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Introduction

For the design of machine foundations the primary design criterion is the

limiting displacement amplitude at the operating frequency. However, it is
generally given to understand that the operating frequency should be away
from the resonance frequency. The design can be carried on either by using
the elastic half-space theory or mass-spring-dashpot model or empirical
methods. (Richart, et al., 1970; Sridharan and Nagendra, 1981) Out of these,
elastic half-space theory is widely used and most popular. Using this theory
many investigators Sung (1953), Bycroft (1956), Hsiesh (1962), Chase, et al.,
(1965), Richart and Whitman (1967), Sridharan and Nagendra (1981),
Nagendra and Sridharan (1981), (1982) and (1984) to name a few) have
carried out research on vertical and horizontal modes of vibration taking
into consideration the three different pressure distributions (viz., rigid base,
uniform and parabolic) and three different displacement conditions (viz.,
central, average and weighted average). They brought out simplified charts
and tables for the above cases to determine the frequency and amplitude
of vibration at resonance. Figures | and 2 show the effect of displacement
and contact pressure distribution conditions on the amplitude of the vibra-
tion for the frequency dependent excitation for vertical and horizontal
modes of vibration. Analog solutions have been attempted in order to
obtain simplified solutions (Lysmer and Richart 1966, Hall 1967, Sridharan
and Nagendra 1981, Nagendra and Sridharan 1984). In many cases of
machine foundation design, it is necessary to limit the displacement amplitude
of the vibration at operating frequency at a desired level, Satisfying the
displacement amplitude criterion at resonance without considering the
limiting displacement amplitude criterion at operating frequency leads to
uneconomical designs. Using mass-spring-dashpot model, one can deter-
mine the displacement amplitude at any frequency knowing the appropriate
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FIGURE 1. Nondimensional Frequency Factor vs Magnification Factor for Vertical
Vibration
values of spring constant and damping factor. However, nowhere in the
literature there is any simplified procedure for the estimation of the amplitude
of the vibration at any frequency other than resonance using elastic half-
space theory. Many investigators (Housner and Castellani 1969, Richart
and Whitmann 1970) have shown that the weighted average displacement
condition is more appropriate than other displacement conditions. In this
paper solutions for the determination of the displacement amplitude at any
frequency, for the vertical and horizontal modes of vibration are presented
for the above mentioned displacement condition and for all the three types
of pressure distributions (viz., rigid base, uniform and parabolic), using
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elastic half-space theory. Results are given for the frequency independent
and frequency dependent excitations in the form of charts using appropriate
non-dimensional parameters.

Analysis

The design of machine foundations can be done either by using elastic
half-space theory or mass-spring-dashpot model. From the mass-spring-
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dashpot model the amplitude of the vibration at any frequency can be deter-
mined by the Eqs. (1a) and (15) (Richart, et al. 1970).

For frequency independent excitation

Q.

1
For frequency dependent excitation.
&3
B il i .(1b)
" [(I—( = )2 )2+ (ZDi-)z] o
Wy, w,
where, A = Amplitude of the vibration,
D = Damping factor of the system,
e = Eccentricity of the eccentric mass,
K = Spring constant of the soil system,
m = Total mass of the system,
m, Eccentric mass of the system,
w = Circular frequency at which the amplitude of the vibra-
tion is required,
w, = Circular natural frequency of the system,
Q, = Constant dynamic force acting on the system.

The above method of estimation can give very erronious results if the
value of damping factor, D, is not properly estimated. Sridharan and
Raman (1977) discuss at length the various parameters influencing the
damping factor of foundation soil system. They have brought out that the
geometrical damping factor (Eq. 2) obtained from the elastic half-space
theory at resonance condition can also result in unsafe side.

Dy
D= —— - 2)

4B

where, D = Damping factor,
D; = Constant depending on the type of contact pressure
distribution and displacement conditions (Given in Table

1).

B = Modified mass ratio.
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TABLE 1
Yalues of Dy, for Weighted Average Displacement Condition for Vertical and Horizontal
Vibrations
Values of Dy
Pressure Distribution Vertical vibration Horizontal vibration
Rigid Base 0.416 0.252
Uniform 0.380 0.231
Parabolic 0.311 0.188

The values of D, have been taken from Nagendra (1984). These values
of D, are applicable only at the resonance condition.

Using the elastic-half space theory, the values of nondimensional ampli-
tude factor, 4 or magnification factor, M, are evaluated at different frequency
w
ratios viz., w/w,, or - = (where w is operating frequency, w, and o,
mr

the resonance frequency for frequency independent and frequency dependent
excitations respectively) from Eq. 3 and 4, (Sung (1953) and Richart,
et al. (1970) ), with the help of a computer.

For the frequency independent excitation (constant force system)

_ fi+fi 0.5
A:g"a/;:[ ] @)
’ (1+ bag f1)*+ (ba§ f)*
For the frequency dependent excitation (Rotating mass system)
m 4 jf _!_ f; 0.5
Mk = _rn—é- A = baﬂ [ ] (4)
. (1 + ba; f1)*+ (ba; 1)
where,
A = Amplitude of the vibration at any given frequency,
A = Nondimensional amplitude factor,
a, = Nondimensional frequency factor = wro-\f}:f'f},
b = Nondimensional mass ratio = m/prj,

¢ = Eccentricity of the eccentric mass,
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fy & f; = Functions of a,, depending on the displacement and
contact pressure distribution conditions and Poisson’s
ratio,

= Shear Modulus of the soil,

G
M, = Nondimensional magnification factor,

-

&
[

Constant dynamic force acting on the system,

Mass density of the half-space (soil),

=}
Il

r, = Radius of the contact area of foundation,

w = Operating frequency of the system.

Using Egs. 3 and 4 and a numerical method, the maximum values of the
nondimensional amplitude factor, 4 and Magnification factor, M, were
obtained with corresponding nondimensional frequency factor, Bom =
Wt A ;E for frequency independent excitation and a,,, = w,, .4 p/G.
for frequency dependent excitation. Knowing w,, or w,,, one can express

(2]

the operating frequency in terms of resonance frequency as a ratio, or

Lo

w

and corresponding 4 or M could be obtained using Egs. 3 and 4

mr
Tables 2 and 3 give the values for functions f; and f, for wvertical
and horizontal vibrations respectively. For vertical vibration the functions
f; and f; were calculated using coefficients given by Bycroft (1956), Nagendra
and Sridharan (1982). In the case of horizontal vibration, solutions are
available in the literature for two boundary conditions. They are (i) the
vertical stress, o,, at any point due to the horizontal dynamic force is equal to
zero. (ii) the vertical displacement, w, at any point due to horizontal dynamic
force is equal to zero (Nagendra, et al. 1982, Nagendra and Sridharan, 1984).
Of the two boundary conditions, the first one is more realistic and has been
recommended (Richart and Whitmann 1967, Housner and Castellani, 1969,
Nagendra and Sridharan, 1981). Figure 3 shows the comparison of the
magnification factor, M for the above two boundary conditions at different
frequency ratios for the frequency independent excitation obtained by the
authors. Tt can be seen that the difference in magnification factor is marginal

w
for all the frequency ratios except for the case of i 0.8. However, the
m

boundary condition o,, = 0.0 is more rational and hence further results are
given only for this boundary condition. For the calculation of the displace-
ment amplitude at any frequency, the co-efficients for displacement functions
f, and f; for the weighted average displacement condition, horizontal vibration
(0., = 0.0) given by Nagendra and Sridharan (1984) have been used (Table 3).



Values of Functions f, and f, for Vertical Vibration—Weighted Average Displacement

TABLE 2

—f,=P—Q al+Ra}; f,=Sa, —Ta} — Ual
Type of Pressure. Distribution Poisson P Q R S T U
Ratio, p

0.00 0.250000 0.145833 0.034896 0.214474 0.078832 0.013035
Rigid Base 0.25 0.187500 0.093750 0.019618 0.148594 0.047354 0.006901
. 0.50 0.125000 0.062500 0.011458 0.104547 0.029434 0.003824
0.00 0.271090 0.126089 0.022988 0.214474 0.059124 0.007638
Uniform 0.25 0.202642 0.018057 0.012923 0.148594 0.035516 0.004044
0.50 0.135095 0.054038 0.007548 0.104547 0.022076 0.002241
0.00 0.329374 0.102472 0.012738 0.214474 0.038416 0.003564
Parabolic 0.25 0.247031 0.065875 0.007161 0.148594 0.023677 0.001887
0.50 0.164687 0.043917 0.004183 0.104547 0.014717 0.001046
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TABLE 3

Values of Functions f; and f, for Horizontal Vibration (g:; — 0.0), Weighted Average Displacement

—f, = P-Qa}+ Ra}; f, = Sa —Tal + Uad
Type of Pressure Distribution Possion P Q R S T u
Ratio, 73
0.00 0. 253000 0.093750 0.017448 0.113688 0.021399 0.002082
Rigid Base 0.25 0.218750 0.067708 0.010851 0.016076 0.019742 . 0.001956
0.50 0.187500 0.052083 0.007813 0.094542 0.018311 0.001882
0.00 0.270189 0.081057 0.011494 0.113688 0.016049 0.001220
Yniform 0.25 0.236416 0.058541 0.007148 0.106076 0.014807 0.001146
0.50 0.202642 0.045032 0.055146 0.094542 0.013733 0.001103
0.00 0.329374 0.065875 0.006369 0.113688 0.010700 0.000569
Parabolic 0.25 0.288202 0.047576 0.003961 0.016076 0.009871 0.000535
0.50 0.247031 0.036597 0.002852 0.094542 0.009156 0.000515
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FIGURE 3. Mass ratio vs Magnification Factor for Horizontal Vibration for Two
Boundary Cenditions

It may be mentioned here that the Eqgs. 3 and 4 are one and the same for
both the vertical and horizontal modes of vibration. Appropriate values of
f; and f, (Tables 2 and 3) are to be used in these equations to obtain the non-
dimensional amplitude factor, 4 or Magnification factor, M,. The coeffi-
cients to be used to obtain f; and f; are dependent on Poisson’s ratio, hence
they are listed for three values of Poisson’s ratios, namely 0.0, 0.25 and 0.50.

Results and Discussion

Solutions have been presented in the form of charts for the frequency
independent (constant force system) and frequency dependent (rotating mass
system) excitations, for both, vertical and horizontal modes of vibration.
It has been found that in the case of frequency dependent excitation the effect

(3]

of poisson’s ratio on the magnification factor, M, is insignificant for—

W

23]

0.8 and 2 1.2. Hence the solutions are given in terms of mass ratio, b,

Won
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itself. In the case of frequency independent excitation the effect of poisson’s
ratio on the amplitude factor, 4, is significant throughout the range under

w
consideration 0.4 < b € 1.6). Hence in this case the solutions are

mn
given in terms of modified mass ratio, B (which takes care of the effect of
Poisson’s ratio (Lysmer, ef al, 1966). The value of magnification factor,
M for the frequency independent excitation is got by multiplying the ampli-

tude factor, 4 with the proper Poisson ratio factor. The Modified mass
ratios are given as

B = PFxb

and Magnification factor, M, for the frequency dependent excitation is
given as

M = A/P.F
where, P.F = Poisson ratio factor, given in Table 4,
b = Nondimensional mass ratio,
‘A = Nondimensional amplitude factor.
TABLE 4

Values of Poisson Ratio Factors for Vertical and Horizontal Vibration, Weighted Average
Displacement Condition

Poisson Ratio Factors

Pressure Distribution Vertical Horizontal
vibration vibration
(1-p) (2-p)
Rigid base — g
‘e 8(1-u) 4 (2-p)
Unilorm 3t —ﬁin_zﬁﬁ
. 1024 (1-) 512(2-p2)
Parabolic T 315 gt 315 2t

Figures 4, 5 and 6 give the relationship between Modified mass ratio
and Magnification factor for the frequency independent excitation, vertical
vibration, weighted average displacement and for the rigid base, uniform
and parabolic pressure distributions respectively. Figures 7, 8 and 9 give
the relationship between mass ratio and magnification factor for the fre-
quency dependent excitation, vertical vibration, weighted average displace-
ment and for different pressure distribution conditions.
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Figures 10, 11 and 12 give the relationship between the modified mass
ratio and magnification factor for the frequency independent excitation,
horizontal vibration (s,, = 0.0), weighted average displacement and for the
rigid base, uniform and parabolic pressure distributions respectively.
Figures 13, 14 and 15 present the relationship between the mass ratio and
Magnification factor for the frequency dependent excitation, horizontal
vibration (o,, = 0.0), weighted average displacement and for different
pressure distribution conditions.

For determining the displacement amplitude of the vibration at any fre-
quency the above figures could be used.
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Conclusions

By using the figures provided, one can easily determine the displacement
amplitude of the foundation soil system at any frequency other than
resonance for vertical and horizontal modes of vibration for different
pressure distribution conditions and for weighted average displacement
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condition. These figures are accurate and are based on the elastic half-
space theory, which is more popular, and rational. Appendix | presents
an worked out typical example.



70 INDIAN GEOTECHNICAL JOURNAL

S wpm 2V 2

N
-
-

22~

. My

tactor
#—

Magnifation
o

PORE & Hetizontal vibratien (83,= 601
Rotating mass sysiem
Rigid base pressure distribution
082 Fer all values of u'
060025
G-58
022
058k
04
0-¥3L1 | 1 L | s 1 i L 1 : 1 g
8 12 16 20 24 28 37 38

Mass  ratia | ¥

PIGURE 13 Mass Ratio vs Magnification Factor for Horizontal Vibration—Rigid Base
Pressure Distribution



MACHINE FOUNDATIONS

factor ,

Magnification

Horizontal wvibration {6z =00C)
Rolaling mass syslem

082 Uniform pressure distribution
For all values of wu

058

0.5

0.56

" | PO | { N
8 2 6 20 22 78 a2 35
Mass ratio , by

FIGURE 14 Mass Ratio vs Magnification Factor for Horizontal Vibration—Uniform
Pressare Distribution

71



72 INDIAN GEOTECHNICAL JOURNAL

2-9—

Horizontal vibration (6%z=00)
Rofating mass system

28— Parabolic pressure distribution
¥ For all values of A
s
"
2 23
c
f': 1.4
o
%
Z20F
=S
o
=
1.7] 1.8
1.6
0
05
021 06
058 &
: L 1 — 1 I 1 Q-4 1
" 1 " 1 = Fi = - > —
1 8 12 16 20 2L 28 32 36

Mass ratio, by

FIGURE 15 Mass Ratio vs Magnification Factor for Horizontal Vibration—Parabolic
Pressure Distribution

References

BYCROFT, G.N., “Forced vibration of a rigid circular plate on a semi-infinite
elastic space and on a elastic stratum”, Philosophical Transactions of the Royal Society,
Series-A, Vol. 248, London, England, 1956, 327-368.

CHASE, Y.S., HALL, J.R. Jr. and RICHART, F.E. Jr,, “Dynamic pressure distri-
bution beneath a ring footing™, Proceedings, Sixth International Conference on Soil

Mechanics and Foundation Engineering, Montreal, Canada, Vol. 2, 315, Sept. 1965,
22-26.

HOUSNER, G.W. and CASTELLANI, A., “Discussion of comparison of footing
vibration with theory”, Jouwrnal of Soil Mechanics and Foundations Division, ASCE,
Vol. 95, No. SM1, Proc. Paper 6324, Jan. 1969, 360-364.



MACHINE FOUNDATIONS 73

HSIESH, T.K., “Foundation vibrations”, Proceedings, Institution of Civil Engineers,
London, Vol. 22, Paper 6571, June, 1962, 211-226.

LUCO, JE and WESTERMANN, R.A., “Dynamic response of circular footings™,
Journal of Engineering Mechanics Division, ASCE, Vol. 97, No. EMS, Proc. Paper
8416, Oct. 1971, 1381-1395.

LYS_MER, J. and RICHERT, F.E. Jr,, “Dynamic response of footings to vertical
loading”, Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 92,
No. SM1, Proc. Paper 4592, Jan. 1966, 65-91.

MOORE, P.J., “Calculated and observed vibration amplitudes™, Journal of the Soil
Mechanics and Foundations Division, ASCE, Vol. 97, No. SM1, Proc. Paper 7789,
Jan. 1971, 141-148.

NAGENDRA, M.V., and SRIDHARAN, A., “Response of footings to vertical
vibration®, Journal of the Geotechnical Engineering, Division, ASCE, Vol. 107, No.
GT7, July, 1981, 989-995.

NAGENDRA, M.V., SRIDHARAN, A., and SEENIVASAN, M., “Foundation
response to horizontal vibrations™, Indian Geotechnical Journal, Vol. 12, Apr, 1982,
132-151.

NAGENDRA, M.V. and SRIDHARAN, A., “Footing response to horizontal
vibration”, Journal of Engineering Mechanics Division, ASCE, Vol. 110, No. 4, Apr.
1984, 648-654.

NAGENDRA, M.V., “Studies on Foundation—Soil system subjected to vertical and
horizontal vibrations”, Ph.D Thesis, Indian Institute of Science, Bangalore, 1982.

NAGENDRA, M.V. and SRIDHARAN, A., “Stiffness coefficients of elastic
medium”, Journal of the Geotechnical Engineering Division, ASCE, Vol. 108, No.
GT4, Apr. 1982, 661-668.

RAMAN, I., “Dynamic response of footing—soil system to vertical vibration”, Ph.D
Thesis, Indian Institute of Science, Bangalore, 1975.

RAMASASTRY, K., “Prediction of response of footings subjected to horizontal
vibrations”, Ph.D Thesis, Indian Institute of Technology, Madras, 1975.

RICHART, F.E. Jr. and WHITMANN, R.V., “Comparison of footing vibration
with theory”, Journal of Soil Mechanics and Foundations Division, ASCE, Vol. 93,
No. SM6, Proc. Paper 5568, Nov. 1967, 143-168.

RICHART, F.E. Jr.,, HALL, IR, Jr., WOODE, R.D. Vibrations of Soils and Foun-
dations, Prentice Hall Inc. 1970.

SRIDHARAN, A., and NAGENDRA, M.V., “Prodiction of frequency and ampli-
tude of foundation at resonance”, Canadian Geotechnical Journal, 1981, Vol. 18,
603-607.

SUN(_’}, T.Y., “Vibrations in semi-infinite solids due to periodic surface loadings”,
American Society for Testing and Materials, Special Technical Publication No. 156,
Symposium on Dynamic testing of soils, 1953, 35-64.



74 INDIAN GEOTECHNICAL JOURNAL

Notations

A = Amplitude of the vibration

A = Nondimensional amplitude factor

a, = Nondimensional frequency factor

o = Nondimensional frequency factor at resonant frequency for
frequency independent excitation

a,,,» = Nondimensional frequency factor at resonant frequency for
frequency dependent excitation

b = Mass ratio

b, = Mass ratio in vertical vibration

b, = Mass ratio in horizontal vibration

B = Modified mass ratio

B, = Modified mass ratio in vertical vibration

B, = Modified mass ratio in horizontal vibration

D = Damping factor

Dy, = Constant dependent on the type of contact pressure
distribution and displacement condition

e = Eccentricity

fi.f= = Displacement functions

G = Shear modulus of soil

m = Mass of the machine and its foundation

m, = Eccentric mass

M = Nondimensional magnification factor Constant force-
systerm)

M, = Nondimensional magnification factor Rotary mass system)

M, — Nondimensional Magnification factor at resonant frequency
for frequency independent excitation

M., = Nondimensional magnification factor at resonant frequency
for frequency dependent excitation

¥ = Radius of the foundation

1 = Poisson’s ratio

W = Exciting frequency
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W, = Frequency at resonance for frequency independent excita-
tion
W = Frequency at resonance for frequency dependent excita-
tion
W, = Natural frequency of the system.
Appendix-I

Sample calculation
DATA :

Unit weight of soily = 1.87 T/m?, Shear wave velocity, ¥, = 140 m/sec,
Poisson’s ratio p = 0.35, Each unbalanced weight = 154 kg, Total
unbalanced weight = 4 x 0.154 = 0.616 T, Eccentricity of unbalanced
weight = 0.0025 m, Total dead weight of oscillator = 2.545 T, Total
weight including footing and oscillator = 14.50 T, Diameter of footing
= 150 cm, Operating frequency = 1600 RPM.

Solution to obtain the displacement amplitude at operating frequency under
vertical vibration

Shear modulus calculated from shear wave velocity = G = pv2

1.87
= — % 140*
¥ Mt
= 3736.2T/m?
. , 150
Radius of footing = g 75cmor 0.75 m
modified mass ratio, B: = ,E,l_j‘/‘_) —-I:V—
4 3
Yo
—_03
_ (1—0.35)x 14.5 2987 e 30

4x1.87 x0.75°
Dimensionless frequency factor at resonance, a,,, = W,, I, ,\/ —2(-

Rich et al. 1970) one can get a,,, knowing B, for frequency dependent
excitation as a,,,, = 0.60 for rigid base pressure distribution

0.60

0.75 1.87
’\/9.81 X 37362

 Wmy =

= 112 rad/sec
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Operating frequency, f = 1600 RPM, w = 167.55 rad/sec.

w  167.55
Wy - 112
= 1,496 = 1.50

To calculate displacement at operating frequency:

distribution
W i
Y

14.5

from Fig (7) for b: =

Y. =150

for b: = 18.38 and

Wrm

Magnification factor, M, = 1.40.

m
Mmee

M,= - A

Me
- M,

SoAd=

0.616 x0.0025 x9.81

14.5x9.81

0.14869 mm

Rigid base pressure

= 18.38

T 1.87x0.758

x1.40 = 1.4869 < 10—*'m





