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Introduction 

During a .pile testi~g program at the site of Ontario Hydro's new Lambton 
Generatmg Station, Hanna (l968) observed large deflections, while 

driving, about the weak axis of H-section piles. Similar cases were also 
reported by Bjerrum (l957). There are instances in which two piles formed 
a conjunctive (U) so that one rose while the other was driven down and 
vice-versa ( l 968). The deviation of the pile axis from vertical can be 
measured by the use of inclinometer. In case of H-steel piles, a square 
duct is formed for inclinometer readings, by tack welding an angle to the 
web and one flange of H-pile. When inclinometer measurements are 
required in case of precast concrete piles, a steel pipe. say of 40 mm dia
meter, is cast concentrically in the pile. The load on such an initially 
deformed pile will no longer be axial, and bending moments occur in the 
pile section. In addition to the moment in the pile section, the 
distortion of the pile material, the cumulative effect of bending, residual, 
and axial stresses leads to an appreciable decrease of the load carrying 
capacity. 

The usual limit on allowable distortion of the pile axis is two per cent 
of the length of the pile. From extensive tests in Norway, Bjerrum (1957) 
stated that any driven H-section pile with a radius of curvature of less 
than 400m is rejected. However, Hanna (1968) reported a very small 
bending radius of about 60m in his investigation. It is shown in this 
investigation that a rational solution for finding the limiting radius of 
curvature is possible. The pile is idealised as a beam and the. soil by a 
Winkler medium characterised by the modulus of subgrade reaction. Three 
different end conditions are considered as shown in Fig. l. 

Idealization 

The governing differential equat_ion r:presenting the force syst:m on a 
bent pile with constant moment of mtert1a, (Johnson et al. 1968) 1s repre
sented as: 

d4 U2 d 2 U2 d2 
U1 

El dy' +P. ~+kD 112 = - P dya ... (1) 

where u~ is additional deflection of pile under p and u1 , E, k, D are initial 
shape (deflection) of the pile, Young's modulus of the pile material, foun
dation modulus and diameter of the pile respectively. Equation I is 
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applicable to any smooth ~~d unifon:nly bent en? •bearing p ile irresp ective 
of the pile boundary cond1t10ns. It 1s a ss~med in ~q. ( I) that t_he lateral 
earth pressure is linearly related to the ~ile d~flcct1? n· The axial f~rce as 
well as soil modulus are a ssumed to be inva riant with depth. Equation ( I) 
may be non-d imensionalized by substituting, 

112 • y . U1 
•v Z = and w1 =-L • 2= y , L' .. . (2) 

where L is the length of the p ile. Subst ituting Eq . (2) and thei r derivat ives 
in Eq. (I), a non-dimensionalized equation is obta ined as follows : 

. . . (3) 

where 

Mixed end condit ions such as a fixed head and a pinned t ip a re comm on. 
The fixed non-tra nslat ing boundary condition at either end is also of 
\nter~st in pile foundations. End bearing pile with hinged end conditions 
1s quite common and was d ealt by M arcus a nd is reported by Johnson 
et al. (19 '.'. 8). In d imensionless form , the init ial shape for fixed-fixed 
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boundary conditions, may be represented as : 

1 C 
W1 = ~ -r [1 +271'Z-COS 21rz-sin 271'z] 
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... (4) 

where C is the offset of the pile tip from vertical axis. Equation (4) satisfies 
both natural and geometric boundary conditions as follows : 

h O dw1 d2 w 
w en z = , w1 = 0 ; cfz = 0 ; dz2

1 :¢: 0 and d3 W1 :¢:0 
dz3 

C dw d 2 w1 d3 w1 and when z = l .0, w1 = L ; d/ = 0 ; - d~z2-=-¢ 0 and dz3 :¢= 0 

... (5) 

Let the particular solution of Eq. (3) for fixed-fixed boundary conditions 
be 

, 
w

3 
= F (sin 271'z+cos 21rz) .. . (6) 

, 
where w

2 
is the additional deflection of the pile under load P. Substitu-

ting Eqs. (4) and (6) and their derivatives in Eq. (3) and comparing like 
terms the following relation can be obtained. 

C 
T 

The solution for homogeneous part of Eq. (3) is 

w; = C1• sin (m1z). cosh (m2z)+ C2 cos (m1z). sinh (m2z) 

... (7) 

+ D1 sin (m1z). sinh (m2z) + D2 cos (m1z). cosh (m2z) 

... (8) 

where Ci, C
2

, D1 and D2 are constants to be determined by boundary con-
2 _. / - a - a1 2 f --;; a1 S b . 

ditions and m
1 

= 'V -;-+ 4 and m2 = '\J 4 - 4 • u stI-

tuting four boundary conditions stated in Eq. (5) the constants C1 , C2, D1 
and D2 can be evaluated. 

The total additional deflection under load P is 
... (9) 

When the load P attains critical value, the additional deflection w' 
2 

should theoretically be large and therefore F in Eq. (_7) should become 
infinitely great. This is possible when 

l6,r4-41r2 cx1 + a 2 = 0 

Therefore ... (10) 
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Similarly the initial shape for fixed-pinned boundary conditions may be 
represented as : 

C T;Z 
w1 = - (l-cos - ) 

L 2 ... (11) 

The critical load for fixed-pinned boundary conditions may be repre
sented likewise by : 

... (12) 

Bi-oxialJy Bent Piles 

The sectional properties of H,pile considered are giYen in Table I. 
Figure 1 shows the assumed shapes of the pile about both the axes 
for different and conditions. TJie deflections out of the vertical about 
the weak axis have been reported to be large compared to those 
about the strong axis (Hanna, I 968). When the H-section shown in 
Fig. 2, bends along X-X and in the direction of arrow shown perpendi
cular to it, maximum compressive stresses occur at A and Band maximum 
tensile stresses at C and D. Similarly when bending takes place along the 
strong axis y-y, compressive stresses at B and D and tensile stresses at A 
and C, are induced. Consequently, maximum stresses occur at edges B 
and C. In case of bi-axially bent H-pile, residual stresses due to initial 
bending about both the axes. bending stresses due to load P about both 
axes and the axial stress, occur and they are cumulative. 

Size 
cm 

35.56x 36.83 

TABLE 1 

Sectional Properties of H-Pile 

I Wt/metre I D epth D r Width B 
Kg. cm cm 

53 07 36.15 37.8 

i y 

Area2 
cm 

221.56 

FIGURE 2 Sectien of Steel Pile 

lxx 
cm' 

1864.6 

l yy 
cm' 

5114.5 
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For fixed-fixed boundary conditions the expression for stresses are 
presented herein. Residual stresses may be represented by : 

S1 = -21r ~ 1 (sin 2rrz+ cos 21rz) 

S2 = - 21r ~ 2 (sin 2'71'z -/ -cos 2,rz) 

where S1 and S2 are the residual stresse_s, C1 and C2 are the pile offsets 
along the weak and strong axes respectively. The flexural stress, S

3
, along 

the weak axis may be represented as : 

S3 = 4 1r1 F1 (sin 21rz + cos 21rz)-sin m1h. sinh m2z [D1 (m~ - m: ) 

2 2 
- 2D2 m1 m2]- cos m1z. cosh m2z [D2 (m

2 
- m

1 
) + 2D

1
m

1
m

2
] 

2 2 
- -sin m1z. cosh m2z [C1 (m

2 
-m

1 
)-2C2m1m2] 

2 2 
- cos m1z. sinh m2z [C2 (m

2 
- m

1 
) + 2C1m1m2] 

2 7T 011 
where F1 = - (l6 , 4 , -+ ) 

X - 1T Ott a2 

A similar expression for stress, S,, along the strong axis u~der the !oad P 
can be obtained. The expressions S1 through S, are obtained makmg use 
of the general elastic-flexure equation for beams. 

Axial stress S5 equals the axial load div!ded by the cr?ss_-sectional area 
of the H-pile. The total stress in a bent pile should b~ hm1ted_ to S, _the 
ultimate or working stress as the case may be, of the pile material, that 1s 

S1 +s2 + Ss-l-S4+Ss = l.O 
s .. . (I 3) 

Equation (13) is solved using i?t~rative pro~edure until. the valu~s are 
within an error of ± 0.0001. S1milar expressions are obtamed for pmned
pinned and fixed-fixed boundary conditions. 

Once the radii of curvature R 1 and R2 along the weak and strong axes 
under load Pare known, it is always advantageous to find the equivalent 

radius of curvature, R,, expressed as Re = R 1R 2 
••• ( 14) 

R1+R2 

Results and Discussion 

B~sed on the results obtained from the analysis, percentage load 
~arrymg capacity of a bent pile as a ratio of the capacity of a straight one 
1s plotted against non-dimensionalized pile off-set. Figures 3 and 4 represent 
such relationships for pinned-pinned, fixed-fixed and fixed-hinged boundary 
conditions. The curves are drawn for off-sets upto 5 percent along the 
weak axis and 2 percent along the strong axis. Numerical results are 
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obtained for ~ = 240; kD = 0.0020; kD = 0.00072 and for various 
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combinations of pile off-sets along both the axes. The variation of load 
carrying capacity is linear with respect to t~~ pile off-sets .in case of 
pinned-pinned aud fixed-pinned boundary cond1t1ons whereas 1t appears 
to be parabolic in case of fixed-fixed boundary conditions. Figure 5 
shows the effect of slenderness ratio on the percentage load carrying 
capacity of a bent pile. The results are illustrated for I percent of pile off
set along the strong axis. From Figs 3 through 5, for a given pile off
set along the weak axis and a known slenderness ratio, it is observed that 
the percentage load carrying capacity of a bent pile is maximum for 
fixed-fixed boundary conditions. For example, from Fig. 5, for slender
ness ratio of 200 and 2 percent off-set along the weak axis, the percentage 
load carrying capacities of fixed-pi nned, pinned-pinned and fixed-fixed 
boundary conditions are 81, 63 and 38.5 per cent respectively. lt is also 
observed that the load carrying capacity of a bent pile for given pile off
set, increases with increase of slenderness ratio. This is due to the fact 
that the · residual stresses, which are of considerable magnitude in bent 
p iles, are inversely proportional to the selenderness ratio. It may be 
concluded that long piles can sustain greater pile off-sets. 

In Fig. 6, the ratio of R, and D is plotted against percentage load 
carrying capacity of bent pile. For steel pile the material reaches yield 
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FIGURE 4 Effect of Pile Off-Set on Capacity of Bent Pile 
(a) Fixed-Hinged (b) Fixed-Fixed. 

221 

stress when the ratio of Re to depth of flange, D, reach_ed _40_0; This is the 
limiting value. When the ratio R,/ D falls below this ltmitmg _val~e, the 
pile cannot take any load. ln Fig. 6, it can be seen that ~s the rat10 increa
ses from the limiting value, the curve becomes asymptotic to cent perc~nt 
load carrying capacity line. According t<? Bjerru_m (1957), the Norwegian 
authorities reject H-section piles if bending radms 1s smaller than 400m. 
For a H-section of depth of 30 cm, such a pile can bear as much as 60.0 
percent of the load carrying capacity of a straight pile. 

Initially bent piles. do bend further under load. However, the change 
in radius of curvature is comparatively small for larger off-sets. Table 2 
illustrates the changes in the ratio of Re/ D for a pile of slenderness ratio 
80 and for different pile off-sets under ultimate load. The initial equivalent 
radius of curvature can be calcula_ted once the initial shapes of the pile 
a long both the axes are known. Since the change in radius of curvature 
under load _will not be substantial, the ~pproximate load carrying capacity 
of~ bent pile can be calculated from Fig. 6 based on the initial equivalent 
radms of curvature. The error in the solution may be of the order of 3 to 4 
percent only. 
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TABTE 2 

Increase of Radius of Curvature Under Load 

PL2 

EJ 

91.4162 

72.5'731 

55.5581 

39.9232 

Minimum Radius of Curvature R.ID (Non
dimensionalized) 

Initial Equivalent Equivalent Radius of 
Curvature Curvature Under 

Load 

1766 1566 

1148 1041 

850 789 

678 641 
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FIGURE 6 Relationship Between Radius of Curvature (Non-Dimonsionalized) and Load 
Carrylpg Capacity of Bent Pile 

Conclusions 

The behaviour of bi-axially bent long H-piles has been studied for three 
boundary conditions. For known pile off-sets along both the axes, and a 
given slenderness ratio, fixed-pinned boundary conditions take maximum 
load when compared with pinned-pinned and fixed-fixed conditions. For 
given ratio of pile off-set and length, the load carrying capacity of a bent 
pile increases with increasing slenderness ratio. The material in the H-pile 
may attain yield stress when the ratio of R, and D attains value of 400. Once 
the initial shape is known, the approximate estimate of the load carrying 
capacity of the pile can be made directly using Fig. 6 of the present 
investigation. 

Notations 

The following symbols are used in this paper: 

C1.C3 = coefficients, 

c1 = pile off-set along weak axis, 

c2 = pile off-set along strong axis, 

D = depth of H-pile along web direction, 

D1,D2 = coefficients, 

El = flexural rigidity of the pile in the plane of bending, 

F,F1 = coefficients, 
k = soil modulus 

L = length of pile, 

mi,m1 = characteristic roots, 

P = axial load, 

Pc, = buckling load, 

R1 = radius of curvature along the weak axis, 
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= radius of curvature along the strong axis, 

Re = equivalent radius of curvature, 

S1 = residual stress along weak axis, 

S2 = residual stress along strong axis, 

S3 = flexural stress along weak axis under load P, 

S4 = flexural stress along strong axis under load P, 

S5 = axial stress under load P, 

u 1 = initial deflection of the pile, 

u2 = additional deflection of the pile, 

w1 = non-dimensionalized initial deflection of the pile, 

w2 = non-dimensionalized additional deflection of the pile, 

Z = non-dimensionalized pile length, 

c:1.1 == PL2JEI 

a 2 = kD L4/ EI 
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