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Technical and Industrial progress is accompanied by setting up of 
heavy machines, offshore towers, nuclear power plants etc even at 
sites having poor soil conditions. Invariably, under such circum­
stances deep foundations are adopted to transmit the load to the 
surrounding as well as the deeper soil strata. Use of piles may be 
necessary in four cases: (I) if the total pressure on the soil, both 
static and dynamic, is larger than the bearing capacity of the soil; 
(2) if the natural frequency of vibration of the foundation is to be 
increased ; (3) if the amplitude of natural or forced vibration is to 
be reduced; and ( 4) if the residual dynamic settlement of the foun-

',, dation has to be decreased. 

Pile fou ndations subjected to dynamic loads experience various 
modes of vibration viz. vertical, horizontal, rocking and translational 
in nature and the behaviour of piles under these modes of vibrations 
is very complex and yet to be fully understood. 

Brief Review of the Work Done 

During the last decade the development of different methods of ana­
lysis of pile foundation started with the concept of elastic half-space. An 
analytical solution which has been widely accepted treats the foundation 
soil system as an oscillating body resting on a semi-infinite, homogeneous, 
isotropic, elastic half-space. Reissuer (1936) established the theoretical 
basis for studying the response of a footing supported by an elastic 

-\. half-space. The effects of contact pressure beneath the footing oscillating 
vertically were studied by Sung (1953) and Quinlan (1953). Arnold et al 
( 1955) studied the forced vibration of a rigid body resting on a semi­
i nfioite elastic medium. They have analyzed four modes of vibrations viz. 
vertical, horizontal, rocking and translational and showed that the 
amplitude can be obtained for any mass in terms of known constants of 
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the system . and fun~amental functions fl and /2 (Reissner's displace­
ment functions) which depend on the exciting frequency factor and 
poisson's ratio of the medium. Hsieh (1962) modified the Reissner's 
basic differential eq!lation for geometrical damping for vertical motion of 
a ~gid circul~r footing. Baranov (1967) proposed an approximate 
solutlon to take into consideration the effect of embedmen t by considering 
the dynamic reaction below the foundation base as well as along the sides 
of the foundation . He observed that the effect of embedment of footing 
reduces the maximum amplitude and increases the resonant frequency of 
the foundation. Isakovich and Komarova (1968) analysed the longi­
tudinal-flexural modes of vibration in a curved slender rod, the axis of 
the rod forming a plane curve. He derived the wave equation with the 
help of vector calculus. Novak and Baradugo (1972) extended Baranov's 
approach to study the effect of embedment on the vertical vibration of 
footings and presented a steady state solution in terms of frequency 
dependent spring and dash pot constants. Novak (J 974) utilized 
Baranov's approach to propose an analysis for soil-pile interaction. He 
assumed that the soil is composed of a set of independent infinitesimally 
thin horizontal layers that extend to infinity. When a pile element under­
goes a complex horizontal displacement at any depth inside the soil mass 
of shear modulus G,, it is acted upon by a horizontal soil reaction. He 
also analyzed the dynamic soil reaction for vertical motion of pile. 

The basic concept of the governing wave equations which describe 
coupled flexural and extensional vibration of curved beam-column in a 
plane has been modified and utilized for the analysis of initially curved 
marine conductors by Fischer (1975). He considered the external dynamic 
force to be repetitive in nature. The vertical soil resistance of pile has 
been modelled as static skin friction and assumed horizontal guides 
resist the horizontal movement. Novak and Grigg (1976) reported the 
experimental results of small pile foundations under dynamic loading 
conducted in the field, the soil being fine silty sand followed by gravels. 
The black steel pipe piles of 6cm and 9cm diameters were used as test 
piles. Experimental results were compared with the theoretical solution 
of Novak (1974). 

Novak and Aboul-Ella ( 1978) considered the soi I as a continuum 
an? accounted for dyn~mic soil pile interaction, the energy dissipation ) 
berng through propagatl.on of elastic waves. Mizuhata and Kusakaba 
(1984) h~ve introduced the concept of weakened zones around the piles 
to explam the Complex dynamic soil-pile interaction phenomenon. Wolf 
a?d V?n A'.x (1978) and others have utilised fi nite element technique to 
d1scretise soil around the pile and consistant boundary matrix to stimulate 
t~e effect of the far field. Saha (19?5) investigated the straight pile taper 
p~le a_nd under reamed pile for vertical, horizontal and rocking mode of 
v1brat1ons. He also analysed the pile supported footings. For vertical 

'I 
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vibration he assumed only vertical displacement and lateral movement 
was restrained. Nogami (1986) presented a procedure for time domain 
analysis of axial response of single piles where a time domain soil-pile 
interaction force is formulated through a simple mechanical idealization 
of the soil medium developed from the dynamic behaviour of a plane 
strain continuous elastic medium. Gazetas ( 1984) has analysed the 
kinematic seismic response of single piles and pile groups. Recently an 
overview has also been presented by Novak (1991) using continuum as 
well as Winkler-type models. Ghosh et a l (1992) analysed the piles with 
enlarged base and a lso reported the experimental vertical response curves 
for footings supported on model piles with enlarged base. 

It can be seen that dynamic analysis of piles has been restricted to 
straight, vertical piles with either vertical or horizontal movement under 
either vertical or horizontal vibration. One dimensional wave propa­
gation theory in elastic rod was adequate to analyse this problem. 
However, due to several reasons piles may either bend from the vertical 
axis or be exposed to dynamic eccentric vertical loads which may induce 
both longitudinal and transverse motions. A generalised theory for the 
analysis of piles having coupled flexural and extensional vibration is 
necessary to solve such a problem. 

Scope of Study 

The basic governing wave equation for curved beam-column in a 
plane has been modified and utilised for analysing the straight vertical 
pile in this paper. Floating as well as end bearing piles have been con­
sidered. The main objective of the study is to investigate the dynamic 
effect of periodic vertical loads on a single vertical pile wherein vertical 
as welt as lateral movement of pile are allowed. The computer-aided 
a na lysis by finite difference technique has been developed which con­
siders soil-pile interaction in a relatively simpler way. It is restricted 
to piles embedded in a homogeneous half-space. 

METHOD OF ANALYSIS 

The method as suggested by Saha (1985) to analyse the dynamic 
behaviour of pile and pile foundation under vertical harmonic motion 

-l as~umes the pile movement a long vertica l direction ignoring the flexural 
movement of pi!e. The present analysis is similar to Saha's approach 
and it has been extended to study the vertical and horizontal movement 
of pile under vertical vibration. Two dimensional wave equations which 
describe coupled flexural and extensiona l motion of straight vertical 
piks have been presented here. It has been assumed that (I) the pile 
is perfectly elastic, vertical , circular in cross-sectio n and has a perfect 
contact with soils, (2) the soil is a linearly elastic, isotropic, homogeneous 
and semi-infinite medium, and (J) the soil reaction acting on the tip is 
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equal to that of an elastic half-space. The finite difference numerical 
technique has been used. This method transforms the problem of pile 
vibration into a computer-oriented procedure of matrix structural analysis ~ 
(Salvadori and Baron (1962)). 

Fig. 1 (a) shows the differential segment of a curved pile along with 
forces, moments, and displacements. An element of length dz has been 
considered for analysis (Fig. I). 

F and F + dF = axial forces 

Q and Q + dQ = shear forces 

FIGURE 1 (a} Differential segment of curved pile shoiwng sign convention for forces, 
moments and displacements 
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FIGURE l(b) A portion of the planner curve of the pile axis. The stiffness shows posithe 
directive 
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Mand M + dM = bending moment 

~ x, y = displacement along the pile axis and normal to it respectively. 

To satisfy the Compatibility condition the following equations may be 
written, 

~ Faxiu/ = 0, and~ M = 0 

F + :: dZ - F cos dO - Q sin dO = 0 

Q + !~ dZ - Q cos dO + F sin dO = 0 

(I) 

(2) 

dM dF 
M + dZ dZ - M - FR + (F + dZ dZ) R = 0 ( 3) 

After applying curved-beam theory (Pippard and Baker (1968)), 

Fax101 = A E (x1 - '1l y) 

Qno,ma/ = - E J ( 7J2 yl + ylll:) 

M = E I (r/ y + yll) 

(4) 

(5) 

(6) 

Substituting Eqs. 4 and 5 in Eqs. & 2, the following relationships 
are written, 

p ;· = A E [xll + (a2 11a _ 7/) y i + a2 7J yll.1,] 

P j/ = A E [ 7/ xi - 7/2 Y - a'Z 7/2 y11 - a2 yl: ] 

(7) 

(8) 

The basic wave equations which describe coupled flexural and exten­
sional vibration of curved beam-column in a plane may be modified for 
curved pile and presented in the partial differential form as, 

0 2x (z,t) _ A E[ a 2x (z,t) + (a 2 3 _ ) oy(zt) + 
p a t 2 0 Z2 7/ 7/ ~ 

2 as y (z,t) ] + C ax(z,t) + k (z t) = 0 
p 7J O z3 at " ' 

., cl2 
y(z,t) _ A E [ ox(z,t) _ 2 ( ) _ 

u a,2 7J oz TJ Y z, t 

2 2 02 
y(z,t) 2o4y (z,t) J 8y(z,t) 

a T/ az2 - a i)z4 + c St + ky (z ,t) = 0 

Where, P = linear density of pile material 

( )· = cl ( )lot and ( )1 = o ( )/az 
a2 = I/A 

(9) 

{10) 
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I = central moment of ine1tia of pile cross section 

A = cross sectional area of pile 

E = Young's modulus of elasticity of pile material 

r; = Jnitial curvature of pile 

c = co-efficient of pile material damping 

kx (z.t), ky (z,t) = side soil reaction per unit length of pile and 
described by complex soil stiffness associated with vertical and 
horizontal displacement of pile respectively and represented as, 

kx (z,t) = [Fx (z) + i W cxl X (z,t) 

ky (z,t) = [FY (z) + i w Cy] y (2,t) 

(11) 

(12) 

Where, Ex (z) and Fy (z) = Elastic stiffness functions dependent on 
depth for vertical and horizontal displacements respectively and are 
derived from Mindlin's (1936) solution (Figs. 2(b) & (c) ). ex, Cy = 
Viscous damping functions for vertical as well as horizontal displacements 
respectively ; and x, y = displacement along pile axis and normal to it 

respectively. Y 

When the pile element undergoes vertical as well as horizontal trans­
lation, the phenomena may be considered similar to the operation of a 
disk vibrating horizontally as well as vertically on a semi infinite elastic 
half-space. The equivalent viscous damping parameters are calculated 
as suggested by Hsieh (1962) for horizontal and vertical modes of vibra­
tions and are presented in Figs. 3(a) & (b). 

Differential equation of motion 

When a pile is subjected to both vertical and horizontal harmonic 
excitations, the motion of the pile is resisted by distributed complex side 
soil reaction kx (z, t) and ky (z, t) acting along the length of the pile 
and a concentrated vertical soil reaction R (t) at the pile tip Fig. 2(a). 
The distributed soil reaction appears in the equation of motion for f 
an element dz and the concentrated reaction represents the boundary 
condition at the tip. Assuming that the pile is undergoing complex 
vertical and horizontal vibrations, the complex vertical and horizontal 
displacements may be written as, 

x (z,t) = x (z) eiwt l 
y (z,t) = y (z) eiwt 

(13) 
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FIGURE 2 (a) Both vertically and horizontally oxcited discretised pile; (b) variaticn of 
stiffness function F x (z); and (c) variation of stiffness Function F, (z); 

Where, x (z) and y (z) are the complex amplitude in axial and lateral 
directions of pile at depth z. 

i = -/-1 and t = time 

Substituting the above in Eqs. 9 & 10 and assuming the 
initial curvature for the pile axis as infinity and neglecting the material 
damping, the differential wave equations of damped longitudinal-flexural 
modes of vibration for straight pile, are obtained as under: 

AE[ a2x(z) + (a2?J3-71) oy( z) + a 2asy(z) ] + 
dz2 dz dz3 

[ a W3 - F,,(z) + iwcx(z)] x (z) = 0 ·(14) 

A E[n ox(z) _ a2 3 3o2 
y(z) _ a 2a~ y(z) ] + _ 

az 1/ az2 c)z4 

[a w2 - A E 712 - F_v(z) - i w cy(z)] y(z) = 0 (15) 
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FIGURE 3 (a) Half-space stiffness (Cu1) and damping (Cu2) parameters for horizontal 
mode of vibration. f 

Analysis of single free head pile with pile tip free 

This case is similar to free-head floating pile. For vertical vibration , 
the complex stiffness of pile at pile head is defined as the end force 
providing a unit displacement of the pile head. Therefore, the fi rst 
boundary condition is, 

at, z = 0, x(z) = Xo (0) = l ( 16) 

As the pile head is free the bending moment and shear force are 
zero. Therefore, 

I . 2 Q y(z) + 03 y(z) } 
- E l i r, oz oz2 = O (17) 

El{ r? y(z) + ~;:)} = O {18) 

Now at the pile tip the motion of the pile generates a concentrated 
reaction equal to the axial force, so, 

FaxiaJ = R(t) i, e; 

{ a x(z) } AE oz - '1/ Y (z) = - Gb r0 (cx1 + c.,.2) x(z),- 1 (19) 

J-
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FIGURE 3 (b) Half-space stiffness (Cw1) and damping (CwJ parameters for vertical mcllc 
of vibration 

Where, Gb = shear modulus of soil below the pile tip. When Gb, 
tends to a very large value or infinity in comparison with the shear 
modulus of surrounding soil, the pile may be considered as end bearing. 

x(z)z= I complex amplitude of the pile tip. 

C_..1 ; Cx2 

depending 
half-space parameters in 

on dimensionless frequency, 

ab = r0 w/vb. 

vertical mode of 

vb = shear wave velocity below pile tip and 

w = circular frequency. 

Finite difference solution 

vibration 



254 INDIAN OBOTl!CHNICAL JOURNAL 

For simplicity and convenience the finite difference numerical tech­
nique is adopted for the solution of fourth order differential wave 
equations. For this purpose the pile length is divided into n number of 
elements with O to n nodes. In formulation of the set of finite diffe­
rence equations, the boundary conditions are also satisfied. 

A set of 2 X n simultaneous equations so obtained may be written 
Ill the form, 

[ A ]{W} = {B} (20) 

Where, the complex co-efficient matrix [A], the complex displacement 
vector {W} and load vector {B} are determined from the respective finite 
difference equations. 

Suitable computer programs in fortran iv have been developed . to 
oenerate the matrices for the equation (20) and for subsequent solution 
~f the complex simultaneous equations on a high speed computer 
(CYBER 840) for complex nodal displacements. 

The nodal deflections at any depth z are, 

x(z) = x1 + ix2 l 
y(z) = Yi + iy2 

(21) 

Where, x1 , y 1 and x2, y 2 are the real and imaginary parts of complex 
displacement. Therefore, the real amplitude of motion is, 

x(z) = [xr -f- x~]112 and, } 

y(z) = [y; + YW'2 
(22) 

and the phase angle in X-direction is, 

as, 

O(z) = tan - 1 Y2 

Yi 

and in Y direction is, 

Now, the complex vertical and horizontal pile stiffness may be written 

k~ = k,,, + iwc.s and 7 
~ 

(23) 
I 

J 
Where the real part of the complex stiffness is related to the stiffness 
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co-efficient aQd imaginary part to damping. Where, k", ky, c,, and Cy 

may be expressed as, 

EA EA 
kx = -- f x1 CL= --fx. l ,.o l's • 

and 
r 

(24) 
EI EI h2 k.v = --fri Cy= 

)'~ ri V s 

Here J .. 1, fn, and J .. 2, frz are the dimesionless pile stiffness and 
damping parameters respectively under coupled modes • of vibration and 

r-- are presented in Figs. (4) and (5). 
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FIGURE S Variation of stiffness and damping parameters of piles with wave velocity ratio 

r 1 
f,1 = - Th [ - 3 X01 + 4 Xu - xuJ I 

I 
r ~ I 
J~2 = - 2hw- [ - 3 Xo2 + 4 X12 - X22] I 

~ 
'o I fn = - ""1'h"[ - 3 Yo1 + 4 Yn - Y21] I 

y,. - - ;;,,,, [- 3 y., + 4 y,, - y., j 

(25) 

Where, x01, x11, x21 and y01, Yu, y21 are the real part of complex 

--r 
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displacement in vertical as well as lateral direction respectively at nodes 
0, 1,2, etc. and x02, x 12, x22 and y02, y 12, y22 are the imaginary parts of 
complex displacement at nodes 0, 1,2 etc. 

Equivalent Stiffness and Damping co-efficient of Pile Supported 
Footing: 

The stiffness and damping co-efficient of individual piles are used to 
determine equivalent stiffness and damping co-efficient of a footing 
supported on piles. For footing supported on piles subjected to complex 
vertical and horizontal excitation, 

(26) 

The steady state responses are, 

x(t) x 0 cos (wt + </>) and y(t) = Yo cos (wt + <f,) (27) 

The real force amplitudes for rotating mass type excitation for both the 
cases are, 

(28) 

m,,.ex and me,t:y bein_g the eccentric mass moments in both the 
directions. The amplitudes of vertical and horizontal displacement of the 
footing are given as, 

Pn and I Xo = [(kx - Mw2
)• + (wc,.)~]1 '• 1 

~ (29) 

y,. = Qo I 
[(ky _ Mw2)2 + (wc,)']1 /a J 

where, M = total mass of footing. 

The dimensionless amplitude, Axx and Ayy at frequency w is written 
as, 

Mxo w2 I Ax,.= and I me, ex l) K7 ~ r i WCx r , l/2 

M -w- + M J I 
! (30) 

Myv w2 I 
Ayy = = 

[ { ky 2 r { WCy r J'2 I m,y ey 
- -- - w + - I 
M M J 

DISCUSSION OF TI-IE RESULTS 

Using Hsieh's (1962) solution the variation of half-space parameters 
C.,i, C.,2, C..,1 and Cw2 with dimensionless frequency, a0 have heen 
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generated and presented through Figs. 3(a) and (b) for various values of 
Poisson's ratio. They are used to determine the viscous damping func­
tions in horizontal and vertical modes of vibration. For horizontal mode 
of vibration , stiffness parameter, Cu1 decreases whereas damping para­
meter C.2 increases with increase in dimensionless frequency. a" · (Fig. 
J(a)). For vertical mode of vibration, the stiffness parameter, C,. 1 de­

creases and C.v1 increases witlt increase in a(} (Fig. 3(b)). 

Using appropriate Eqs. fx1 , /,.2, /Yl and f y2 have been evaluated ai;d 
shown in Fig. 4 for a typical case of V5 = 0.30, Vs/ Vc = .03, a0 = 0.30 for 
floating and end-bearing piles. /J(1 and f,.1 are found to be independent 
of the end condition of the pile. /<1 decreases with . increase in slender­
ness ratio, l/r

0
. Stiffness function J;.1 decreases upto I /r0 = 40 and three­

after it increases with increase in slendezess ratio. The damping func­
tion / ~2 for floating pile decreases gradually upto I /r0 = 40 and remains 
practically constant thereafter and fy2 decreases steeply upto I /r0 = 40 
and subsequently increases. In case of end bearing- pile the damping 
function .f~2 decreases with increase in l /r0 and the damping function 
J~

2 
decreases very steeply upto I /r0 = 40 and subsequently increases gra­

dually with increase in l /r0 • 

Fig. 5 shows the variation of stiffness and damping parameters in 
vertical and horizontal directions, f,, 1, f,,2 and h·i, f..2 respectively : with --r 
Vs/Ve. In case of floating and end bearing piles for typical values of 
v, = 0.4, l /r

0 
= 20 and a0 = 0.30, f,. 1 and J;,1 are almost independent of tip 

conditions. The stiffness pafameter :fx:1 -increases with increase in velocity 
ratio, Vs/ Ve. Stiffness parameter, J;,1 in horizorital direction marginally 
increases upto Vs/ Ve =0.02 and thereafter decreases gradually. End 
conditions significantly influence damping parameters /,.2 and /22• For 
floating pile fx2 increllses upto Vs/ Ve= 0.02 and thereafter practically 
remais constant. The damping parameter f..2 for floating pile decreases 
gradually with increase in Vs/ Ve. For en·d bearing pile, the damping 
parameter fx2 is almost constant and has negligible value for the range 
of Vs/ Ve considered and the damping parameter .1; 2 is almost constant 
upto Vs/ Ve= 0.03 and thereafter it decreases steeply . 

. Fig. 6 shows the comparison between author's solution with 
the lumped mass solutions published by Kuhlemeycr (1981) for vertical )­
response of floating piles driven into a soil system that can be approxi­
mated as a homogeneous soil half-space. The curves are for three diffe­
rent values of mass ratios, B and for l /r0 = 40 and MR = l:..p/Es= 2000, 
(The mass ratios has been ddlncd as B= Wf,/y,ri;, Where, W= applicd 
static load on pile, y,. = tmit weight of soil and f , is a function of Ep/ Es 
and l/r0). The agreement betwec-n author's solution and Kuhlemeyer's 
analysis is quite satisfactory. However, the predicted values of resonance 
amplitudes are consistently more than those given by Kuhlemeyer . . • 
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Fri.,.?, reports three vertical response curves of a footing (I 260.4kg) 
supported by single black steel pipe pile (r0 = 4.5cm, A = 14.4cm2 and 
J/r = 50.6) fully · embedded ill soil (a. = J 792kg/m 3

, v,. = 0.25 and 
0 .. • 

V,= 175m/sec). These vertical response curves were obtarned by Novak 
and Grigg ( 1976) experimentally by varying the magnitude of exciting 
force and frequency. The dotted lines represent the analytica l response 
curve by Saha (1985). The continuous line with circu!ar p oints represent 
the authors response curve considering only vertical movement cf pile 
shaft. Tt is observed that the agreement between experimenta l and 
analytical solution of Saha a nd authors' rt)sponse is satisfactory at all 
frequency ranges, except near resonance. T he theoretical vertical reso­
nant amp!itude i5 somewhat less than t!iat obtained from the experiment. 
This may be due to damping produced by transverse movement. The 
a nalytical rl!sonant amplitude obtained from a uthor's solution is 82 %, 
76 % and 88 % of the corresponding experimental resonant amplitude s 
in case of curve I, curve lf, and curve HI respectively. The analytical 
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FIGURE 7 Comparison of experimental and theoretical response (measured along pile 
axis) C!lrve for Vt'rtical vibration of pile 

results obtained by the author is 92 % of the value reported by Saha. 
The lateral amplitude frequency curve is also shown in Fig. 7. After 
superimposing the lateral amplitude, on the existing vertical amplitude, 
the resultant amplitude Aw is a lso plotted. The analytically obtained 
resultant amplitude is 98 % of the value reported by Saha. 
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Figs. 8(a) and {b) show the variatien of dimensionless amplitude A.u 
~ and A.vr in vertical as well as lateral directions, respectively with 

frequency for typical cases for floating pile and Figs. 9(a) and (b) for 
end bearing pile: For floating pile, it is observed that as the slenderness 
ratio, 1/r

0 
increases the resonant dimensionless amplitude in both vertical 

and horizontal directions decrease significantly. With increase in wave 
velocity ratio, Vs/ Ve the resonant amplitude for both the directions 
decrease significantly and they occur at lower frequency values. For 
example the resonant amplitude in vertical direction and frequency for 
Vs/Vc= 0.01 for 1/r0 = 60 are 6.8 and 426 rad/sec and for Vs/Vc =0.05 
are 2.19 and 61.89 rad/sec. 

For end bearing pile, (Figs. 9(a) and (b)) it is observed that A • ., 
and A .v.v vary with frequency randomly. Therefore it is very difficult 
to draw proper conclusions . . Howewr, it is also observed that the 
resonant amplitude is generally low in case of. end bearing pile in com­
parison with floating pile. 
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FIGURE 9 (b) Variation of Ayy with frequency for various wave velocity ratios 

Conclusions 

An analysis to predict the dynamic response of a pile under vertical 
harmonic motion has been presented here. It is capabJe of predicting 
the r.!sponse of a curved as well as straight vertical pile, wherein both 
the longitudinal and flex ural movement of a pile have been considered. 

The half-space parameters Cu1 , Cu2 and C,.1, Cw2 in horizontal and 
vertical modes of vibration respectively depend on dimensionless fre­
quency, a0 a nd Poisson's ratio of soil. 

Stiffness functions fx1 and fn in vertical and horizontal directions 
are independent of pile tip conditions, but, they vary with the slenderness 
ratio of a pile and wave velocity ratio i.e. , ratio of shear wave velocity 
through soil and pile. The damping functions fx 1 and [y

2 
in vertical 

as well as horizontal directions depend on pile tip conditions, slenderness 
ratio and wave velocity ratio. 
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The agreement between the author's results with the lumped mass 
solution given by Kuhlemeyer (1981) for vertical response of :floating 
piles driven into a soil system that is approximated here as a homo- * 
geneous soil half-space is quite satisfactory. However, the author's 
estimated values of resonant amplitudes are consistently higher than 
those given by Kuhlemeyer. 

The predicted lateral amplitude is considerably less than that in the 
longitudinal direction. Author's estimated value of the resonant ampli­
tude in the vertical direction is less than that estimated by Saha (1985) 
and observed by Novak et al (1976). However, the predicted resultant 
amplitude, A,.., is 98 % of that obtained by Saha. 

In general, the dimensionless amplitudes in vertical and horizontal 
directions depend on pile tip · conditions, velocity ratio and slenderness 
ratio. For floating pile, as the slenderness ratio increases, the resonant 
dimensionless amplitude in both vertical and horizontal directions 
decrea5e significantly. As wave velocity ratio increases, the resonant 
amplitudes in both the directions decrease and occur at lower frequency 
values. In general, for end bearing pile the resonant amplitudes in both 
the directions are less than those noted for floating pile. 
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