pile f.. increases upto Fs/Ve=0.02 and thereafter practically
remais constant. The damping parameter f,, for floating pile decreases
gradually with increase in Vs/Ve. For end bearing pile, the damping
parameter f,, is almost constant and has negligible value for the range
of Vs/Ve considered and the damping parameter /., is almost constant
upto Vs/Fe=0.03 and thereafter it decreases steeply.

Fig. 6 shows the comparison between author’s solution with
the lumped mass solutions published by Kuhlemeyer (1981) for vertical
response of floating piles driven into a soil system that can be approxi-
mated as a homogeneous soil half-space. The curves are for three diffe-
rent values of mass ratios, B and for |/r,—=40 and MR==Ep/Es=2000,
(The mass ratios has been defined as B=Wf [y, Where, W —applied
static load on pile, y,=unit weight of soil and f;is a function of Ep/Es
and I/ry). The agreement betwecn author’s solution and Kuhlemeyer’s
analysis is quite satisfactory. However, the predictad values of resonance
amplitudes are consistently more than those given by Kuhlemeyer. -
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Fi«/g 7, reports three vertical response curves of a footing (1260.4kg)
supported by single black steel pipe pile (r,=4.5cm, A=144cm?* and
1/r,=50.6) fully ~embedded in soil (o,=1792kg/m® v,=0.25 and
V,=175m/sec). These vertical response curves were obtained by Novak
and Grigg (1976) experimentally by varying the magnitude of exciting
force and frequency. The dotted lines represent the analytical response
curve by Saha (1985). The continuous line with circular points represent
the authors response curve considering only vertical movement of pile
shaft. It is observed that the agreement between cxperimental and
analytical solution of Saha and authors’ response is satisfactory at all
frequency ranges, except near resonance. The theoretical vertical reso-
nant amplitude is somewhat less than that obtained from the experiment,
This may be due to damping produced by transverse movement. The
analytical resonant amplitude obtained from author’s solution is R
767 and 887 of the corresponding experimental resonant amplitudes
in case of curve I, curve II, and curve III respectively. The analytical
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FIGURE 7 Comparison of experimental and theoretical response (measured along pile
axis) carve for vertical vibration of pile

results obtained by the author is 929 of the value reported by Saha.
The lateral amplitude frequency curve is also shown in Fig. 7. After
superimposing the lateral amplitude, on the existing vertical amplitude,
the resultant amplitude A, is also plotted. The analytically obtained
resultant amplitude is 989, of the value reported by Saha,
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Figs. 8(a) and (b) show the variation of dimensionless amplitude A,
and Ay, in vertical as well as lateral directions, respectively with
frequency for typical cases for floating pile and Figs. 9(a) and (b) for
end bearing pile. For floating pile, it is observed that as the slenderness
ratio, 1/r, increases the resonant dimensionless amplitude in both vertical
and horizontal directions decrease significantly. With increase in wave
velocity ratio, Vs/Ve the resonant amplitude for both the directions
decrease significantly and they occur at lower frequency values. For
example the resonant amplitude in vertical direction and frequency for
Vs/Ve=0.01 for 1/r,=60 are 6.8 and 426 rad/sec and for Vs/Ve=0.05
are 2.19 and 61.89 rad/sec.

For end bearing pile, (Figs. 9(a) and (b)) it is observed that A,,
and 4,, vary with frequency randomly. Therefore it is very difficult
to draw proper conclusions. However, it is also observed that the
resonant amplitude is generally low in case of end bearing pile in com-
parison with floating pile.
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FIGURE 9 (b) Variation of Ay, with frequency for various wave velocity ratios

Conclusions

An analysis to predict the dynamic response of a pile under vertical
harmonic motion has been presented here. It is capable of predicting
the response of a curved as well as straight vertical pile, wherein both
the longitudinal and flexural movement of a pile have been considered.

The half-space parameters C,,, C* and C,,, C,* in horizontal and
vertical modes of vibration respectively depend on dimensionless fre-
quency, @, and Poisson’s ratio of soil.

Stiffness functions f, and f,; in vertical and horizontal directions
are independent of pile tip conditions, but, they vary with the slenderness
ratio of a pile and wave velocity ratio i.e., ratio of shear wave velocity
through soil and pile. The damping functions f,; and Jy2 in vertical
as well as horizontal directions depend on pile tip conditions, slenderness
ratio and wave velocity ratio.
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The agreement between the author’s results with the lumped mass
solution given by Kuhlemeyer (1981) for vertical response of floating
piles driven into a soil system that is approximated here as a homo-
geneous soil half-space is quite satisfactory. However, the author’s
estimated values of resonant amplitudes are consistently higher than
those given by Kuhlemeyer.

The predicted lateral amplitude is considerably less than that in the
longitudinal direction. Author’s estimated value of the resonant ampli-
tude in the vertical direction is less than that estimated by Saha (1985)
and observed by Novak er al (1976). However, the predicted resultant
amplitude, A,, is 98% of that obtained by Saha.

In general, the dimensionless amplitudes in vertical and horizontal
directions depend on pile tip conditions, velocity ratio and slenderness
ratio. For floating pile, as the slenderness ratio increases, the resonant
dimensionless amplitude in both vertical and horizontal directions
decrease significantly. As wave velocity ratio increases, the resonant
amplitudes in both the directions decrease and occur at lower frequency
values. In general, for end bearing pile the resonant amplitudes in both
the directions are less than those noted for floating pile.
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