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M any constitutive models have been developed in the past for cohesionless 
soil using the framework of plasticity theory [Abduljauwad et al., 1989; 

Chang, 1985; Dafalias and Harrmann, 1982; De Boer, 1988; Desai, 1980; 
Desai and Faruque, 1984; Desai et al., 1986; DiMaggio and Sandler, 1971; 
Drucker et al., 1957 ; Faruque and Desai, 1985; Faruque and Chang, 1986; 
Faruque, 1987; Faruque and Zaman, 1989; Ghaboussi and Momen, 1982; 
Hirai, 1987 ; Lade and Duncan, 1975; Lade, 1977; Mroz et al. , 1978 ; 
Pooroshasb and Pietruszezak, 1985; Prevost, 1978 ; Sandler, 1976; Valanis 
and Read, 1982; Zaman et al., 1982; Zienkiewicz et al., 1975]. A majority 
of these models emphasize the characterization of stress-strain response and 
do not adequately address the volumetric behavior. For cohesionless soil, 
characterization of volumetric response is of particular importance because 
such soil can undergo significant volume change during shearing. 

Past experimental investigations on cohesionless soil have revealed two 
characteristic states in its stress-strain response during shearing (Fig. I) 
[Abduljauwad et al., 1989; Chang, 1985; Desai and Faruque, 1984; Faruque 
and Zaman, 1989; Fukushima and 'Fatsuoka, 1984; Hardin, 1989; Lade and 
Duncan, 1975; Loung, 1984]. One of these characteristic states (e.g. point 
1 in Figs. Ja and lb) is attained as the soil approaches the state of failure. 
In this state the soil experiences progressive shear deformation under cons­
tant volume (i.e. zero rate of volumetric strain). 'Fhe second characteristic 

-t1 state (e.g., point 2 in Figs. la and lb) is attained when the rate of volumetric 
strain momentarily vanishes as the soil passes from the compressive mode of 
deformation to the dilatant mode of deformation during shearing. For a 
?iven cohesionless soil, these characteristic states generally depend upon the 
initial relative density of the soil as well as the confining pressure at which 
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FIGURE l(a) Typical Volumetric-Axial Strain Response of Cohesionless Soil 
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FIGURE l (b) Typical Stress-Strain Response of Cohesionless Soil 

the test is performed [Abduljauwad, 1989; Fukushima and 'Fatsuoka, 1984; "­
Hardin, 1989 ; Lade, 1977; Loung, 1980; Pooroshasb and Pietruszezak, 
1985]. When shearing occurs under a moderately high confining pressure, 
cohesionless soils often exhibit compressive volumetric response up to failure 
indicating merging of the two characteristic states (e.g., points l' and 2' in 
Figs. la and lb). This may also be true when a relatively loose soil under­
goes shearing under moderately high confining pressure. With the exception 
of the above cases, the two characteristic states for a given cohesionless soil 
are distinct. 
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'.Fhe concepts of characteristic states and their representation as charac­
teristic state surfaces in the stress space are introduced in this paper to describe 
volumetric behavior of cohesionless soil during shearing. Explicit forms of 
the characteristic state surfaces in the stress space are proposed and used to 
develop a constitutive model based on the framework of plasticity theory. 
The general forms of the characteristic state surfaces proposed are verified 
using drained shear test data for a fine sand. Stress-strain and volumetric­
axial strain responses are predicted using the proposed model and good 
correlations are observed with experimental data. 

Short Coming of Some of the Existing Models 

There are some shortcomings in the existing plasticity based models for 
cohesionless soil in regard to characterization of dilatancy. For illustration, 
consider the elements of a cap type constitutive model as shown in Fig. 2 
[Abduljauwad et al., 1989; Desai and Faruque, 1984; Desai et al. , 1986 ; 
DiMaggio and Sandler, 1971; Drucker et al., 1957; Faruque and Desai, 1985; 
Faruque and Chang, 1986; Faruque, 1987; Lade and Duncan, 1975; Lade, 
1977; Mroz et al., 1978; Pooroshasb and Pietruszeazak, 1985]. The yield cap 
originates from J1 axis and terminates at the failure envelope where the 
tangent to the yield cap is horizontal. As a result. within the framework of 
associated plasticity theory, only compressive volumetric strain will be 
obtained for stress space lying on the yield cap including point L (Fig. 2). 
Since the normal to the yield cap is vertical at point L , it represents the 
onset of dilatancy that corresponds to point 2 (i.e. the second characteristic 
state) in Fig. l a. However, point L also lies on the failure envelope that 
corresponds to point 1 (i.e. the first chracteristic state) in Fig. la. This 
representation is inconsistent because points 1 and 2 are distinctly different 
for cohesionless soil under general conditions as evident from Fig. l a. An 
exception of this is possible when a cohesionless soil is subjected to high 
confining pressures where the two characteristic states merge as shown by 
points 1' and 2' in Fig. Ia. 

In consistencies also exist in models which claim to characterize the 
onset of dilatancy and subsequent volumetric response of cohesionless 
soil [Desai and Faruque, 1984; Fukushima and 'Fatsuoka, 1984; Ghaboussi 
and Momen, 1982; Zienkiewicz et al., 1975]. This can be illustrated with the 
help of Fig. 3. It is evident that the line representing the onset of dilatancy 
deviates increasingly from the failure envelope with increasing confining 
pressure. This contradicts experimental observation which reveals that the 
line representing the onset of dilatancy approaches the failure envelope 
with increasing confining pressure. The primary reason for such flaws in 
these constitutive models is the selection of yield and/or plastic potential 
functions on an adhoc basis without any consideration for the second cha­
racteristic state. 'Fhus, the line representing the onset of dilatancy in these 
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FIGURE 3 Schematic Representation of the Two Characteristic State Lines for Various 
Initial Relative Densities 

models is essentially a characteristic of the selected functions (i.e., yield .+ 
and/or plastic potential) and not the second characteristic state that is 
unique to a cohesionless soil. 

FORMULATION OF THE PROPOSED MODEL 

Characteristic State Surfaces 

The characteri stic states of a cohesionless soil can be represented in 
the form of characteristic state surfaces in the 11- 4 J2v-D space as shown 
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" schematically in Figs. 4a and 4b. The variables J1 and ./ J2D denote the first 
invariant of the stress tensor and the second invariant of the deviatoric 
stress tensor, respectively. For a given initial relative density, the charac­
teristic state surfaces degenerate to the characteristic state lines in the 
J

1
- ./ J

20 
space. For various values of initial relative density, D; (i= 1, ... , N) , 

the characteristic state lines are shown schematically in Fig. 3. It is evident 
that the two characteristic state lines are distinct in most parts and tend to 
merge as the confining pressu re becomes high. Also, the deviation of the 
characteristic state lines increases with the increase in initial relat ive density. 
For a given initial relative density, the characteristic state surfaces can be 
viewed as characterististic state lines on the J1- ./ J.v plane. 

First Characteristic State Line 

Experimental observations have shown that the first characteristic state 
line (CSL-1) for cohesionless soil is an approximate straight line on the 

FIGURE 4a. Schematic Representation of the First Characteristic State Surface in 

/ 1- 4" l 2v-D Space 
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FIGURE 4b. Sd1ematic Representation of the Second Cltaracteristic State Surface in 
J1-./ J2D- D Space 

J1-,{] 2D plane. 'Fhis shows that the shear strength of such soil increases 
linearly with the confining pressure which is consistent with the Mohr­
Coulomb theory of failure of granular soils. The slope of the characteristic 
state line (CSL-1) is a measure of the internal frictional coefficient and 
increases with increasing initial relative density, D, due to increasing compa­
ctness of the grains. Fig. 5 shows the plot of a representative CSL- I for a 
typical cohesionless soil at a given initial relative densiy. 

For a given initial relative density, the first characteristic state line for 
cohesionless soil also depends upon the orientation, 0, of a stress path on 
the octahedral plane. A common definition of 0 is given by 

0 _ _1 [ 3,v3 ]3D ] 
- ¼ cos 2 J 3 /2 l 2D , 

(I) 

where J8 o = ! SuS1kSki is the third invariant of the deviatoric stress tensor, 
Su. The orientation 8 lies in the range 0° l!i;; 8 l!i;; 60° where 0 = 0° represents 
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a compression stress path and 8 = 60° represents an extension stress path. 
As evident from experimental observations [Abduljauwad et al., 1989; 
Desai and Faruque, 1984; Faruque, 1987; Honamandebrahimi and Zaman, 
1987], the slope of the first characteristic state line is maximum for 8 = 0° 
and minimum for 8 = 60°. 

In view of the above discussion, the equation of the firl'.t characteristic 
state line (CSL-I) can be written in the form 

,{ J2D = Mg(O) Ji (2) 

where Mis a material response function of the initial relative density, D, 
and g(O) is a function that accounts for the change in the slope of CSL-1 
with 8. Following the works of Podgorski [1985] and Faruque and Chang 
[1986], g(O) can be expressed as 

g(8) = [Cos{½ Co.,1 (-A' Cos30)}]-1 (3) 

where A' is assumed to be unity to satisfy convexity of the failure surface 
on the octahedral plane. Assuming M

0 
as the value of M(D) at D = O (i.e. 

loosest possible state), a functional form of M(D) can be written as 

(4) 

in which hi(D) is a response function that determines the ratio M(D)/M 
for a given initial relative density, D, and satisfies the condition hi(O) = O~ 
Note that hi(D) is a monotonically increasing function of D and attains 
maximum value at D = 1 (i.e., the densest possible state). Denoting the 
maximum value of h1(D) as ,\1 , the following form of hi(D) is proposed 

(5) 
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where the exponent 711 signifies ~he shape of the function h
1
(D). In general, 

hi(D) can assume the representauons shown by curves A Band c in F. 6 ,,. , 1g. . 

. T~e rate _of ~h~~e of M(D) with D (i.e., dM/dD) generally decreases 
with mcreasmg 1mt1al relative density. Therefore, curve A (Fig. 6) is an 
unlikely representation of hi(D). The proposed form of hi(D) in Eq. (5) 
can be validated using appropriate experimental data. 

Second Characteristic State Line 

Unlike the .first characteristic state line (CSL-1), experimental observa­
tions as to the see,ond characteristic state line is non-existent in the literature. 
It is, however, known that the second characteristic state tends to merge 
with the first characteristic state as the confining pressure becomes very 
high. As a result, the second characteristic state line should approach the 
first characteristic state line as the confining pressure increases. The proposed 
forms of CSL-2 on the J1-4° J 2v plane for various initial relative densities 
are schematically shown in Fig. 3. For relatively lose cohesionless soils, 
the characteristic state lines are quite close as indicated in Fig. 3. For higher 
initial relative density, the deviation of the characteristic state lines increases. 
Referring to Fig. 3, an equation of the second characteristic state line 
(CSL-2) is proposed in the form ,-

4 l 2D = M(D) [l-N(D) exp(-µ, ~: )] g(O) 11 (6) 

0 

0 
1 

FIGURE 6 Schematic Representation of Function h
1 

(D) 
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where µ is a material constant, P0 is the atmospheric pressure expressed in 
the same units as 11 and N is a material response function of the initial 
relative density, D. For high values of 11, the exponential term in Eq. (6) 
becomes negligible and thereby, Eq. (6) approaches the first characteristic 
state line defined by Eq. (1). Referring co Eq. (6), the secant slope (4 J nfJ

1
) 

at J1 = 0 is obtained as M(D) [1-N(D)] g(O). Therefore, the ma~erial 
response function N determines the initial slope of the second characterist ic 
state line at J1 = 0. When N(D) = 0, both characteristic state lines have 
the same initial slope of M. Preliminary results on a beach sand [Faruque 
and Zaman, 1989] indicates that the initial slope of the second characteristic 
state line is smaller than M(D) and in general, a function of the initial 
relative density, D. Assuming N(D) = N0 atD = 0 (i.e., the loosest possible 
state), a functional form of N(D) can be wrtten as 

(7) 

where h2(D) determines the ratio N(D) I N0 for a given D and satisfies the 
condition h2(D) = 0. Following the analogy of hi(D), it is postulated that 
hlD) is a monotonically increasing function of D and attains a maximum 
value of i\2 at D = 1 (i.e., the densest possible state). In view of this the 
following form of h2(D) is proposed 

(8) 

The exponent 712 in Eq. (8) dictates the shape of the function hlD). 
'Fhe proposed form of hu(D) in Eq. (8) can be validated by using appropriate 
experimental data. 

Compressive Yield Surface 

Consistent with the definition of CSL-2, all states of stress below the 
second characteristic state line yield compressive volumetric strain only. 
Therefore, within the associated theory of plasticity, an yield surface between 
the J-axis and the second characteristic state line should be defined such 
that fhe normal to the yield surface at any point has non-negative slopes. 
Besides the normal to the yield surface at the point of intersection with the 
second ~haracteristic line (CSL-2) should be parallel to the ,.f J2D-axis. This 
is because, by definition, CSL-2 contains all stress states where the rate of 
volumetric deformation momentarily vanishes as the soil passes from the 
compressive mode of deformation to the dilatant mode of deformation 
during shearing. An elliptical yield surface that satisfies the above require­
ments is used in the proposed model and is shown schematically in Fig. 5. 
It is evident that the tangent to the yield surface at the intersection with 
J1-axis is vertical. 'Fhis ensures purely spherical response under hydrostatic 
loading and is required for an initially isotropic material. An equation of 
the compressive yield surface is proposed as 

Fe= ,/ J1o - ~ a2-1/R2(J1-C;2 g(O) = 0 (9) 
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:,vhere R i~ a constant associated with the ratio of the axes of the ellipse and 
1s a material constant and, in general, C is a response function that denotes 
the value of J1 at the point of intersection of the yield surface and the second 
c~1aracteristic state line. In Eq. (9), a represents the axis of the elliptical 
yield surface parallel to,{ J2D axis and is defined in terms of c as 

a = M[I-N exp (-µC/P,,)] g(O)C (IO) 

Note that elliptical yield surface has been used in other models such as 
cap model [Abduljauwad et al.; 1989; Desai and Faruque, 1984; Desai 
et al., 1986; DiMaggio and Sandler, 1971; Drucker et al., 1957; Faruque 
and Desai, 1985; Faruque and Chang, 1986; Faruque, 1987; Lade and 
Duncan, 1975; Lade, I 977; Mroz et al., 1978; Pooroshasb and Pietruszezak, 
1985) in the past and found to be satisfactory for the prediction of response 
in the c0mpressive mode of deformation. However, other convex mathe­
matical functions that satisfy the requirements of a yield surface discussed 
earlier may also be used. 

'Fhe proposed model utilizes a nonassociated formulation to describe 
the volumetric response in the compressive regime. A plastic potential 
function, Qc, is defined in the form 

(11) t' 

where A is a material constant. Taking the derivatives of Fe and Qc with 
respect to J1, the following relationship can be obtained 

(12) 

As evident from Eq. (12), the constant A signifies deviation from norma­
lity and should have a positive value. The condition A > 0 is necessary 
to maintain compressive volumetric strain for stress states below CSL-2. 
For A = I, Qc = Fe, which represents associated form11lation. 

Dilating Yield Surface 

By definition , a dilating yield surface refers to the stress state's that 
causes dilating response at a material point. As described earlier, at a high + 
confining pressure, cohesionless soil experiences compressive mode of 
deformation at all stages of loading up to failure. This indicates that the 
dilating yield surface is bounded by CSL-1 and CSL-2 at all times and 
identifies itself with the first characteristic state line (CSL-1) when the 
confining pressure is very high (Fig. 7). An equation of the dilating yield 
surface that satisfies the above requirements is proposed in the form 

tl3) 
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A schematic representation of Eq. (13) is shown in Fig. 5. As evident, 
the tangent to the dilating yield surface at the point of intersection with the 
second characteristic state line is horizontal and thereby satisfies slope 
compatibility with the compre!>sive yield surface, Fe = 0. At 11 = 0, the 
slope of the dilating yield surface is Mand therefore, tangential to the nrst 
characteristic state line at that point. 

It is evident from Fig. 5 that the r.ormal to the dilating yield rnrface 
at any point has a non-positive slope and decreases with the stress state 
approching the first characteristic state line. As a result, within the associated 
theory of plasticity, the rate of dilatancy predicted by the model increases 
continuously as the stress paths approach the first characteristic state line. 
This is contrary to the definition of CSL- I that contains all stress states 
for which a soil experiences progressive shear deformation at constant 
volume (i.e., zero rate of dilatancy). It is, therefore, necessary to incorporate 
some mechanism in the model that will enable it to predict zero rate of 
dilatancy when the stress state is on the characteristic state lines (both 
CSL-1 and CSL-2) and nonzero rate of dilatancy when the state of stress 
lies in between the characteristic state lines. In the proposed model, this is 
achieved by using non-associated formulation. To this end, a dilating poten-

. tial function, Qd, is defined by the following equations. 

(14) 

oQa 0Fc1 
aJ2D = ol2D 

(15) 

'l!Qd 'l}Fc1 
ao= a0 

(16) 

where 

(17) 

in which 

(18) 

In above equations a, P and y are material constants and the function 
G(J1 , J 2D) assumes a value of unity at CSL-2 and zero at CSL-1. Conse­
quently, the function q(/1, J 20) becomes zero at the boundaries (CSL-2 
and CSL-I) and is non-negative elsewhere. q(Ji, J 2.IJ) has a maximum value 
of a at G(Ji, la0) = ~/(~+y). Note that only derivatives of the potential 
function Qd is required to obtain the elasto-plastic constitutive matrix. As 
an explicit form of Qd is not necessary. 
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Hardening Behavior 

In this w?rk, modeling of soil response under monotonic loading is ) 
attempted usmg the concept of isotropic hardening plasticity. Both the 
compressiv_e yield surface, Fe, and the dilating yield surface, Ft1, are allowed 
to expand 111 the stress space to account for hardening during elasto-plastic 
deformation. T.he history of inelastic volumetric strain is frequently used 
to describe hardening of cohesionless soil during hydrostatic loading as well 
as shear loadings [DiMaggio and Sandler, 1971]. Commonly a hardening 
function is prescribed in terms of the accumulated plastic volumetric strain 
and the associated material constants are determined using hydrostatic 
compression test data olily. It is impc.rtant to realize that the mechanism 
of inelastic volume change during hydrostatic compression is quite different 
from that in shear. As a result, a hardening function, with its constants 
determined from hydrostatic compression test data, generally cannot describe 
elasto-plastic stress-strain and volumetric behaviour during shearing in 
a rational manner. 'Fhis problem can be resolved by expressing a hardening 
function in terms of two parameters, g and rd which are defined in terms of 
the incremental plastic strain tensor di/i and the incremental deviatoric 
plastic strain tensor det as follows 

g = f (d .. ~ dtpV2 (19) 

i"d = td/~ (20) 

where 

ft1 = f (det; de[;)~ 12 (21) 

In the above equations, the symbol f denotes the history. Note that f t1 
and rd have zero value throughout hydrostatic compression. 

Referring to Fig. 5, the compressive yield surface, Fe, originates from the 
l1 -axis (i.e. point X) and terminates at a point on the second characteristic 
state line (CSL-2) where 11 assumes a value of C. 'Fhe dilating yield surface, 
Fd, on the other hand, starts from the origin O and terminatss at CSL-2 
where J1 = C. 

~ 

Sin?e _X = (C + _Ra), where R is the ratio of major to minor axis of ~ 
the ell1_Pt1cal cap (Fig. 5) and a is the ordinate corresponding to J

1 
= c, 

expans1?n of bot~ Fe and Fd can be described conveniently by making x a 
(hardemng) function of the parameters g and 1c1 as 

X = f11 fl (22) 

where 

(23) 
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In Eqs. (22) and (23), f3t, /3?., '1)1 and 'Y/2 are material constants. Au initially 
4'I isotropic material, when subjected to a hydrostaitc state loading, experiences 

a spherical deformation only (i.e., rd= 0 and g = tv, where g,. = J 

l/4°:S-di.f, = 1/4'3..~, e~ being the total volumetric plastic strain). The 

hardening function for this case reduce to 

(24) 

The constants /31 and 711 can be evaluated by fitting Eq. (24) through X vs. 
e~ plot of data paints obtained from a hydrostatic compression test. Direct 
evaluation of /32 and 'IJ?. from experimental data is rather difficult. These 
constants are evaluated from experimental data by using a nonlinear opti­
mization procedure. 

ELASTO-PLASTIC CONSTITUTIVE RELATIONS 

Using the concept of non-associative plasticity theory, incremental plastic 
strain tensor, deC, can be expressed as 

aQ def. = d>. --
11 OClij 

(25) 

where ·Q is the plastic potential function and d>.. is an unknown scalar to be 
determined from the consistency condition of Prager, dF = 0, F being the 
yield function. Following the standard steps of the theory of plasticity, the 
elasto-plastic constitutive relation tensor, Cf/I, can be written as 

(26) 

where Cijkl is the elastic constitutive tensor and A(t, r,r, a,) is a measure 
of plastic modulus involving derivatives of the yield function F with respect 
to g and [,1 and derivative of the potential function Q with respect to ad · 

Equation (26) is valid in the compressive as weU as the dilative regimes. of 
shear deformation provided Q is appropriately defined. In the compressive 

' regime, Q = Q c (Eq. I 1), while in the dilative regime, Q = Qd de.fined 
implicitly by Eqs. 14-18. 

Application 

Drained shear test data [Abduljauwad et al., 1989] for a fine sand with an 
uniformity coefficient of 1.84 is used in this study to investigate the charac­
teristic states and to verify the proposed constitutive model. A stress 
controlled cylindrical triaxial device is used. The density of the test samples 
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is in the range of 103.7 pcf to 105.6 pcf with an average relative density, D, 
of 81 %. The characteristic state lines (CSL-I and CSL-2) obtained from the -' 
experimental data are depicted in Fig. 7. It is evident that the observed 
characteristic state lines are in agreement with the general forms proposed in 
the model. The second characteristic state line shows sub~tantial deviation 
from CSL- I in the low confining pressure range and tends to approach CSL-1 
as the confining pressure becomes high. 

Prediction of stress-strain response requires evaluation of material 
constants associated with the model. Since the tests were performed at a 
constant relative density (D = 81 %), only the foJJowing set of parameters 
were evaluated using a nonlinear optimization technique: R = 6.134, 
/32 = 0.828, .,,2 = 3.37, jj = 0.7275, µ, = 0.06, N = 0.442, a = 0.318, /3 = 0.57 
and y = 0.599. The values of Kand Gare determined from experimental 
data as K = 27369+ 407.7*P and G = 9598+ 317.6*P where Pis the con­
fining pressure in KPa. The constants /31 = 1.61 ''106 and 1/i = 1.17 -are 
evaluated from the hydrostatic compression test data. 

Fig. 8a shows a comparison of the stress-strain response of a ere 
(Conventional Triaxial Compression) test performed at a confining pressure 
of 207 Kpa (30 psi). Evidently the model prediction is in excellent agreement 
with the experimental observation for the entire range of loading. A similar ¥­
comparison of volumetric-axial strain response is sh'-wn in Fig. 8b. The 
onset of dilatancy as well as the volumetric response in the dilative regime are 
predicted very well by the model. 
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FIGURE 7 The Two Characteristics State Lines for a Beach Sand Obt · ed " 
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30 psi Confining Pressure 
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Test at 30 psi Confining Pressure 
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Comparison of the stress-strain and volumetric-axial strain responses for 
4t a CTC test at a confining pressure of 104 Kpa (15 psi) and a TC test at a 

confining pressure of 207 Kpa (30 psi) is presented in Figs. 9 and 10. 'Fhese 
tests were not included in the evaluation of material constants. Overall, 
it is observed that the proposed model is able to predict the onset of dilatancy 
and subsequent dilatant behavior in an accurate manner. Detailed appli­
cation of the proposed model is currently in progress and will reported in the 
subsequent papers. 

Conclusions 

The concepts of two characteristic states and their representation as 
characteristic state lines in the stress space are introduced to describe 
volumetric behavior of cohesionless soil during shearing. 'Fhe first charac­
teristic state line represents the state of cohesionless soil at failure, while the 
second characteristic line represents the state at which the rate of volumetric 
strain momentarily vanishes as the soil passes from the compressive mode of 
deformation to the dilative mode of deformation during shearing. Explicit 
forms of the two characteristic state lines in the stress space are proposed and 
used to develop a constitutive model based on the framework of plasticity 
theory. 'Fhe general forms of the characteristic state lines are verified using 
drained shear test data for a fine sand. Stress-strain and volumetric-axial 

r· ~train respones are predicted using the proposed model and very good 
correlations are observed with experimental data 
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NOMENCLATURE 

Length of the minor axis of the moving yield surface 

Constant used in the function g(O) 

Mate.rial constant associated with non-associated formu­
lation 

Measure of plastic modulus 

Value of 11 at the intersection of moving cap with the 
failure surface 

Elastic constitutive tensor 

Elasto-plastic constitutive tensor 

Initial relative density 

Young's modulus 

incremental deviatoric plastic strain tensor 

Compressive yield surface 

Dilating yield surface 

Shear modulus 

A function that accounts for the change in slope of the 
characteristic state lines with 0 

Response functions of initial relative density, D 

First invariant of the stress tensor uii 

Second invariant of the deviatoric stress tensor Su 

Third invariant of the deviatoric stress tensor SiJ 

Bulk modulus 

Material response functions of initial relative density, D 

Values of Mand Nat relative density, D = 0, respectively 

Atmospheric pressure 

Plastic potential function for compressive yield surface 

Plastic potential function for dilating yield surface 

Ratio of the major to minor axes of the moving cap 

Deviatoric stresr. tensor 

Value of 11 when moving cap intersects with 11 axis 
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Material constants associated with non-associated 
formulation 

Material constants associated with hardening of the 
material 

Material constant associated with the second charac­
teristic state line 

Strain tensor 

Elastic strain tensor 

Plastic strain tensor 

Angle of similarity 

Material constants for function hi(D) 

Material constants for function hiD) 

Poisson's ratio 

Stress tensor 

Hardening functions expressed in terms of d&f; and dei 


