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Introduction

Astudy of the dynamic behaviour of footings subjected to coupled

rocking and sliding mode of vibrations is very important in the design
of foundations for various typas of structures such as radar towers,
chimnsys, off-shore platforms etc. and also in the dssign of machine
foundations. Many pro:edures pertaining to the study of vibrations of
footings, idealise the footing to be circular, as thus shape simplifies the
analysis considerably. Rectangular shapes are more commonly used as
machine foundations. These footings produce sliding and rocking com-
ponents during horizontal excitations.

During coupled rocking and sliding vibrations of embedded rectan-
gular footings, the spring and damping resistance for rocking and sliding
on account of embedment are developed on the faces perpendicular
to the plane of rocking. There is a likelihood of slip at the vertical
interfaces of the rectangular block parallel to the plane of rocking
and at thz horizontal interface of the base aad the soil below giving
rise to the mobilisation of frictional forces. The magnitude of these
forces depend on the angle of intergranular friction, overburden pressure,
moisture content, nature of contact surface between embedded block and

soil, etc.

In this paper a two-degree-of-freedom lumped parameter analogue and
its closed form solution have been described to predict the behaviour
of rigid embzdded block foundations under coupled rocking and sliding
mode with following assumptions: (1) The base shape of the embedded
block foundation is rectangular., However, footings with circular base
shape can be approximated as an equivalent equare of same base area (2)
Though the development of the lumped parameter analogue model implies
the embedment of the foundation blocks in linearly elastic, isotropic and
homogeneous half-space, it is possible to accommodate variable properties
of the soil above the base level of the footing by suitable modifications in
the proposed lumped parameters, (3) The proposed theoretical model
assumes superposition of the effect of embedment with the response of
surface footings, (4) The damping and spring constants for surface foot-
ings under coupled rocking and sliding mode of vibration can be chosen
either from Hall’s (1957) analogue or from the theoretical model of
Beredugo and Novak (1972), (5) Stiffness and damping constants due to
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embedment of the block for horizontal translation can be obtained by a *
suitable adoption of the lumped paramaters of Lysmer’s (1965) analogue
for surface footings, (6) Stiffness and damping constants for rocking due
to embedment can be obtained by a suitable adoption of the lumped
parameters of Hall’s (1967) analogue for surface footings, (7) There is a
likelihood of slip at the vertical interfaces of the embedded rectangular
block parallel to the plane of rocking, (i.e. perpendicular to the axis of
rocking) with the surrounding soil and at the horizontal interface of the
base with the soil below, giving rise to the mobilisation of frictional
forces. These forces can be lumbed as a single force F' acting at the base
of the rectangular footing (Fig. 1).

FIGURE 1 Proposed Theoretical Model of an Embedded Footing Under Coupled
Vibrations

Analysis

Figure 1 represents the proposed theoretical model of a rectan-
gular embedded footing of plan dimensions 2¢x2d under coupled
rocking and sliding vibrations and embedded to a depth L in a homo-
%cneous, isotropic elastic half-space. Let it be subjected to an exciting
orce

O(1) = Q, cos (w4 ¢) (1)

and moment

M(t) = M, cos (wt+¢) -+(2)
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about the center of gravity. With the sign conventions and notations
indicated, summation of forces about the center of gravity yield the
following equations of dynamic equilibrium:

m g+ R, + N = Q,cos (wt+@)+F  ...(3)

i -—R; i R; . N;c F—L12) N; = M, cos (wt+¢)FFz. ...(4)

where
Xp = Xg—2Z, P '],
X = Xg+(L/2-z)p i
R; =kzo %o + Czbe Xb
R; = Kop @ + Cobe ©
N, = keX+ Coe %,
..(3)
Nq', = kos @+ Cose ¢ |
Cxbe = Cxb + bapw
Cxse = Czs 1 brs/w {
Cobe = Cob T bq,,,/w
Cose = Cps T Dosl® 4

Notations Used in the Above Equations

m-mass of the vibrating body, @, and M,—Real amplitudes of exciting
forces and moments, w-Frequency of excitation, ¢-Phase angle, I-mass
moment of inertia about center of gravity, x; and ¢ = translation and
rotation of center of grarity at any instant of time, X, and ¢,— maximum
amplitude of translation and rotation of center of gravity. xs— horizontal
component of displacement of the footing base at any instant of time,
x, — horizontal component of displacement of the point of applications of

the soil reaction N;ﬂ due to embedment at any instant of time, cxse and

Cope — €quivalent damping constants for horizontal translation and roc-
king respectively of the soil layer below the footing base, cxe and cgqp —

equivalent damping constants for horizontal translation and rocking
respectively due to embedment kzs and kgp — stiffness constants for hori-

zontal translation and rocking respectively due to the soil layer below
footing base, cx» and ¢y, —Damping constants for horizontal translation and

rocking respactively of the soil layer below the footing base, kx and k g
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stiffness constants for horizontal translation and rocking respectively due
;::1;&;1;1‘1;:, czrs and tqw 1—- gampmg constants for horizon{al translation
of gravity gof efggc \lrrgrgtin;en:gssm:l?gsk? elﬂéc,Z‘é? —rfe_c—clégtgl}i]cfit;focfentfé
applied force with respect to the CG of the system, R’ and R’ — soil re-
action for translation and rocking respectively af the f(;Poting base,
N’ and N’ — soil reactions for translation and rocking respectively due to

X ? . ’ ; .
embedment, bxy and bz, — internal damping coefficients for translation,
bq,, and b?b—interna] damping coefficients for rocking and dot represents

differentiation with respect to time.

The sign of F in Egs. (3) and (4) respectively depend on the

velocity vector xs. If the frictional force is small compared to the driving
force amplitudes, the resulting motion will be continuous while for
larger values of F, a single cycle of motion map consist of regions of
stand still. The procedure indicated herein assumes smaller values of F
and correspondingly continuous motion without any standstill. However,
the present analysis can also be extended to motions with standstills

through suitable modifications in the boundary conditions.

Introducing the Notations

g1 = Cxbe + Cxge
gy = kxp + kxs
g3 = —Cxbe Zo+Cxse(L2-2¢) |
gy = —kxp ze + kx(L[2-2¢) !
. ...(6)
$1= Cxbe Z_+ Cope + Cxge (L)2-20)2 4= Cose =
fo= ka2 thy + ke (L/22° + kg
S3 = —Cuabe Zo + Czse (L[2-2;)
Sy = —kxb ze + kxs (L]2-20) J

and the boundary conditions

=0 %=t Fo=0 g=, g},

att = wfo, Xp =— Xomax xp =0 g=—Co &;:—tp.a A7)

0< 1< nfw x5 < 0.

the dynamic equilibrium equations become
m Xet g1 Xg+qaxs+q, 9+q. 9 = Q()+F -(8)

Iq+5 @+5 045 Xpbs, X = M()—F z. .9
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These equations can be solved by the superposition of complementary
and particular solutions of the differential equations. Let

xg = A exp (nt) and ¢ = B exp (nt), then ...(10)
for non-trivial values of 4 and B, the quartic equation

mIni4-(ms,+-q.I) P*+H(mso+q, s1+q. I—q3 59) (g1 52+q2 5
—q3 S ~—q4 53) N +(G2 Sa—q4 54) = 0 ...(104)

with characteristic roots 7; = —a-+iB, Ny = —a —if, 3 =—v+id,

1, = —vy—id and «, B, v and § as positive, real constants can be solved by
the theory of equations. The ratio of B/A for each root can be obtained

as:

For 7,

[Bl/Al]:[(—m¢2+"152+91“_‘12)+f(2m°lﬁ"":’a'1ﬁ)]/[(—%“+94)‘:"f‘?3ﬁ] (11
= a-+ib

For u,, [By/ds) =a—1ib

For =3,

[ By/ A5)=[(—my2-+-m8+qy—gq)+i (2my §—i8))/[(—gay +q0)+1949)] i
(12)

= ¢-+id
For MNas [B4/A‘] = ¢—Ii d
Then the complementary solutions are

xg = exp( — at)[C; cos Bt + Cysin r]+ exp (—yt)[C; cos 81+ Cy sin §t]
..(13)

¢ = exp (— at)(D; cos Bt-+ D, sin pt]+exp ( — ¢1)[D; cos 8¢+ D, sin 8t]
..(14)

and
C,= A+A4, | Co= (41—A4,)i | Co = As+A4; | Cp = (dg—Ay)i
D, = B,+B, | Dy= (B—By)i | Dy = By+B, | Dy = (By—Byi
D, = aC,+Cob| D, = aCy—bC, | Dy = ¢Cy-+-Cyd' Dy = cCy—Cyd
...(15)
can be oblained.
The particular solution of the above Egs. (8) and (9)
xg = Uj cos (wt+¢) + U, sin (wt+¢) + Vi F ..(16)
¢ = U,cos (wt-+¢) -+ U, sin (wt-+¢) + VoF ‘ (17)
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can be evaluated in a similar manner as reported by Yeh (1966)

Vi = (53 rrqa)/(—5494+5:92) and ¥V, = — (gors+5)/( — 52G21-544)
...(18)
ay ayp dz dyy (gs/m—a?) (g w/n) (qafm) (gsewpm)
j ] gy Qo Aoy Uy (—q@/m) (gofm—ow?) (—gswim) (gq4/m)
a| = =
dg A3z da3 3 (so/1) (s300/1) (s:/I—w?)  (s10/1)
) Ay Ty ag (—spw/l)  (s4/D) (—sw/l)  (sp/l—?)
: ...(19)
...(20)

| a | Uj=[Qo/m] Asj + [MoI] A3 J = 1,2,3,4
and
Ay . . Ay are the cofactors of ayy . . dgy

The general solutions for the system of differential Egs. (8) and (9)
are written as
xg = exp ( — at) [C; cos Bt +C, sin Br]+exp (—ryt) [C; cos 8¢+ C, sin 8¢
4 U, cos (wt + ¢) + Upsin (ot + ¢) 4~ Vi F
(2D

¢ — exp ( — at) [D; cos Bt + Dy sin Br]+exp(—y#)[Dycosdr+ D, sin §¢]
+ U, cos (ot + ¢) -+ Uy sin (wtf + ¢) +V,F
...(22)

Introducing the Notations

p1 = [—atrieaid-bB)], ps = [B+rr(ba—-aB)l, ps = [—y+rrlyc+dd)],
Py = [§+rr(yd—c)].

by1 by byy by (1—ars) -—bry (I—ecrp) —drys
b= by by by byy Pi P2 P3 Py
bay baa bys byy a b c d
byy by by by (‘_‘a“"‘bﬁ) (—ab+aB) (—cy—d8) (—yd+sc)
..(23)
P = exp (--am/w) cos (Bxr/w), g = exp (—am/w) sin (Brr/w)
r = exp (—yn/w) cos (dnfw), s = exp (—Y=/w) sin (Bm/w) ] ~4)

@ = [ptrr (= ap+bq)), ay = [g-+r/(—bp — ag)), ay = [r+r/(—re-+ds)),
di=ls—r(rdtes) Vas=[ap—bq  1.ag=[bp+aqla—[re—ds],

ag = [rd 4+ cs lLag=[—a;e—afB ], ap=[—ape + af ],
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an=[ —dzy = a8 ], ap=[—ay +as8 l,ay=[—aza—af 1,

- ay=[ -~ agatab Lag=[—ay—as8 ),a,=[—agy + a3 1
...(25)

[ a, a, a; a,

a; ag a; dg
D) = ...(26)

dy Qyp Ay Ays
Q13 dyg G5 Gig
Cy1 C12 C13 Cyy
€1 C2a Co3 Cgy
[C]=
Ca31 C33 C33 Cag

€11 Cap Caa Cas

— muy+ | 6] (Ut Ug)  mut | 6] (—UetrUs)
Myt | b | o(—Up+Usr))  mgt | 5] w(Ul—r,riifa)-szz

my—| b | Us myp— (b U
| my— | b e U, my+ | b] w U
Mg myy
e o 27)
Myg+ | b | M4
Myg my+ | b |
€15 Cis my— | b | my— | b | (Vi=Vars)
e | | M= - ..(28)
Cas €35 Mas hgg— | b | Ve |
Cy5 Cas Hlgs g _)
my ) (—(Ur—rUy) Byy—(Uy—Uyry) By—UsByy—wU By )
[, My f | —(U,—rsUy)Big—o(Us—Uyrr) Byy—UsBgy— wUBys '
il Mgy T =12 ' ~—(U—r1U3)Byg—(Uy—U, 1) Byg—- U Byy—ea Uy Byy }:
L omy J L—(Ul—rfUa)anw(Uz Uyrf)Byy—U;By—wU; By )

.29
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;’ Myq 1[ ir (U"""I)U4)Bll‘{‘M{UJ‘“Ua"f)leﬁU4331+wU3B41 ‘il
]i LE }7[01 ! —(U *’T)U4)Blo+w(Uf—Ua"f)Bzz““Un;Baz‘l'wUaB42 |
} Mgy % % AUy —rr)Ug) B+ e(U— 3"f}Bza‘UeBaa+anBas {
L mye J (—(Us—r/)U)By+o(U— Ustr) Byy— U By +wUyBy, |
. (30)
[ my ) [ By ) T [ Ba )
[ ] f . f i
| r1a | | Bgy | |y | [ B
[ | =[D] | | and | | =I[D] | LG
I Py : ; By | fl Mgy ll f By, L
| i |
L mgy J L B JI (omy J L Be J
( my ) [ Bn '} ( my
} Mgg | } By, | | my |
I } =—[D] | | and | | =—[D]
! M5 | { By { P ;
L my ) L Bu J Ly J
1['——V1311+V2(rfB]1—331) ]
| —ViBo+ValreBiy— By,) -“(32)

[
| —V B3+ Vy(reBy—By,)

L —V\ B+ VilreB1y—Bg)) _J

and By, .. By to represent the cofactors of &y, to by, T to Cyto
represent the cofactors of ¢;; to ¢y and applying Eq. (7) the following
could be obtained :

4
|Cjcos¢d = ) El Gi1 (GsXbmax +¢;F) = | C | [tyXomax+14,F] -+-(33)
L ;
) 4
| C|cosé =j _:sI Gz (CisXbmax +¢jsF) = | C | [V, Xbmax+7,F] .-(34)
4
[ C] Po = _;‘-:1 Cia (C}'axbma—r‘f‘cjsF) ---(35)
J=
|Cle, =5 G (@smax+,F) -(36)

Eliminating ¢ between Egs. (33) and (34) an equation

(uf -+ v2 }x2

1 bmax

—+ 2anqu (14 U + W Vo) -+ (uz -+ vi Y2 —1=0
..(37)
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is obtained and the positive value of Xsmax should be considered. Substitu-
ting in Eqs. (21) and (22) x, and ¢, can be computed. The problem is

then compl:tely solved for a given set of parameters, As x; < 0, substitu-

tion of the above equations together with Egs. (21), (22) and (5)
provide an expression for the region of validity (Raghavendra Rao,
1981).

Evaluation of Stiffness and Damping Constants

Evaluation of kvs, cab, k@b and Cob

These parameters are evaluated either using Hall's (1967) analogue
modzl or Beredugo and Novak's (1972) model for rocking and sliding of
a cylindrical block of radius r, resting on the surface of an elastic half-
space. Thus according to Hall (1967)

kxo = [32(1 — ) Gr, YT 7— 84l -++(38)
kpy = [8Gro 1131 — W) .(39)
co = [18:4 (L —p) ry (pG)2)/[1—8u] ...(40)
cop = [0.8 7 (PG Y- (1+B )] ..(1)
¥ o=GB0—in 1iser, ] .(42)
?
and according to Beredugo and Novak (1972)
kxb =G Fa Cu[ .(43)
3
kpp =Gr) Cyy . (44)
Cxb = (Gr,,/w) Cuc e (45)
Cop = (Grg J) Cp ...(46)

where Cu, and Cu,—elastic half-space stiffness and damping parameters for

translation, C,; and C, — elastic half-space stiffness and damping

parameters for rocking, G-—shear modulus of the elastic medium, p—mass
density of the medium, p—Poisson’s ratio, Jo—mass moment of inertia
about an axis through center of base. Richart et al. (1970) has observed
that with the value ofr, chosen for appropriate mode of vibration, the
above expressions can be used for rectangular contact areas with length

to breadth ratio upto 2.
The stiffness of rectangular contact areas 2c¢ X 2d can be computed

alternatively with the help of expressions given by Richart et al. (1970).
Thus the sliding and rocking stiffnesses respectively, are given by

kxt = [4(1 +;u) G ﬁx (Cd)”z] .. (47)
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kop = [8 G B, (cd?®) 1j[1—¢] .. (48)
Br and B, depend on d/c ratio.

Evaluation of &y, and ¢y,

Lysmer (1965) developed a single-degree-of-freedom lumped parameter
analogue model to predict the dynamic response of a circular footing
under vertical vibrations with spring and damping constants as

ks = 4 G rof[1—p] ...(49)
o :3.41'; (G) /[ 1—] ..(50)

The above expressions depend only on the area of contact and the
elastic properties of the soil medium. Also, dl_:rmg vertical v1}3rat10ns, the
soil below the footing is in a state of elastic uniform compression (Barkan,

1962).

Coupled rocking and sliding vibrations of an embedded rectangular
footing produce normal pressure on soil mass adjacent to the two vertical
faces, parallel to and on cither sides of the axis of rocking. This soil mass
is also likely to be in a state of elastic uniform compression, if the
horizontal component of coupled motion alone is considered. As half of
the semi-infinite soil medium is effective with respect to‘cach vertical face
of the footing, it is reasonable to assume that the damping cx, and lateral
stiffness. kx, are approximately equal to the values of ¢: and k: given by
Egs. (50) and (49) respectively, ta]cmg care to use the appropriate
values of 7, and other elastic properties.

Therefore, for an embedded rectangular footing of dimensions 2¢ X 2d
with embedment L, approximate values of cx, and kz, can be computed

using the following expressions:

g = 17 rfq (pG)M2/[1—p] BN E )
kxs= 2 req G{[1—p] or ...(52)
fexg = G Bz (cL)'2[[1—p) ...(53)
req = [4¢ Ljz]? (54)

and B. depends on L/c ratio.
Evaluation & ; and ¢,

Hall (1967) developed stiffness and damping parameters for rocking
vibrations of a circular footing on the surface of an elastic half space and
the expressions to evaluate them are given in Eqgs. (38) to (42).

The soil, below a footing undergoing rocking mode of vibration is in a
state elastic non-uniform compression (Barken, 1962). Coupled rocking
and sliding vibrations of an embedded rectangular footing would also
bring the soil adjacent to the two vertical faces parallel to and on either



A NEW LUMPED PARAMETER MODEL 269

side of the axis of rocking into a state of elastic non-uniform compression,
if the rocking component alone is considered.

Therefore, for an embedded rectangular footing, of dimensions 2¢x2d,
with embedment L, the lateral stiffness k_,; can be assumed as the difference
between the stiffnesses offered by two rectangular surface footings of
dimensions 2¢ X (2d+2L) and 2c¢X2d. The value of damping parameter
€os can be evaluated in a similar manner. Thus both ¢,; and kg can be

evaluated using Hall’'s (1967) expressions given in Egs. (38) to (42)
taking to care to use oppropriate values of », and other properties as given

below :

ks = [8G (3 — 1y Y3 (1—p)] .(59)
Alternatively,

gy = G (26) () [Boe (1+L/dY—Bog 1= -(56)

where B, is the value ﬁ? (for ratio [L+d]/c. Bgs is the value of Py corres-
ponding to ratio [d/c].

o5 =[0.8 (Go)2(1—llry [(14Boz )—ry | (1+By1 1...(57)

B,y =[3 (1—#) B8 p 7] ] (59)
By =B (-1 I 18er, ] - (59)
r, =[16 c d® 3=}t ...(60)
rs = [(2¢) (2d +-2L)%/3 w14 ...(61)

For the case of frequency dependant excitation the above analysis can
be applied by replacing Q, by the frequency dependant forcing function
m, e, o?, where m, is the mass at an eccentricity, &, rotating with an

angular velocity .

Presentation of Results

The closed form solution as developed above is then obtained using
electronic digital computer (IBM 370) for various values of dimensionless

frequency

a, = w r, (/G2 ...(62)
Using the notation € = F/[m, e, w: 1 ...(63)
called the friction factor and w. = [kxs/m]*/2 ...(64)

typical response curves have been plotted for a square footing with sides
sides 2. X2, (equivalent radius r,) and embedment L in Fig. 2 in terms of
dimensionless horizontal amplitude (mx,/m, e,), dimensionless rocking
amplitude (lg,/m,e,2ze) for quadratic excitation with various friction factors
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(Embedment factor §, = L/r, = 1). The dotted line in the figure
represents the boundary from where continuous motion occurs and the
present analysis is valid. The introduction of friction damper reduces
resonant amplitudes and shifts resonant frequency considerably.

Evaluation of Constant Frictional Force

The frictional force mobilised depends mainly on the physical charac-
teristics of the interface between the soil and the foundation walls, depth
of embedment, lateral earth pressure acting normal to the interfaces etc.
As the base and two sides parallel to the plane of rocking are effective in

offering friction, for a c—¢ soll,
F = pg W2 ky v, L2 (aug)+4de, [c+ L] ..(65)

where k, = p/(l—pu), the coeflicient of lateral earth pressure at rest,
v, bulk density of soil, ur—coefficient of kinematic wall friction C,—wall
adhesion between soil and surface of foundation under dynamic conditions,
W—weight of the vibrating body.

Since the coefficient of kinematic friction is always less than coefficient
of static friction, for a footing under vertical vibrations, Anandakrishan
and Krishnaswamy (1973) and Krishnaswamy (1972) have recommended a

value of uy as
pr = tan (¢4/3) ‘ ...(66)

where ¢,—the angle of internal friction of soil and C, to be of the order
of 1—2 percent of the actual cohesive strength of soil. For torsional
vibrations, Bhaskaran Nair (1980) has recommended pur as

Jr == tan, ¢,/6) (Precast footing)
wr = tan ($,/6) (Cast-in-situ footing) ...(67)

From the present study of coupled rocking and sliding vibrations of
footings the value of ps has been recommended as

pr = tan (¢,/9) (Precast footing)
ps = tan (¢,/6) (Cast-in-situ footing) ...(68)

Field Tests

Field vibratory tests on several precast and cast-in-situ reinforced
cement concrete footings were conducted to study the applicability of the
theory for the prediction of coupled rocking and sliding response. Thc
site by the northern side of the Soil Dynamics laboratory of the Indian
Institute of Technology, Madras was selected for the investigations. The
average unit weight and water content of soil were found to be 19.3 KN/m?
and I1 per cent respectively. The angle of internal friction and cohesion
of soil were determined as 31° and 23.54 KN/m? respectively. Figure show
the soil profile at test site and variation of shear modulus with depth.
Foundation bolts were provided in the footings to enable the vibrator and
other attachments to be installed on the footings during testing. Wooden
plugs were used for fixing the vibrator of dimensions 310x 250 x 175 mm
and mass 43.1kg was used. Six eccentric masses m, (6 kg in all) at an
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Oynamic shear modulus ofsoil (Strain lavel 107 %)
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FIGURE 3 Soil Profile With Variation of Shear Modulus (After Bhaskaran Nair, 1980)

eccentricity of ¢, = 38.3 mm from the center of t'he revolving sbafts
produced coupled rocking and sliding excitation. The vibrator was provided
with an arrangement to change the relative position of the rotating eccen-
tric masses over a wide range. A4 5 HP speed controlled motor was used
to run the vibrator through a flexible shaft. Electrodynamic vibration
pickups were used in-conjunction with thc.a.mplitude measuring apparatus
measure peak vibration amplitudes. A Digital speed indicating teacheo-
meter was used to read the spot speed of the revolving shafts. A mild
steel base plate 600x600x16 mm and mass 40 kg was used above the
footings for all tests. The vibrator was mounth firmly as shown in Flg.
4 to produce coupled rocking and siliding vibrations. The overall weight
of the set up was increased by adding over the vibrator circular cast iron
plates. For various speeds of rotation the amplitudes of motion were
measured. The properties of the footings used are indicated in Tables
1 and 2.

The experimental data, thus obtained, have been analysed with the help
of the proposed theoretical model as well as by the theoretical model of
Beredugo and Novak (1972). These results are being published elsewhere
as the Tables of test data are too lengthy to be included in the present
paper. The agreement between the results predicted by the proposed
theoretical model and the experimental data is found to be satisfactory.

Summary and Conclusions

A two-degree-of-freedom lumped parameter analogue and its closed
form solution has been developed to investigate the study state coupled
rocking and sliding response of rigid embedded block foundations. Field
vibratory test in coupled rocking and sliding mode were conducted on
several pre-cast-in-situ reinforced cement concrete block foundations to
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TABLE 1

Dimensions of Test Footings

Dimensions (m)

?&*(Sf Type of Base
Length / Breadth f Height
1 Precast Rigid Block 0.900 0.900 0.450
2 Precast Rigid Block 0.700 0.700 0.500
3 Precast Rigid Block 0.600 0.6C0 0.450
4 Precast Rigid Block 0.500 0.500 0.500
3 Precast Rigid Block 0.500 0.700 1.200
6 Precast Rigid Block 0.677 Diameter 1.200
7 Precast Rigid Block 0.700 0.500 1.200
8 Cast-in-situ Block 0.500 0.500 0.450
9 Cast-in-situ Block 0.500 0.500 0.500
10 Cast-in-situ Block 0.400 0.400 0.500
1t Cast-in-situ Block 0.350 0.3:0 0.300
12 Cast-in-situ Block 0.275 0.275 0-500
TABLE 2
Properties of Test Footings
Equiva- | Addi- Mass Moment
Base | Test lent tional T Z; of Inertia ,
No. | No. | Radius, | Mass To o about Base I, B9
ro
m Kg Kg/m?
1 1.2 0.5106 210 0.54 0.69 286 0.93 1.19
2.3 0.5106 315 0.46 0.77 363 1.01 1.50
1.4 0.5106 420 0.39 0.83 443 1.08 1.84
1.5 0.5106 525 0.33 0.90 528 1.18 2.18
2 2.4 0.3972 420 0.40 1.31 440 1.82 6.35
3 3.4 0.3404 420 0.27 1.58 365 2.37 11.45
;1 4.2 0.2850 210 0.58 1.79 222 2.70 16.80
y 2.2 g,367‘2 210 1.59 2.16 1239 2.83 25.52
2 .3385 210 1.72 2.35 1179 3.62 3
. : 7.80
, g: 3.3385 420 1.49 2.68 1726 4.19 55.50
. 8.2 0;:;5);5) ii() 1.88 2.56 1212 4.69 60.00
3 . 0 0.40 1.72 194 2.56 14.70
. z; 3.2252 420 0.15 2.06 351 3.52 26.60
.285 210 0.58 1.79 222 2.70 1
: 2, 6.80
o 15:)1 gizgg 420 0.23 2.14 400 3.68 30.30
; ; 210 0.47 2.46 217 4.62 50.20
; ]1(:.; (())23?)(; 420 0.05 2.88 396 6.48 910
: : 210 0.44 2.89 208 6.40 93.00
o 1 l.j 0.200 420 0.05 2.98 395 9.17 176.00
12.2 0.156 210 0.34 3.94 206 12.37  319.00
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study the applicability of the proposed theory. The agreement between
the results_predm_:ted by the proposed theoretical model and the experimen-
tal 'dtata t{s saﬂsfacttqry.t T]111us the proposed theoretical model provides
an interesting alternative to the existing theoretical

R g etical model of Beredugo and
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