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Analysis of Cylindrical Storage Tank-Foundation Interaction 
Using Finite Element Method 

Introduction 

by 

M.M . .Zaman* 

I.U. Mahmood"'* 

THE analysis and design of circular foundations for cylindrical structures, 
such as storage tanks, tower silos, nuclear reactors, and chimneys, consti

tute a problem of practical importance in geotechnical engineering. In the 
conventional design/analysis methods, foundations are often treated as 
isolated units; thus, the interaction between the tank wall and the founda
tion, as well as between the foundation and the · supporting soil medium, 
are essentially ignored or over-simplified. Although such assumptions 
may lead to considerable simplifications in the analysis and design, they may 
not be justified in many practical situations where the superstructure (tank 
wall) has significantly large stiffness and is rigidly connected to the foun
dation. 

The main objective of this paper is to examine the response of a 
cylindrical storage tank-foundation system using the finite element technique, 
which considers the complete interaction between the tank wall, foundation 
and supporting soil medium (Fig. 1). Emphasis is given to accurately 
modeling the nonlinear deformation characteristics of the interface between 
the foundation and the soil medium using a special interface or joint element 
(Faruque 1980, Ghaboussi, et al., 1973). Moreover, the non-linear beha
viour of soil is taken into consideration by using the so-called hyperbolic 
constitutive relations (Desai and Siriwardane, 1984). Parametric studies 
are performed to assess the effects of some important factors, namely, depth 
of foundation embedment, interface roughness, soil nonhomogeneity and 
non-linearity, and relative rigidities of the tank wall-foundation and soil 
system. Numerical results are presented in a non-dimensional form which 
can be used readily for estimating responses of a wide variety of cylindri
cal tank foundations . 
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Review of Literature 

The flexural behaviour of axisymmetrically loaded (isolated) circular 
plates has been analyzed by many investigators using various approacht:s 
(Pinelli et al. 1984; Selvadurai, 1979b; Zaman et al., 1988). Note
worthy developments in this area are due to Zemochkin (1939), Brown 
(1969), Hooper (1974, 1975), Selvadurai (1979a), and Issa (1985), among 
others. A comprehensive review on the subject is given by Selvadurai 
(1979b); only a brief review of some recent works that are directly relevant 
to the present paper is included here. 

Although a substantial amoµnt of studies have been done in the past 
on the analysis of (isolated) circular found:ations, only a few studies have 
been done to-address the complete interaction problem involving a cylindri
cal storage tank because of its complex nature. Booker and Small (1983) 
proposed an analytical technique based on the flexibility method to investi
gate the behaviour of cylindrical tanks resting on the surface of an isotropic 
elastic halfspace. The tank wall and the foundation were considered as a 
single unit. Also, this analysis is only applicable to cases where the radii 
of the tank wall and the foundation plate are equal. This assllmption may 
not be justified in most practical situations. 

More recently, Issa (1985), Issa and Zaman (1985) and Zaman, et al., 
{1988) have investigated a similar problem using the energy approach in 
which the foundation plate and the tank wall may have different radii. 
However, it maybe noted that both of these analyses focused on the response 
of surface foundations (i.e., no embedment) only. The interface condi
tion between the foundation and the half space was assumed to be perfectly 
smooth, and the soil medium was assumed to be isotropic, homogeneous, 
and elastic. In most practical -situations, these assumptions.·are.uhrealistic. 

·· It). the pres~nt paper, a · more realis(ic · analysis . proc~c;lure . which 
circumvents some of the . aforementioned limitations is presented. 
description of the proposed finite element procedure is given in thdollowing 
and the numerical results are presented subsequently. 

,Proposed Analysis Procedure . 

For finite element idealization, the cylindrical storage tank-foun
dation-soil system in Fig. 1 is treated as an axisymmetric problem. Other 
assumptions involved in the formulation are listed below: 

l. Thin plate and thin shell theories (Timoshenko, et al., (1959)) are 
used to ~escrib~ t_he flexural behavior of the foundation plate and 
the tank wall, respectively. Displacements are assumed to be small 
and the material behaviour is to be linearly elastic. 
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FIGURE 1 Schematic Representation of the Cylindrical Liquid Storage Tank-Plate-Soil 
System 

2. The junction between the tank wall and foundation is rigid; relative 
displacement and/or rotation is not permitted at the junction. 

3. The nonlinear behaviour exhibited by the interface (see Fig. 1) is 
idealized by using elastic perfectly plastic constitutive relations 
(Fig. 2). 

4. The peak shear strength is a function of interface normal stress, 
cohesion, and roughness as measured by the interface friction 
angle. 

5. Interfaces cannot sustain any tensile (normal) stres·s (Fig. 2). · 

6. Interfaces are nondilatant and do not show any strain softening 
behaviour. 

7. The thickness of the interface element is small compared to its 
length. 

Modeling of Tank Wall and Foundation Plate 

The cylindrical tank wall is modelled using axisymmetric thin shell 
element (Bathe 1982, Zienkiewicz 1971), and annular plate elements are 
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used to model the flexural behavior of the foundation plate. A special 
formulation is adopted for the central foundation region (Faruque 1980). 
As the stiffness matrices for such elements can be derived easily following 
the standard steps of finite elements (Bathe 1982, Zienkiewicz 1971), 
details are not given here. 
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Modeling of Frictional Behaviour of Interfaces 

A four noded axisymmetic interface element developed originally 
by Ghaboussi et al., (1973) and modified subsequently by Selvadurai and 
Faruque (1981) is further modified in the present study and employed to 
model the frictional behavior of s·oil-foundation interfaces. A schematic 
diagram of the element is shown in Fig. 3. As the thickness of the interface 
element is taken to be very small compared with its length, the strains across 
the element can be assumed as constant. Along the length of the element, 
a linear variation of strain is assumed. 

Referring to Fig. 3, the interpolation functions for the interface element 
are assumed as 

.. . (1) 

in which g is the local coordinate as shown. 

Using the notations of Fig. 3 and following the standard steps of 
disp!acem~nt finite element approach (Bathe (1982), Mahmood (1984)), 
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FIGURE 3 Four Noded Axisymmetric Interface Element Used. 
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the element stiffness matrix, [K,], for the interface element can be expressed 
in the form : 

[K1] = J (BiJT [D1] [B,] dV .. . (2) 
y 

where [B,] = strain - _(relative) displacement transformation matrix given 
by(Ghaboussi, et al., 1973; Mahmood (1984)): 

and 

[

~ Bi 
B2 
B5 

B1 = 

B2 = 

Ba= 

' 

h1 COi r/, ,, 
h1 sin if, ,, 
h~ cos lji ,, 

B _ Ir, sin if, .- t, 

h1 B.,= -
2r 

B - h2 6-T, 

... (3) 

... (4a) 

.. . (4b) 

... (4c) 

. .. (4:/) 

... (4e) 

.. . (4/) 

Also, in Eq. (2) the superscript T represents transpose and [D1) = consti-
tutive relation matrix for the interface given by · 

[
Es,0 OJ 

[Di] = .0 E." 0 
_ .o o _ Eee 

. ... . (5) 

where E
8

, and ENI are, respectively,' the interface shear and normal modulii. 
As suggested by Gbaboussi et al. , (1973), Eee is assumed as zero because of 
the uncertainty in estimating a realistic value for it. 

Simulation of Deformation Modes 

In the present study an interative technique is employed to simulate 
various modes of deformation such as stick, sliding, separation and rebon· 
ding that an interface element may undergo. A brief description of the 
algorithm used for the simulation of these modes i"sgiven in the following: 
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For an element in stick or no-slip mode

ann > 0, and 

\ass! < Ty ... (6) 

where a,m = average normal stress (compression is considered positive) , 
ass = average shear stress and Ty = peak shear strength (of interface) as 
shown in Fig. 2. Ty is considered positive here. 

In order to initiate slip or sliding, the normal stress would still be 
compressive and the shear stress would be equal to the peak shear strength. 
Thus, for an element in the slip mode: 

an,, > 0, and 

IT \ ....._ T ... (7) 
s, ? y 

lt may be noted that the condition jo-,.\ > T> is not practically possible be
cause -r is the peak shear strength of the element. If during an analysis 
a,s be~mes larger than the peak strength, Ty, then the resulting deformation 
is considered to be kinematic.ally inadmissible. An iterative scheme is 
adopted so that after the con~ergence of iteration, the stress components 
satisfy the following conditions : 

a,,n > 0, and 

... (8) 

ln the case of debonding or separation mode, the stress con<lit iom will t c 
of the form: 

an,, '.:::'. 0 , and 

. .. (9) 

As in the case of the sliding mode, here also one may find that the computed 
normal and shear stresses have violated the conditions of Eq. (9) . Once 
again for such a situation, iteration must be performed so.as to make the 
deformation of the interface acceptable. After convergence is achieved , 
the r-esu It in.g-deforma tio n should a pproxinia te ly-sa ti sfy Eg,. t9}. · . · · 

As indicated by Eq. (10), the re bonding mode is assumed to have taken 
place when the interface shearing stress becomes non-zero and the normal 
stress, which was tensile previously, becomes compressive in the subsequent 
loading. 

. .. (10) 
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The following steps illustrate the scheme used in this st udy for incorporation 
of various modes of deformation. 

I. An interaction problem is first discretiied into finite elements. The 
stiffness matrices for structure (foundation plate and tank wall in 
this case), soil, and interface elements are formed and assembled to 
obtain the global stiffness matrix [K]. The global consistent load 
vector {F} is formed and the system of the linear equation [K] {u} 
= {F} is solved to obtain the nodal displacements, {u}. 

2. The average normal stress (an,,) of an element is calculated by the 
following expression (see Fig. 3): 

'1nn = - E
2
'nn [(u,-u,+uk-UJ) sinifi+(w,-wr+ w,- wk) cos~] 
I; 

... (11) 

where Enn = normal stiffness, t, = thickness of the element and 
u,, w1 etc. are the nodal displacements of node i in the radial and 
the vertical directions, respectively. 

Average shear stress ( a,.) of the joint element is calculated from the 
· following expression (Fig. 3) : 

ass = - Es, [(u1- u;+ uk-UJ) cosifi+ (w1-wr+ w,-wk) sin,jJJ 
2t; 

where E,. = shear stiffness of the element. 

.. . (1 2) 

3. If unn calculated in step 2 is tensile, then the peak shear strength 
of the interface (ry) is set equal to zero, otherwise, ,,.Y is calcul.11':d 
from the Mohr-Coulomb criterion (Desai and Siriwardanc 
(1984)): 

... (13) 

where C = cohesion of the i~terface element, O'nn = normal stre~s 
calculated in step 2, and cp = . angle of internal friction for the 
interface element. . In the numerical results presented here, the 
following values were used to represent the smooth and the bonded 
interfaces: c = 0, tan cp = 0 .001 for smooth case, .an·d c = 0, tan 
if, = 10.0 for bonded case. 

4. The status of each interface element is checked by using the appro• 
pri.ate.aforementioned equations. If the normal stress u"" becomes 
tensile the resulting vector (F) is calculated as follo\vs .. 

. .. (14) 

where L1 = len_gth of the joint element, and , , and ri are the radia I 
coordinates of nodes i andj, respectively. 
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This exci;ss force Fn can be converted to self-equilibrating nodal 
forces. The term "self-equilibrating" is · used to indicate .that 
these forces balance each other internally and may be expressed as 

... ( 15) 

These forces are then transformed to the global coordinate system 
by using an appropriate transformation (Mahmood (1984)). 

Likewis·e, for the exce~s shear stress \a,s - -ryl, the excess shear 
force (Vs) is calculated by 

Vs = 1rL1 (r1 + r1) (lau\ - ry) ... (16) 

and is converted to nodal forces in the global system in a similar 
manner. 

5. Using the aforementioned self-equilibrating nodal forces, wherever 
appropriate, the global force vector {F} is modified. Let the modi
fied force vector be represented by {Fm}· With this force vector 
{Fm}, the equilibrium equation [K] {um} = {F,n} is solved again 
to obtain the modified displacement ve~tor Jum}· The steps 2 
through 4 are repeated in this manner until convergence is reached . 

It should .be noted that in the analysis bo_nded or smooth condition 
. is simulatt:d by assigning a relatively high or a low .value of peak 
shear.strength, respe.ctive~y. Since peak shear strength is a func
tion of c and cf>, these values were chosen to generate either very 
high or very low peak shear strength. For .an analysis, the suita
bility of c and ef, was justified by checking the stress condition in 
the interface elements. 

Idealization of Soil Medium 

· The soil medium is considered as an isotropic and nonlinear elastic 
material, and is discretized by using axisymmetric solid elements of (three 
noded) triangular cross section. The nonlinear stress-strain behaviour of 
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soil is represented by the widely used hyperbolic model proposed by 
Kondnerand his co•worker (1963a, 1963b): 

... ( 17) 

where a1 and a3 are the major and the minor principal stresses, respectively, 
e: is the strain in the direction of major principal axis, and a and bare asso
ciated material parameters. 

Because stress is expressed as a nonlinear function of strain, in the 
hyperbolic model, an iterative approach must be used to incorporate this 
model in an analysis procedure. Figure 4 shows the schematic of the 
iteration algorithm used in this study. It may be noted that the secant 
modulus is used here instead of the tangent modulus. The secant modulus 
seems more appropriate because it provides faster convergence. Also, it 
is feasible because the response only due to total loading is desirable. It 
should be noted that secant modulus approach may not be appropriate if 
insitu stresses are considered in the analysis. In the present analysis insitu 
stresses were not incuded. The major steps involved in the interation 
scheme are outlined in the following steps (Mahmood 1984, Zaman, et al. , 
1985): 

I. For a given problem, the stiffness matrices for the shell, plate, 
interface and soil are evaluated and assembled to form the global 
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FIGURE 4 Technique for Approximating Nonlinear Behavior by Successive Iterations 
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stiffness matrix [K]. The stiffness matrices for the soil elements 
are derived on the basis of the initial tangent modulus (E,), (Fig. 4) 
and the Poisson's ratio V8 • The force vector {F} for the total 
system is derived by using consistent load vectors (Zienkiewicz 
(1971)). The system oflinear simultaneous equations [Kl {u) = {F} 

is then solved to determine the global nodal displacement vector 
{U}. 

2. The nonlinear solution technique, described previously, which 
accounts for interface nonlinearity is employed to modify the 
displacement vector {u}. 

3. Utilizing the displacement vector {u} obtained in step 2, strain and 
stress components for each element are calculated. Let (u")i, 
(u,,)i, (r,.)1, (ase)i, (e:rr)i, (e:,,)i, (y,,)i, and (e:ee)i, be the stress and 
strain components be for a given element, i. 

Based on these components, the principal stress and strain compo
nents are calculated. Let the major and minor normal principal 
stress components be denoted by a; and ~. respectively and the 
corresponding major principal strain be denoted bye:~. Likewise, 
the major stress difference is indicated by (a;, - u~)c , where the 
subscript c stands for computed stress. 

4. Using the hyperbolic relationship of Eq. (17), (u;1 - a~)m is cal
culated. The subscript m represents the model predicted stresses. 
If 

[ 
{ ( cri - <1&)c -( a{ -a~),n}2 
----------- ] ½ > €t 

(a{ - a;) ~ 
. .. (1 8) 

where~, is a preassigned small number, called the tolerance, then 
a modified estimate of the secant modulus is made. 

. .. ( 19) 

If 

... (20) 

no modification is done for this element, and the check is conti
nued for the next element. 
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It may be noted that the assumed value for the tolerance (;,) wi 11 
depend on the magnitude of the principal stresses (o~ - o~)c. 
From several trial runs a value of (( ~ )/ (o~ - a;)~ = 0.05 was 
found to be adequate. 

5. With the modified secant modulii , stiffness matrices for the soil 
elements are formed and added to the stiffness matrices of the 
foundation plate, shell and interface elements to form the revised 
global stiffness matrix, and.steps I through 4 are repeated. 

6. When none of the soi l elements need modifications, the conver
gence is assumed to have been achieved , and the iteration is termi
nated . 

7. Another criterion used for terminating the i nterative scheme is 
that when the number of iteration equals .a pre.assigned number. 

8. With the displacements obtained in the final iteration , stresses in 
the foundation plate, shell (tank wall), and soil are calculated and 
printed out. 

Numerical Resolts 

The finite element formulation described in the preceding section 
has been incorporated in a computer code, written in FORTRAN language 
for solving s·oil-structure interaction problems with plane stress, plane 
strain ; or axisymmetric idealization. The computer code has been exten
sively used for solving a number of soil-structure interaction problems, 
and accuracy of numerica l results has been verified wherever possible 
(Mahmood, I 984; Zaman, et al. , 1985). Some pertinent numerica l 
results for the liquid storage tank-foundation-soil interaction problem (Fig.1) 
under consideration are presented in this section. Additiona l results are 
given by Mahmood (1984). 

Comparison of Results 

The liquid storage tank problem analyzed by Booker and Small (1983) 
and Issa (1985) is solved here using the aforementioned code for the purpose 
of comparison. The interface condition is assumed to be smooth. Figure 
5 shows a comparison for pla te deflection . Although the basic nature of 
the deflected shape obtained from both methods is similar, some difference 
in magnitude is observed, especially in the central region of the foundation 
plate. This difference is probably caused by the boundary conditions 
used in t he formation of both methods. In the finite element method, no 
restriction on the bending moment at the wall foundation junction can be 
imposed directly, while in the energy method (Issa (1985), Issa and Zaman 
(1985)) such restrictions are imposed . Although no results are presented 
here, the contact presrure variation compared well with that of Booker and 
Small (1983). 
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FIGURE 5 Variation of Differential Plate Displacements and comparisons with Booker 
and Small (1983) and Issa (1985). 

Similar comparison for plate radial moment distribution is shown 
in Fig. 6. Overall, the values compare favour.ably except near the tank wall
foundationjunction. It is believed that this difference is caused due to diffe
rent boundary conditions at the wall-foundation junction. Because no 
exact solution is available for this problem, only qualitative compnfron is 
plausible. 
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The accuracy of finite element results obtained from the present study 
also compared with similar results reported by Brown (1969), for isolated 
foundations (without tank-walls). For kP = l (see Eq. 21), the present 
analysis yields a value of 0.20 for the maximum differential deflection (non
dimensional), compared to 0.18 reported by Brown (1969). For kp = 10, 
which represents a more rigid foundation , the corresponding values are 
0.03 and 0.029, respectively. For a relatively flexible foundation (kp = 0.1), 
the differential deflection predicted by the present analysis (0.47) was less 
than that reported by Brown (0.55); however, a flexible foundation of such 
low relative rigidity (kp) does not seem to have any practical application. 

Parametric Study 

The behavior of circular foundations can be significantly influenced 
by the relative rigidity of the tank-wall-foundation syst~m. For a tank 
wall of high (flexural) stiffness, the rotation at the wall-foundation junction 
may be considered negligible, while for a flexible wall-foundation systrn1, 
the junction may experience finite rotation. Similarly, it is conceivable 
that the amount of interaction will depend upon the relative rigidity of the 
foundation plate-soil system. Thus, for convenience in parametric study, 
the following relative rigidity factors are defined (Issa 1985, Issa and 
Zaman 1985) : 

Kp = (1 - v! ) ( ~ ) ( ~ r .. . (21) 

K, = (l - v! ( :: ) ( ~
1 

)

3 
. .. (22) 

where KP = relative rigidity of plate-soil system, K, = relative rigidity of 
wall-soil system, a, = radius of tank, ap = radius of plate, t, = tank wall 
thickness, tp = plate thickness, and E and v represent the elastic modulus 
and Poisson's ratio, respectively. The subscripts t , p , and s stand for tank 
wall, foundation plate, a nd soil medium, respectively. In the parametric 
study, Kp and K, were chosen to cover plates and walls of very flexible to 
very rigid type. The Poisson's ratios for the tank wall and the foundation 
plate were kept constant. Previous studies (Issa 1985) have shown that 
the Poisson's ratio of the superstructure does not have significant influence 
on the foundation res·ponse. 

For convenience, numerical results are presented in a non-dimensional 
form:· 

Wo = p Op iD 
E, ... (23a) 

Wd = J!...!!L tDd 
E, 

... (23b) 
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. .. (23c) 

~here P = u~forml~ distributed load on the plate, w ~ = central plate deflcc
t 1011, wd = d11forent1al plate deflection and M

0 
= radial moment at plate 

centre, and an over-bar represents non-dimensiona l quantities. 

Elastic and Homogeneous Soil Medium 

Figure 7 shows the variation of central deflection w0 with K,. It is 
ob3erved that the central deflection of the plate decreases with increasing 
K1• When K, is changed from .001 to 0.1, w0 decreased by about 2.5 % 
when the Poisson's ratio of soil (v,) equaled O for .a bonded (plate-soil) 
interface condition. For v, = 0.4, this difference is about 3 %. As may be 
expected, at a particular v, and K,. the deflection is higher for smooth plate
soil contact; for v, = 0.0 and K, = 0.1, the difference for the different con
tact conditions is 5.55 %, For the same relative rigidity but with v, = 0.4, 
the difference is only 0.43 %- The effect of the interface condition become 
imignificant as the elastic half-space becomes more incompressible (i. e., 1·, 
approaches 0.5). Figure 8 shows the variation of the maximum differentia l 
plate displacement with the relative rigidity of plate. As in the case of total 
(foundation) deflection, the differential deflect ion (wd) also is affected more 
due to a change in the interface condition at a lower v,. As may be expected, 
at K, = 0. I , wd for the smooth case is 6.26 % higher for v, = 0.0, where as 
for v, = .4, the difference is negligible. Central plate moment (M

0
) varia

tion with K, is plotted in Fig. 9. Mo increases with increasing K,. The 
interface condition is prominent at a lower v,. 
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FIGURE 7 Variation of Central Plate Displacement with Relative Rigidity of Tank Wall. 
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FIGURE 9 Variation of Central Plate Moment with Relative Rigidity of Tank WaU. 

As mentioned before, the response of a cylindric.al tank foundation 
can be significantly affected by the relative rigidity of the pl.ate-soil (Kp) 
system. To investigate this effect the problem at hand is solved for diffe
rent Kp, and the results are shown in Figs. 10 through 12. Figure IO shows 
the variation of w

0 
with Kp, For v. = 0.0 and bonded interface, tli0 decrea

ses as much as 26.4% by increasing KP from .01 to 10. At any particular 
Kp, a>

0 
is la rger for smooth plate-soil contact, and this difference is larger 

at a lower v,. For v1 = 0 at Kp = .05, the difference is 5.42 % while it is 
only 0.43 % at v3 = 0.4. Figures 11 .and 12 show the variation of maximum 
diff<!rential plate deflection and central moment, respectiv~·ly, with Kp. wd 
decreases.as the plate becomes rigid and approaches a zero value at K = 10. 
Mo increases significantly with increasing Kp, and by changing K, rro:U 1 to 
10, an almost 120% increase in Mo is observed at v, = 0.4. The effect of 
the contact condition is more significant at a lower v,. 
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FIGURE 10 Variation of Central Plate Displacement with Relative Rigidity of Plate. 

'FIGURE 11 Variation of Maximum Dift'erential Plate Displacement with Relative Rigi
dity of Plate. 

Partially Embedded Foundation: The results discussed so far were 
obtained from the analysis of a liquid storage tank resting on the surface of 
an isotropic homogeneous elastic half space. In an actual situation, a struc
tural foundation seldom rests on the surface of the elastic halfsp,ace. Most 
foundations are embedded in the halfspace, and their interaction may be 
significantly different from the case where the plate is resting on the surface. 
Realizing the importance of depth of embedment, the response of a partially 
embedded liquid storage tank shown in Fig. 13 is investigated~ and the 
significant features are discussed below. It may be noted that for the 
partially embedded case, interface elements were used both at the bottom 
and the sides of the storage tank. 

Figure 14 shows the variation of w0 with K,. The response of a sur
face plate is also plotted in the same figure for comparison. It is seen that 
effect of interface is more significant for the embedded plate. At K, = .001 
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FIGURE 12 Variation of Central Plate Moment with Relative Rigidity of Plate. 

J. 5m 

~ Z Sm ..;I r 9.0m 
:,I 

FIGURE 13 Partially Embedded Storage Tank Resting on Isotropic Half-Space. 

and vs = 0.30, w
0 

is 0.81 % higher for smooth contact as compared to 
bonded contact in case of the s·urface plate whereas it is about 5.8 % higher 
for an embedded plate. A similar trend is observed for maximum differ
ential displacement (Fig. 15) and central moment (Fig. 16). For identical 
conditions, w

0 
is appreciably lower and the central moment is higher for an 

embedded plate. Similar comparisons between surface and embedded 
plates for varying K, is shown in Figs. 17 through 19. In this study, 
prominance of wall-plate-soil interaction in the case of an embedded plate 
is established . 
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The results of parametric studies presented in this section lead to 
certain specific conclusions. In general, the relative rigidity parameter K, 
has less influence on plate response compared to the relative rigidity para
parameter Kp. The interaction is more prominent at a lower Poissons' 
ratio of the halfspace. 

Effect of Soil Nonhomogeneity 

To examine the effects of soil nonhomogeneity it is assumed that 
the soil modulus Eh increases linearly with depth; that is Eh = Es (1 + >..h), 
where Es = Elastic modulus of soil at the surface of the halfspace, A = a 
constant, and h = depth of the centroid of a soil element below the surface. 
The soil modulus at the surface, Es, is chosen such that at mid-depth of the 
domain, the soil modulus, Eh, is equal to the modulus of the homogeneous 
soil. Therefore, the elastic modulus at the surface of soil for the nonhomo
geneous case is much smaller than that for the homogeneous soil. To 
identify the influence of soil non-homogeneity, results are compared with 
the corresponding results for the case of homogeneous soil. Some typical 
results are presented in Figs. 20 through 22. The following numerical 
values were used in this study: E. = 10 MPaand A= .1 per meter. 

It is observed that the responses obtained for the non-homogeneous 
soil assumption are much higher than the corresponding responses obtained 
from the homogeneous soil assumption, the difference being reduced at 
higher relative rigidity of the tank wall. The effect of the interface is seen 
to be more prominent in case of the nonhomogeneous soil assumption. The 
responses for different plate relative rigidities also show a similar pattnn 
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FIGURE 21 Effect of Nonhomogeoeity and KP on the Variation of Maximum Differential 
Displacement of Partially Embedd~ Foundation, for Vs=0.3. 

except in the case of the central moment where the effect of soil nonhomo
geneity is not very significant (Fig. 22). 

The radial moment variation along the tank wall is shown in Fig. 23 
and 24. At the plate-wall junction, for Kp = 0.01 and for a rough plate
soil contact, the radial moment for the nonhomogeneous soil assumption is 
about 23.4 % higher, while for a smooth plate-soil contact, it is about 31.7% 
higher than the corresponding value for the homogeneous soil assumption . 

~Effect of Soil Nonlinearity 

The hyperbolic relation used in this study represents the nonlinear 
behaviour of soil in terms of two materia l constants a and b. The following 
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FIGURE 24 Effect of Interface Condition on the Variation of Radial Moment Along Tank 
Wall, for K,=1.0 and Nonhomogeneous Soil, for Vs=0.3. 

values (Desai and Siriwardane (1984), Kondner (1963)) were used in the 
parametric study: a = 0.00021 and b = 0.01 . 

Typical results obtained from this parametric study are pre~entcd in 
Figs. 25 through 29. Figure 25 shows the variation of central pl;:ite displace
ment with relative rigidity of the plate. w0 obtained for the nonlinear mil 
medium is higher than the corresponding value for the linear soil , the diffe
rence being less significant at higher Kp, w0 for bonded plate-soil contact is 
about 17% less for the linear soil assumption at Kp = 0.oJ , whereas it is 
only 7% less for KP = IO. The effect of the interface is seen to be slightly 
more prominent for the nonlinear soil medium. Figure 26 shows the varia
tion of maximum differential plate displacement with Kp, wd shows a similar 
trend of variation. At high plate relative rigidity, the difference between 
the nonlinear and linear cases becomes insignificant. Figure 27 shows the 
variation of the central plate moment. At lower plate relative rigidities. 
the nonlinear soil assumption results in higher values of the central moment, 
but the trend is reversed when the plate becomes very rigid . Figures 28 
and 29 show the effect of soil nonlinearity on the variation of radial moment 
along the tank wall. 
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FIGURE 25 Effect of Soil Nonlinearity and Relative Rigidity KP on the Variation of 
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FIGURE 26 Effect of Nonlinearity and Kp on the Variation of Maximum Differential 
Plate Displacement of a Partially Embedded Foundation. 
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Conclusions 

The objective of this paper was to examine the behaviour of cylindrical 
storage tanks resting on or partially embedded in an isotrophic soil medium, 
considering the possible interactions between the tank wall, circular founda
tion and soil medium. Emphasis wus given to modelling the nonlinear 
behaviour of soils and interfaces. Based on the numerical results presented 
in the preceding section, the following conclusions can be made : 

I. Central, as well as differential deflection of a cylindrical tank 
foundation decreases with the increase in its relative rigidity. 
However, flexural moments increase with the increasing relative 
plate rigidity. 

2. Neglecting the presence of the tank wall results in a conservative 
estimate of deflections in the central region of the foundation. 
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3. In many situations, assuming soil to be homogeneous may result 
in gross error in estimation of foundation responses. 

4. Response of cylindrical tank foundations c:an be significantly 
affected by soil nonlinearity. An analysis procedure based on 
linearly elastic soil properties underestimates the .actual response. 

5: Likewise, the response of circular foundations is influe11ced by the 
interface conditions. Smooth interface conditions result 111 

increased foundation deflection. 

6. The interface roughness · has :more pronounced effects on foun
dation reponse at lower Poisson's ratios of halfspace. . These 
effects are significantly reduced: as the halfspace tends to become 
.incompressible (v, - 0.5). 

7. Vertical (normal) stress distribution in soil beyond a certain <;lepth 
becomes independent of any of the parameters studied herein. 

8. In general, the interface condition appears to have more influence 
on the flexural behavior of foundations, when soil nonlinearity is 
considered in the analysis. 
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