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Introduction

This study is concerned with the computation of seepage flow through a

semiconfined aquifer. Figure la shows the physical flow domainin z
plane, z = x + iy, in which CG is the interface between two strata of finite
thickness with k; and k, as coeflicients of permeability. On the down-

stream side, a level water surface is assumed such that a phreatic line, ED,
occurs.

This paper presents an analytical solution to the problem of finding
the shape and location of the phreatic line when steady flow takes place
through the aquifer.

In the present investigation it is assumed that the water level on the
downstream side of CG remains unchanged and on the upstream side of CG,
a constant head of water is assumed to act across AF. The flow is assumed
to be two dimensional. Analysis has been done using the hodograph and
method of inversion. Numerical results in non-dimensional form have
been presented for the seepage quantity and for location of phreatic line for
various inclinations of CG.

Derivation of Equations

The complex potential plane w, where w = ¢ + i¥, for the flow region
is shownin Fig. 15. Here, ¢ is the velocity potential function defined as

¢ =—k; (—f—-n Y)—i—c
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FIGURE 1 Steps of Conformal Mapping

where p is the pressure, ye is the unit weight of water, k, is the co-efficient
of permeability, Y is the vertical coordinate, c is an arbitrary constant and
= . . -1 . )
¥ is the stream function. The'z value of ‘I’ 'for the streamlineg AC is assy med
to bz zero and for the streamline FED, it is assumed to be —g, Since the
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pressure along the phreatic line is atmospheric, ¢ will vary linearly with the
elevation along the phreaticline ED.

. dw
Figure 1¢ shows the hodograph plane, i.e., = plane, for the flow domain.

At point C, the velocity is infinite and point E is a stagnation point (velocity
is zero). The phreatic line £D maps into a circle of diameter k, passing
through the origin and it is completely defined in the hodograph plane
(Polubarinova—Kochina, 1962). According to inversion rule, circles and
straight lines passing through the origin will be straight lines. The inverse

dz
of the hodograph, i.e., ‘-i;-vplanc. has been constructed and it is shown in
Fig. 1d. In the inverse hodograph, point C is at the origin and point E
lies at infinity.

Z ; : P
o and rrelations for various ranges are obtained as follows.

According to the Schwarz—Christoffel transformation, the conformal

dz )
mapping of the polygon ECDE in the P plane to the lower half of the auxi-

liary ¢ plane (Fig. le) is given by

dz dt
—_— = N
daw { I (I#}g)BIZ—a (t__l)a—lfz

& N (1)

. dz :
the vertices E, C, D and E of the polygonin Z- plane being mapped on
o, B, 1,00 ,respectively, of the f plane; M and N being constants.
For B < t < 1.0,Eq. (1) maybe writtenas

gi— =M f (1—B) 32 (1 —1)12— dr +-N, -A2)
' B

Substituting ¢ = (1—B) r + f and performing the integrations (Gradshteyn
and Ryzhik, 1965), Eq. (2) reduces to
dz

i (—1)V2-° M.B, (c—3. 2 —a)+ N; . (3)

where B, (6—}, 3—o) isincomplete Beta functionand N3 isa constant.

dz
Sinceat ¢ =ﬁ,a= 0, the constant N3 = 0
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At point D (t = 1), Eq. (3) becomes

dz
7w =DV M B (e—1}, 3—0) ~(4)

where B (7—3. $—a) is complete Beta function.

From Fig. 1d, at point D (t = 1),
dz i tanow (5

_|D=._._.._kl._.

dw ky
where i = o/ —1.
Hence, from Eq. (4), the constant M can be obtained as
—l (i—tan om)

k
M= 2 (6
(_1)”2_” B(o—}; 3—0) )

For a<{t<B. Eq. (1) may be written as

t
9 ap§ (0— B —32(t—1)1 2= di4-N,
dw B

' 4
= — M [(B—1)*32 (1—112= g1+ N, (D
o

where, N, is a constant.

Since —51—: 0 at t+ = B, Eq. (7) becomes

]
0=—M [ (B—1)°32 1—n!2— gt 4N, and
a
Ne =M. I, ..(8)
B
where I, = [ (B—1)=32(1—)12—7 4¢ . (9)
a

At point 4 (f = <),

dz
drla=Ne=M15L ...(10)

For 0 << ¢ < «, Eq. (1) may be written as

(I r
a;i_z —M(_)[ (B—1)°—32(1—t1/2—2 gy N, (1)

where N, is a constant.
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Applying the conditions at point A

d
= =M.Latt=u Eq. 10 )
x
where I, = ({ (B—1)—312 (1—t. 12—0 g4 L(13)
At point F (¢t = 0),
dz
& r= ML+ (14)

For 1 < t <z % , Eq. (1) may be written as

t
LM —BR (—\ 2 aN, 1)
w 1

where N, is a constant.

Since, t = 1 at point D, from Eq. (15),

Ny, = _k!; (i— tan gm) .(16)

The w-t relations for various ranges of t are obtained as follows.

The conformal mapping of the complex potential plane, w, onto the
t plane is given by

dt

we=M{ — - N’ L (17)
vV (t—=1) (t—B) (-—a)t

where M’ and N' are constants.

ForB< t< 1,Eq.(17)canbe writtenas

£ dt +

where N'; is a constant.

Taking negative sign which is pertinent with the given physical problem,
after integration, (Byrd and Friedman, 1954)

W= M — F(si*l (t—=F) (1 —a) [alT—B) )+ N:
V Bl —a) (t—a)(1—F) N Bl —a)
. (19)
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where F(0, m) is incomplete elliptic integral of the first kind having modulus
m and amplitude 6.

Applying the conditionsat point C(t = 8, w =0)and atpoint D(r = |
w = —iq), N’y = 0 and an expression for the discharge ¢ in terms of M’ is
obtained as

I
g s el s ’Btl (J"g(l_”a) .(20)

where, K(m) is the complete elliptic integral of first kind with modulus m.

Fora < t < B, Eq. (17) can be written as

dt

HE—ni—ar T S

r
w=4M | i

where N'; is a constant.

Taking negative sign which is pertinent with the given physical problem,
after integration (Byrd and Friedman, 1954),
we M ——2  p( sin |EC=2) [P—« +N, 22
V(1—x)p t(B—a) 'V p(1—a)

Applying the conditions at point 4 (1 = «, w = —k; H) and at point
C=8w=

N§ = —k, H -.(23)
v l\'l H. J(].—a)
g5 .24)
jk\‘\jﬁ_a
B(1—a)

For0 < t < «, Eq.(17) can be written as

A‘/f t dtﬁ — 5N’
= iIM ‘{J(T:W A=V

{28}

1"

where ," is a constant,

Performing the integration (Byrd and Friedman, 1954),

e M et pf sip | H=e) [ (=B L N
w= IM J_*ﬁ(l-—u) F( sin 'Jo.(l——r) B(lﬂa))_r i
...(26)
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Atpoint F, t = 0and w = —k, H—igand hence,
Ny = —kyH—ig .27

For | <« t <o ,Eq.(17)is written as

dt
o Il N (-—1) (—B) (1—a)t

W=

+ N, .(29)

where N'; is a constant.

Performing the integration (Byrd and Friedman, 1954),

i 2 1 ﬁ("“l) B— 3
el — i \/ ~ ) +
.(29)

Atpoint D, t = 1 and w = —ig and hence,

?

Ny = — iq .(30)

z—t relations for various ranges of ¢ are obtained as follows. Multi-
plying Eq. (1) by the derivative of Eq. (17) results in

it
ga D0 rW] 7= + N]

T (t—B) 2~ —1)

['i M ] (31
A (1—1)({—B)t—a)t

Integrating Eq. (31) by parts and rearranging the terms.
dt "
o 2—~a ! 5
z = [M [ (t—B)o 32 (t—D)2~ g+ N] [M’ | P T ey e P V)

— My (tfl)(rd—tﬂ)(z——a): +N) My—gye =32 (=)= di+C’
o .(32)

where C’isa constant.
ForO < t < «, Eq. (32) becomes
dt o Bl
+N
—D)(t—B)(t—a)t 2

= (M ;(f—ﬁf—m D12 drt ] (17 §V=

£ dt

B I()[(M' g (=D (—B)(at—o)r

F N, )14(:-30*-312 —N=r dn+c,

. (33)
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where C, is a constant.
Atpoint F,t =0and z = 0. Hence,

C, = —N, N’, -..(34)
Atpoint 4, t=aand z = iT.

Introducing the limits and values of constants in Eq. (33) and simplifying,
anexpression for T'is obtained as

2
T= | M(g. .—M' it @1 - 35)

E T t(l—a  [o(1—B il g
where I, = _([’.F(sm A \/a(l—t)’ B(l_a))(ﬁ—-t) 32(1—¢)! 2-edt
...(36)

Fora < t < B, Eq. (32) becomes

z= [M f (-— B)° = 32(t—1)1>—2dr+Ny] [M" f J(t-—l)(t-—jg) T +N2’]
_ {" (M’ l{‘du__w_g}’([_aﬂ + N)M(@—B) °=32(—1)2—o)dr+ C
..(37)
where C,is a constant.
Atpoint 4, t = @ and z = iTand hence C, is obtained as
Co=iT+M.I, k; H ...(38)

Atpoint C,t = Band z = iT + L.

Introducing the limits and values of constants in Eq. (37), and samplifying,
an expression for L, is obtained as

9 :
Ly=—MM .‘4_-'8—{1*—-_'——;)- I ..(39)

8 —_a
where, I, = [ F ( sin-! glﬁt:Z)) ' ,Gfl—a) )(B—t)"‘—3/2(1— pli—oq;

From Egs. (35) and (39)
2
iM"mI
'Ll . JB(1—a) 5
7 1=l 3
-I_M’m.l
R

l ...(40)
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For B < r< 1.0, Eq. (32) becomes
dt .
DBy ]

H
= M = 5“3f2 - I,’Z—o X ’ 4
zie= 1) ;{(’ B) (t—1) dr-+Ng] [M “;‘\f(t

£ £ dt

B BI H 15[ N =D (—pB)t—a)t + Ny ) M=y Fu—ntr—prt-c,
...(41)
Atpoint C,t = B,z = z, = iT + L, ..(42)

Hence, C; = iT + L,

Atpoint D, 1 =1.0,z =1z, =iT +L+Ly —iL,,
where Loy = L, cos [# (1—0a)]

and Ly, = L, sin [r (1—0)]

Introducing the limits and values of constants in Eq. (41) and simplifying,
an expression for L, is obtained as:

Ly= (— l)ye M.M’ Jﬁ(f——__——a)—[rﬁ e, ( ;g::f)) )] .(43)

1.0
where I; = [ (t—B)*—32(1—1)1/2— dr .. (44)
B

Ao g NEB—) [all=B) \,,  ave—3/2(|__s1/2—0
and Iy = | Fsi L= ﬁ(h—))" By —32(1— 1122y
.. (45)

From Eqs. (35) and (43),

Wl e f«‘1(1—}3)
| {1—2 | = | fg( (\/ B(l'_a) .

g. Ly

3

i ﬁ'(l-—a)
Location of Phreatic Line
Forl < t < e, Eq. (32) can be written as

2= [M | (=B~ ¥2—1yl2=7 gy NIM [ dt ,
] ) ) N [M' | — +N))

—_——

1 Wt—B)(t—a)t

! . t ds ’
— [ (M {JW TN M(t—B)*—312 (—1)1/2—14r +-C,

-..(4T)
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where C, is a constant.
ort=\1,z=1zp =0T 4+ L; + Loy —iLy,
Hence, C, is obtained as:
Co BB Ty 3 B Wi Ny~ ... (48)

For a given value of ¢, introducing the values of constants in Eq. (47), per-
forming the integrations and simplifying,

Fom X o TP
=MMG ([7 & (‘f’u m,) — 18) T

k—l (i— tan am) G.E (¢u. 114) +-
1

T =il 4 L 2y ...(49)
, r |
where I, = [ (—B)"~33(t—-1)l/2—0 d .. (50
{ I
I, = f F (du, ) (1 — By (1—1)l2—7 g; 5D
1

du = sin-t pe—=D -..(52)

‘ (—B) -
and me = B_((BT;% ..(53)

5
G= e
JB(1—a)
From real and imaginary parts of Eq. (49),

X = Re(M). M'G(I; F (¢, 1) — I3) —
kj tan ow. G.F(bu, 1)+ Ly+op . - .(54)
1

and Y=Im(MYM'G (17. F(c;S,,, ) — 1) +

;1
8 mu) + T —Lay -~ (55)

The real and imaginary parts of M are to be detel mined to evaluate
Eqgs. (54) and (55).
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Referring to Eq. (6).

1y
B (c—},3—0)

M= -+ 7 (1 -~ itan em) .. (56)

COS om + isin om)
ki Ble— 1, —o)

or M=+ (I -+ i tan on) ST}

Separating and equating the real parts and imaginary parts in Eq. (57).

COs om - sin a7 tan om
ki Blo— 4. 3 —a)

Re (IM) = :‘l:

-—sin ¢x &+ €OS§ o7 tan o7
ky Ble—1,2 — q)

23 3

I (M) = &

As can be seen from Eqgs. (15), (16) and Fig. ldintherangeof 1 < 1 < =,
dz - .
the constant imaginary value of o corresponds to the imaginary value

of Ngand hence M isreal. M is also positive as seen from Eq. (15)
and Fig. 1d (the integrand in Eq. (15) is positive for 1 < 1 < o),

cos o7 - sin om tan am (58
ky (B(e — %, § —0)

Hence, M = —

Introducing the value of M from Eq. (58) into Eqgs. (54) and (55), the
points on the phreatic line corresponding to the given values of ¢ can
be obtained.

Thus, Egs. (54) and (55) become

cos o7 -+ sin o7 tanew
.G (I,
GBe—Li—o 00

1’ r
F (pu, miu) — Ig) — % tan ro.

X =

G.F (¢us 1) -~ Ly+Loy ...(39)
v M GFlbem) +T—L (60)
- % F (du, 1) -+ T — Loy

Evaluation of Integrals

Integral 7; (Eq 19) is evaluated as follows. Eq. 13 can be written as
- 4
I = Bo=3/2 {)(1_ :/B}"“:“/z(l — t)I/Z—-o dt ...(()l)

Since t/B < 1in« < t < B, the factor (1—t/B)°—3/2 appearing inthe inte-
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grand of Eq. (61) can be expanded binominally to obtain a converging
series as:

) n==c0
(I —1By—32 = 5 A - (62)
n=0
1Yo — T | _'-)
where 4, — (=1 @=32)a /n ). {o )(ﬁ,’
=12 Binees
and A, = 1. '

Inserting Eq. (62) and performing term by term integration, Eq. (61) takes
the form

I, =p°—32 zo A, B(n+1, 3/2—a)
n=

where B (n+1, 3—o) is Beta function.

i—a

Integral 7, (Eq. 9) is evaluated as follows. After substituting r =

==

and simplifying, Eq. (9) becomes

L

1
- ayo—1/20— Nl/2—0 o3/ L f—a y (63
I = (B—a) 51—l (j; (I—r) 2((1 e )l/ dr ..(63)

% — 1, and hence the factor ([,_?";*;)1,'2—4: appearing
— i .

inthe integrand of Eq. (63) can be expanded into a converging series as

Fora < 1< B,

f—o {1 o & )
[1—‘("1 )r] = ¥ Dyt ..(64)
e n=0
i ity Bt g — Lo (3—o—n—T) £ p—a .
where D, = (—1) = L= Y,
n s 1,23 s

and D, = 1.

Inserting Eq. (64) into Eq. (63) and performing term byterm integration,
Eq. (63) becomes

1
I = (B—a)*~V{(l—a)l/2—e {)(lm,)a——m rodr ...(65)

> =}
or Iy = (B—a)>12(1 = q)lP—2 3 p,.B (41, 0= ..(66)
n=0
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The integrals appearing as I, are evaluated as follows -

Referring to Eq. (44), after substituting » = ;—'; and simplifying,

1.0
L s { ro32(p)lf2—0 g, (67)
(

or ;= B8(c—1,2— 0 ...(68)

The integrals I,, I, Iy, I, and Iy are evaluated numerically.
Results and Discussion

Expressions for seepage quantity and location and shape of phreatic
line in a semiconfined aquifer have been obtained. Numerical results are
presented for the quantity of seepage, L,/T and for the location and shape
of the phreatic line for different values of parameters.

Figure 2 illustrates the relation between qfk+H and H/T for different
combinations of L,/T and o. 1t is observed that for a given o an increase
in L, /T effects a decrease ing/k,H and the rate of decrease of ¢/k,H is found
to be significant for the range of L,/T studied. In particular, for ¢ = 0.9,
the decrease in g/kH for H/T = 2.5 corresponding to a change in L,/T
from 0.25 to 0.5 is 309, whereas it is 36% and 419 for a change in L,/T
from 0.5 to 1.0 and 1.0 to 2.0, respectively, for the same value of H/T. The
g/k,H values are influenced only for small values of H/T. Later, as it may
be observed from the curves, g/k,H assumes a limiting value uninfluenced
by H/T. Beyond H/T = 3.5, there is almost no influence of H/T on g/k,H
for all o and L,/T values within the range of study. The influence of ¢ on
q/kH values is considerable for smaller values of L,/T than for larger ones.
It is evident from Fig. 2 that the curves for different o tend to come closer

as L,/T increases.

The dependance of L,/T on H/T for different values of ¢ and L,/T
is shown in Fig. 3. For small values of H/T, L,/T steeply increases with
H|T and for larger H/T, the rate of increase reduces considerably. This
tendency is more pronounced for smaller value of o.

Figure 4 shows the phreatic lines for different values of H/7 for 0=0.9
and L,/T = 1.0. Fig. 5 shows the phreatic lines for different values of
oand H/T for Ly/T = 1.0. For a given o and L\/T, as H|/T increases, L,/T
and Ly/T increase. However, for the results presented, the shapes of the
phreaitc lines are similar for different H|T values (Fig. 4). It is observed
that for smaller values of o, the phreatic line tends to become flatter (Fig. 5).
As o tends to 1.0, the phreatic line tends to become vertical at the point of
intersection with the interface.



318

INDIAN GEOTECHNICAL JOURNAL

q/qu

0 1 f [ | | Lo l |
0 1.0 20 30 2.0 5.0 6.0 7.0 80
H/T
‘ H
FIGURE 2 Variation of —1

L
with—L and —

1



SEMICONFINED FLOW THROUGH AN AQUIFER 319

= 07

50

25

/
—
—
6 = 099
= 0-90
|
10

uw
o
(] «
- ' ’
:‘:' = /" §'¢, \ -
nl /’ i > . -\\-- ——
D' e —
o~
Ju? d cl) | ‘L 1 cn

H/T

H/T

FIGURE 3 Variation of H/T on Phreatic Lines



320 INDIAN GEOTECHNICAL JOURNAL

10 -
L P A o

':_..,.._._

FIGURE 4 Influence of H/T on Phreatic Lines

X/T
0 0.5 1.0 1.5 2.0
0 T T I i
/
/
7 /0388 (30)
- 6 =07 THAT =120 { 090(2:4)
4 o y -
08 (1.8) N
Y/ T &
05—
Ly/T =10 _
10 e
FIGURE 5 Influence of 8 and H/T on Phreatic Lines
Conclusions

Numerical results are presented for the quantity of seepage and the
location and shape of the phreatic line in a horizontal semiconfined aquifer.
The following conclusions are drawn from these results.

1. L,/T has considerable influence on the quantity of seepage.

2. The nondimensional seepage quantity increases with #/7 for small
H[T values but for H/T > 3.5, it is almost constant.

3. The influence of o on quantity of seepage decreases with increase
in L{/T.
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4, For small values of H/T, Ly/T steeply increases with H/T. This
tendency is more pronounced for smaller values of o.

5. For given values of o and L, /T, the shapes of the phreatic lines are
similar for different H/T values, with L,/T increasing with increase
of HIT.

6. Forsame L,/T the phreatic line is relatively flatter for larger values
of o.
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