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Introduction 

Semiconfined Flow Through an Aquifer 

by 

K. Sridharan* 

A. Siva Reddy** 

V.G. Kulkarni*** 

This s!udy is concer_ned wit? the computationofsee?ageflowthrough a 
sem1confined aquifer. Figure la shows the physical flow domain in z 

plane, z = x + iy, in which CG is the interface between two strata of finite 
thickness with k1 and k 2 as coefficients of permeability. On the down
stream side, a level water surface is assumed such that a phrcatic line, ED, 
occurs. 

This paper presents an analytical solution to the problem of finding 
the shape and location of the phreatic line when steady flow takes place 
through the aquifer. 

In the present investigation it is assumed that the water level on the 
downstream side of CG remains unchanged and on the upstream side of CG, 
a constant head of water is assumed to act across AF. The flow is a ssumed 
to be two dimensional. Analysis has been done using the hodograph and 
method of inversion. Numerical results in non-dimensional form have 
been presented for the seepage quantity and for location of phreatic line for 
various inclinations of CG. 

Derivation of Equations 

The complex potential plane w, where w = cf, + i1P, for the flow region 
is shown in Fig. I b. Here, cf, is the velocity potential function defined as 
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FIGURE 1 Steps of Confomtal Mapping 

wherep is the pressure, Yru is the unit weight of water, k 1 is the co-efficient 
of permeability, Y is the vertical coordinate, c is an arbitrary constant and 
'Pis the stream function. The value of 1P for the streamline' AC is a ssumed 
to be zero and for the streamline FED , it is assumed to be :_q, Since the 
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pressure along the phreatic line is atmospheric, cf, will vary linearly with the 
elevation along the phreatic line ED. 

. dw 
Figure I c shows the hodograph plane, i.e., dz plane,for the flow domain. 

At point C, the velocity is infinite and point Eis a stagnation point (velocity 
is zero). The phreatic line ED maps into a circle of diameter k 1 passing 
through the origin and it is completely defined in the hodograph plane 
(Polubarinova-Kochina , 1962). According to inversion rule, circles and 
straight lines passing through the origin will be straight lines. The inverse 

dz 
of the hodograph, i.e., dw plane, has been constructed and it is shown in 

Fig. ld. In the inverse hodograph, point C is at the origin and point E 
lies at infinity. 

dz . r 
-:;:- and t relations for various ranges are obtained as .1ollows. 
uW 

According to the Schwarz-Christoffel transformation, the conformal 
dz 

mapping of the polygon ECDE in the d-;, plane to the lower half of the auxi-

liary t plane (Fig. I e) is given by 

dz dt - = MJ--....,,...,,,----~ + N 
dw ( t- {1)3/2-a (t- lf-1/2 

.. . ( I ) 

dz 
the vertices E, C, D and E of the polygon in dw plane being mapped on 

- oo , {3, l ,oo , respectively,ofthetplane; MandNbeingconstants. 

For fJ < t < l.0, Eq. (I) may be written as 

<!!.____ = M S (r-{Jf-312 (1 - 1)1/2--a dt +- Na 
dw ~ 

Substituting t = (1 - fJ) r + f3 and performing the integrations (Gradshteyn 
and Ryzhik, 1965), Eq. (2) reduces to 

~: = ( - 1) 112 - a M.B, (a-½. ¾- a)+ Na .. (3) 

where B, (a-k, ¾- a) is incomplete Beta function and Na is a constant. 

dz 
Since at t = f3,dw = 0, the constantN3 = 0 
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At point D (t = 1), E q. (3) becomes 

dz 
dw (-1)112-a MB (a-½, ¾-11) 

where B (a-i, ¾-a) i s complete Beta function. 

From Fig. Id, at point D (t = I) , 

dz I D = _.!_ 
dw k1 

where i = 4- 1. 

t an 0 1T 

k1 

Hence, from Eq . (4) , the constant M can be obtained as 

kli (i-tan un) 
M= ---,--=---

(-1)1 /2 - a B(a-½; ¾-a) 

For «~t<;;f3. Eq. (I) may be written as 

dz = M / (t-f,)a-3/2(1-t )I/2-a dt+N2 
dw ,s 

I 
= _ M J(fJ -t)a-3/2(1-tl /2-a dt+N, 

Qt 

where, l'/2 is a constant. 

Since ddz = 0 at t = ~. Eq. (7) becomes 
w 

13 
0 = - M J (/J-t)°- 312 (l -t)112- 0 dt +N2 and 

a 

N2 = M . 12 

13 
where /2 = J rf3-·t)a-3/2(1-t)1l2-a dt 

Qt 

At point A (t = «) , 

For O ~ t < IX, Eq. (1) may be written as 

<!!_= - M f (/J-t)o- 3/2(t - rl /2-o dt+N 
dw o i 

where N 1 is a constant. 

.. (4) 

.. . (5) 

. (6) 

... (1) 

... (8) 

.. (9) 

... (10) 

. .. ( 11) 
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Applying the conditions at point A 

(
dz 
dw = M. 12 at t = ex , Eq. 

Ni = M (/1 + 12) 

GI 

where /1 = J (f3-t)0-3/2 (1-t ; 1/2-o dt 
0 

At point F (t = 0), 

Forl < t <oo ,Eq.(l)maybewrittenas 

where N4 is a constant. 

Since, t = lat point D, from Eq. (15), 

N4 = L (i- tan a1r) 

The w-t relations for various ranges oft are obtained as follows. 
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... (12) 

. . . (13) 

... (14) 

.. . ( 16) 

The conformal mapping of the complex potential plane, w, onto the 
t plane is given by 

w = M ' J dt + N' 
V(t-:c-l) (t-/J) (t- a)t 

. .. (l 7) 

where M' and N' are constants. 

For f3 < t < 1, Eq. (17) can bewrittenas 

t dt I 

w = ± (i) M' j-J(l;_t)(t-/3)(1-cx)t + Na ... ( 18) 

where N'3 is a constant. 

Taking negative sign which is pertinent with the given physical problem, 
after integration, (Byrd and Friedman, 1954) 

w = - iM' 
2 F(si-1 

V f3ll-at) 
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where F(0, m) is incomplete elliptic integral of the first kind having modulus 
m and amplitude 0. 

Applying the conditions at point C(t = {3, w = 0) and at point D (t = 1 
w = -iq), N' 8 = 0 and an expression for the discharge q in terms of M' is 

obtained as 

- M ' 2 K ( /1%(1 - {3) ) 
q ... - v'f3ll - «) '\/ f1( I - oc) 

.. . (20) 

where, K(m) is the complete elliptic integral of first kind with modulus m. 

For ex < t < {3 , Eq. (17) can be written a s 

l dt I 

w = ± M' I ,/(l-t)(f3-t)(t- r,.)t + N2 
. . . (21) 

where N' 2 is a constant. 

Taking negative sign which is pertinent with the given physical problem, 
after integration (Byrd and Friedman, 1954) , 

w = M ' 
2 

v(l-:x:){3 
... (22) 

Applying the conditions at point A (t = «, w = - k 1 H ) and at point 
C ( t = {3 , w = 0) 

... (23) 

.. . (24) 

For 0 < t < a, Eq. (I 7) can be written as 

I dt . 
11

· = iM' 6 ,/(J- f) {~- t)(a- T)f ... (25) 

where N1' is a constant . 

Performing the integration (Byrd and Friedman, 1954), 

iM' 
2 

'V {3(l-a) 
F( sin-1 / t(I - a) ( a( l -{3)) + N; 

\J a(l-t) ~ {3(1-a) 

... (26) 
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At point F, t = 0 and w = - k 1 H - iq and hence, 

. . . (27) 

For l < t < oo , Eq. (17) is written as 

I dt , 
w = M' \ {(t- 1) <t-/3) U-a)t + N, ... (28) 

where N'4 is a constant. 

Performing the integration (Byrd and Friedman, 1954), 

lt' ;-.:.:: M' 2 
,{ /3( I-a) 

F( sin- 1 / ~(i=rf, [fJ a ) + N~ . \J t -/3 '\J /3(1-a) 

. . . (29) 

At point D, t = land w = -iq and hence, 

.. . (30) 

z-t relations for various ranges oft are obtained as follows. Multi
plying Eq. (1) by the derivative of Eq.-(i"7) resuits"fn 

dz dw dz 1t 
dw . dt= dt = [ M I (t-f3//2-u(t- l)l /2-u + N ]. 

r 1\f' ] 
. 4(t-l)(t-f3)(t-a)t 

... (31J 

integrating Eq. (31) by parts and rearranging the terms, 

z = [MI (t-f3)o-3/2 (t-1)1/2-u dt+N] [M' J 4°(t-l)(t~f3)(t-a)t +N') 

- J [<M' J dt + N') M1t-f3)°-3/2 (t-1)1/2-<TJ dt +C' 
· ;/(t-l)(t-fJ)(t-a)t 

. - --- . .. (32) 

where C:' is a constant. 

ForO < t < a, Eq. (32) b·ecomes 

- - [M i (t- /3)°-3/2 (!- J)l/2-u dt+N1] [M' J . dt . +N'] 
o o ./ (t-I)(t-f3)(t-a)t 1 

- { ((M' { .r dr +- N; ) M(t-,B)a-3/2(1- t)l/2-o dt)+C1 
O o ~ (t- l)(t-~)lnt- a)t 

... (3 3 ) 
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where C1 is a constant. 

At point F, t = 0 and z = 0. Hence, 

C1 = -Ni N\ ... (34) 

At point A, t = a and z = iT. 

Introducing the limits and values of constants in Eq. (33) and simplifying, 
an expression for Tis obtained as 

. .. (35) 

where [3 = j F(sin-1 f t(l-a .J~)<f1-t)'•-3l2(I-t)1 ' 2__.,dt 
0 '\J a(l-t) fJ(l-aJ 

... (36) 

For a< t < fJ, Eq. (32) becomes 

z = 
t I dt ' 

[M J (t- fJ)a-3/2(t-1)1/2-ad t+ N2] [M' J -========- +N] 
" "./(t- l)(t- ,B)<t-"')t 2 

i [(M' f dt + N;)M(t-/3) a- 3f2(t- I)lf2- 1dt+ C 
• .~ {t-lJ(t-f1J(l-a)t 

where C2 is a constant. 

At point A, t = a and z = iTand hence C 2 is obtained as 

C2 = iT + M . 12 • k 1 H 

At point C, t = f]and z = iT + L 1 . 

... (37) 

.. . (38) 

Introducing the limits and values of constants in Eq. (37), and samplify.ing, 
an expression for L 1 is obtained as 

. .. (39) 

where, I, = j F( sin-1 J /Jlt-a) f 7'f=a ) (/3-t)a-3/2(1- t)1f2-adt 
" t(f3-a) ''\J ft(l-a) 

From Eqs. (35) and (39) 

M' 2 /4 
I ~1 I = I .//3(!-a) I 

q./2-M'4 2 ,Is 
/3(1-a.) 

... (40) 
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For f3 < t < 1.0, Eq. (32) becomes 

I / dt 
z = [M J (t-{3f - 312(t-1)1l2- 0 dt + N] [M' J .,:==~==::== + N' ] 

'3 
3 l''Y (t- l)(l-/3)(1-a)t · 3 

- f [ (M' J
1 

dt 
'3 I' 4 t(- 1)(1-/3)(1- a)t + N; ) .M(t- f3)°-3f2(t-t)lf2-o]dt+ C3 

At point C, t = /3, z = z. = iT + L 1 

Hence, C 3 = iT + L 1 

At point D , t = 1.0, z = zv = iT + L 1+ Lw - iL2v 

whereL:m = L 2 cos [1r (1-a)] 

and L 2v = L 2 sin [1r (1-a)] 

... (41) 

.. . (42) 

Introducing the limits and values of constants in Eq. (41) and simplifying, 
an expression for L 2 is obtained as : 

, 2 [ ( f a(l-/3) )] 
L2 = (- 1)- cr M .M 4 {3(l-a) Io - l ;. K '\J {3(1-a) 

1.0 
where l s= J (t- f3)o-3 f2(1- l)l f2-o dt ... (44) 

'3 

and J = }·O F(~in-1 -/ (t-,8)(1-a)' / a(l-/3) .)<t- /3)o-3/2(1-t)1 f2- adt 
6 '3 (t- a)(l-/3) \I ,8(1- a) 

.. (45) 

From Eqs. (35) and (43), 

.. (46) 

Location of Phreatic Line 

For 1 < t < oo , Eq. (32) can be written a s 

. . . (47) 
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where C4 is a constant. 

or t = 1, z = z D = iT + L 1 + Lw - iLw 

Hence, C4 is obtained as: 

... (48) 

For a given value oft, introducing the values of constants in Eq. (47), per
forming the integrations and simplifying, 

Z == X + iy 

= M M 'G (/7 F(<f,u m11) - I a) + 
M'. 7c; (1- tan t11T) G.E (</,u. m,,) + 

iT - iL2v + Lw + L 1 

I 
where /7 = f (t-_B)a-3/2(1·-• l )1 /2- a dt 

l 

I 
16 = f F(</,u, m,,) (t ·- /3)a-3/2(t_,.. l)l/2-o dt 

I 

--
ef,u = sin-1 A / p(t-ll 

'V (t-ff) - . 

and ,11~ = ,. / l/3 a.) 
'V /3(1-a.) 

., 
G -

= ,J' /30-a.) 

From real and imaginary parts of Eq. (49), 

X = Re(M). M 'G(I7 F(cf>u, mu)-la) -

M ' k tan a1T. G.F(,f,u, mu)+L1 + 2H 
l 

and Y = Im (M) M'G (/7 . F(,j,u, m.,) - 18) + 

... (49) 

.. (50) 

... (51) 

. . . (52) 

.. ,(53) 

. .. (54) 

.. -(55) 

The real and imaginary parts of Mare to be determined to eva l11a te 
Eqs. (54) and (55). 
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Referring to Eq. (6), 

!'.f= ± (-I)- (I ) 
- k1 B (a-!, ! - a) + i tan a1r .. (56) 

or !vi = ± cos 01T + isin o7t) . 
ki B(a- ½,? - a) (l + 1 tan arr) ... (57) 

Separating and equating the real parts and imaginary parts in Eq. (57), 

Im (M) = ± 

cos "" + sin a1r tan a1r 
k1 B(a- ½, f - aJ 

-sin a1t ± cos a1r tan u1r 

k1 B(a-½, ¾ - a) 

AscaubeseenfromEqs. (15), (16)and Fig. ldintherangeofl < t < C¢, 

dz . 
the constant imaginary value of dw corresponds to the imaginary value 

of N 4 and hence Mis real. M is also positive a s seen froni Eq. (15) 
and Fig. l d (the integrand in Eq. (15) is positive for .I < t < oo ) , 

H M 
_ cos a-rr + sin a11 tan a7r 

ence, - - k (B( .1 A ) 
1 O' - ,., Z - (1 

... (58) 

Introducing the value of M from Eq. (58) into Eqs. (54) and (55), the 
points on the phreatic line corresponding to the given values of t c.in 
be obtained. 

Thus, Eqs. (54) and (55) become 

_ cos 01r + sin arr tano1r M' G (I-
X - k

1 
Btu-½, ¾- a) . ,· 

M ' 
F (,f,u, mu) - 18) - ki tan JrO' . 

G.F(,f,u, mu) + L1+ L2H 

Y - ~, G.F (<f,u. mu) + T - L2v 

Evaluation of Integrals 

. .. (59) 

... (60) 

lntegral / 1 (Eq 19) is evaluated as follows. Eq. 13 can be written as 

.. . (61) 

Since t /{1 < I in "-< t < {1, the factor (1-t/ {1)0 -3/2 appearing in the inte-
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gra_nd of Eq. (61) can be expanded binominally to obtain a converging 
senes as: 

11= ~ 

(I - t/ {J)°- 312 = ~ Ant" 
n=O 

.. (62) 

(-l)n(a -3/2)(o-3/n2-I) .. (a-3/2-n-1) (-/3' )": where An = ~----'~-...!.,_~--'----'--------'-

n= I ,2,3, ...... 

and A 0 = I. 

Inserting Eq. (62) and performing term by term integration, Eq. (61) takes 
the form 

<X) 

[ 1 = /3°-3/2 ~ An B(n+ I, 3/2-o) 
n=O 

where /3 (11 + I, ¾-a) is Beta function. 

l-a 
integral / 2 (Eq. 9) is evaluated as follows. After substituting r = -

/3-a. 
and simplifying, Eq. (9) becomes 

For a < t < {3 , f3 a < I, and hence the factor (l-{Js---a)1/2- 0 appearing 
1--a l-a . 

in the integrand ofEq. (63) can be expanded into a converging series as 

[t- (J3-o ) r ]112-a = i Dn r" 
1-a n= O 

.. . (64) 

where Dn = (-1)" 0-a) (½- a - l) ... ... (½- a-n=T) ( /3-a \)11 : 
n I-a 

n = 1,2,3, ..... . .. . 

and D
0 

= I . 

Inserting Eq. (64) into Eq. (63) and performing term byterm integration, 
Eq. (63) becomes 

. .. (65) 

00 

or/~ = (fJ-a)°-1/2(1 - a)112- a ~ Dn. B (11+ 1, a - } ) 
n= O 

... (66) 
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The integrals appearing as / 5 are evaluated as follows : 

Referring to Eq. (44), after substituting r = t - {3 and simplifying, 
1-{3 

or 

1.0 
/5 = f , a-3/2(1- r)l /2-a dr 

() 

/5 = B(a - }, f - a) 

The integrals Ia, / 4 , 16 , / 7 and / 8 are evaluated numerically. 

Results and Discussion 
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. .. (67) 

... (68) 

Expressions for seepage quantity and location and shape of phreatic 
line in a semiconfined aquifer have been obtained. Numerical results are 
presented for the quantity of seepage, L 2/T and for the location and shape 
of the phreatic line for different values of parameters. 

Figure 2 illustrates the relation between q/k 1H and H/T for different 
combinations of Li/T and a. It is observed that for a given u an increase 
inL1/Teffects a decrease in q/k 1H and the rate of decrease of q/k 1H is found 
to be significant for the range of L 1/T studied. In particular, for u = 0.9, 
the decrease in q/k 1H for H /T = 2.5 corresponding to a change in Li/T 
from 0.25 to 0.5 is 30 % whereas it is 36 % and 41 % for a change in L 1 /T 
from 0.5 to 1.0 and 1.0 to 2.0, respectively, for the same value of H/T. The 
q/k 1H values are influenced only for small values of H/T. Later, as it may 
be observed from the curves, q/k 1H assumes a limiting value uninfluenced 
by H/T. Beyond H /T = 3.5, there is almost no influence of H /T on q/k 1H 
for all a and L 1/T values within the range of study. The influence of u on 
q/k 1Hvalues is considerable for smaller values of L 1/Tthan for larger ones . 
It is evident from Fig. 2 that the curves for different u tend to come closer 
as Lif Ti ncreases . 

The dependance of L 2/T on H /T for different values of u and L 1/T 
is shown in F ig. 3. For small values of H /T, L 2/T steeply increases with 
H(T and for larger H/T, the rate of increase reduces considerably. This 
tendency is more pronounced for smaller value of a . 

Figure 4 shows the phreatic lines for different values of H/T for a= 0.9 
and Li(T = 1.0. Fig. 5 shows the phreatic lines for different values of 
a and H (Tfor L 1 /T = 1.0. For a given u and L ifT , as H (T increases, L J T 
a nd L_a/T fncrease .. However , for the results presented, the shapes of the 
phrea1tc lines are similar for different H/T values (Fig. 4). It is observed 
that for smaller values of a, the phreatic line tends to become flatter (Fig. S). 
As a tends to 1.0, the phreatic line tends to become vertical at the point of 
intersection with the interface. 
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FIGURE 5 Influence of 8 and H/T on Phreatic Lines 

Conclusions 

Numerical results are presented for the quanti ty of seepage and the 
location and shape of the phreatic line in a horizontal semiconfined aquifer. 
The following conclusions are drawn from these results. 

1. L 1/Thas considerable influence on the quantity of seepage. 

2. The nondimensional seepage quantity increases withH/Tfor small 
H/Tvalues but for H/T > 3.5, it is almost constant. 

3. The influence of a on quantity of seepage decreases with increase 
in Li/T. 



SEMICONFINED FLOW THROUGH AN AQUIFER 321 

4. For small values of H/T, L a/T steeply increases with H/T. This 
tendency is more pronounced for smaller values of"· 

5. For given values of" and Li/T, the shapes of the phreatic lines are 
similar for different H/T values, with L J T increasing with increase 
of H/T. 

6. For same L 1/T the phreatic line is relatively flatter for larger values 
of a . 
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