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Introduction 

Jn recent years, a trei_nendous. a~ount of r~se~rch work has been 
undertaken for developmg soph1st1cated const1tut1ve models for soil. 

As a result of these efforts advanced constitutive models based on elasticity, 
plasticity, visco-elasticity, viscoplasticity micromechanics, damage, etc. have 
evolved for characterizing behaviour of soils under arbitrary loading con
ditions (Desai and Gallagher (1983), Desai and Siriwardane (1984), Saleeb 
and Chen (1980). Zienkiewiez et. al. (1975)). While a number of currently 
available models are mathematically elegant, their implementation into 
existing computer programs and evaluation of associated material constants 
from laboratory tests appear to be an extremely difficult task. Mainly 
because of these reasons a majority of these models are primarily used by 
researchers rather than practitioners. Many researchers actively involved in 
constitutive modeling feel that a model which is simple but capable of re
presenting basic soil characteristics (Fig. 1) is more desirable. In this paper 
an attempt is made to develop an hyperelastic model, based on Green's 
formulation (Eringen, 1962), for granular materials subjected to mono
tonic increasing loads. 

Brief Review 

The first application of hyperelastic model to soils was demonstrated 
by Chang et. al. (196 7), by using a second order model with five material 
parameters. The application of this model to Ottawa sand was found 
satisfactory in predicting hydrostatic behaviour, but the simple shear and 
triaxial shear conditions were not adequately represented. It may be noted 
that a second order model predicts a parabolic stress-strain relationship, 
and the quadratic term present in such a ·model will yield a symmetric 
behaviour even when the signs of strain components are changed. Ko et. 
al., (1976) used a third order model having nine material constants to 
predict the behaviour of Ottawa sand. The strain hardening feature was 
adequately represented. However, the prediction of dilatant behaviour was 
relatively poor. A similar model was also developed by Ayala et al., (I 976J. 
More recently, Saleeb and Chen (1980) have discussed various aspects of 
nonlinear hyperelastic model (s) in a workshop organized by the McGill 
University, Canada. 
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FIGURE 1 (a). Typical One Dimensional Compression Test (After Eringen, 1962) 
(1 kg/cm• = 14.2 psi) 

Scope and Objective 

The main objective of this paper is to develop an improved and 
simplified third order hyperelastic constitutive model for frictional soil 
subjected to monotonic loading. The nine material constants present in the 
general third order model developed by Ko and Masson (1976) are reduced 
to five by imposing some constraints based on the observed behaviour of 
granular materials in the laboratory. The model accounts for the effects 
of initial state on material behavior and predicts dilatancy with reasonable 
accuracy. The model is implemented in a finite element computer program 
and a boundary value problem is solved to demonstrate its application. 

Hyperelastic Model 

Green's formulation assumes an existence of strain energy density 
function U defined by 

where t;1 is the strain tensor. For an isotropic and homogeneous material 
U can be represented as 
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FIGURE 1 (b). Typical Dilatant Behavior of Granular Material 
(1 kg/cm1 = 14.2 psi) 
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where Ii, / 2, and / 3 are the invariants of strain tensor e,1, and defined 
by 

... (1) 

and 

It may be noted that the summation convention for indices (i, j. k,) applies 
to Eq. (1). Also, indicial notation is used throughout this paper. The 
stress tensor "'J is related to e,1 by 

<11J = au 
ae,J 

Using the chain rule of differentiation we can write 

. .. (2) 

. . . (3) 
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In view of Eq. (I), Eq. (3) can be written as 

oU au au 
<Ji; = -.- 81J + --EiJ + -- &Uc &kJ ,H1 a12 a Ia 

... (4) 

where~., is the Kronecker delta. Eq. (4) is the general stress-strain relation
ship. By assuming different functions for U, various types of hyperelastic 
models can be derived. 

Proposed Hyperelastic Model 

In the present formulation, the strain energy density function U is 
assumed as 

... (5) 

In the above equation 11 contributes toward volumetric behaviour and I2 
and [3 contribute to both volumetric and shear behaviours. It may be 
noted that the assumed polynomial function is not <::omplete. The last 
two terms containing a7 and a8 account for the effects of initial state of the 
material. 

Substitution of Eq. (5) into Eq. (4) and required differentiation will 
lead to 

3 
a;J = (2ix1 I1+4ixs / 1 + 2ix,I1I2 + ix0 Ia+ "'1l2) S,1 

+ (ix2 + ix, I~ + 2ot8 l 2 + r,.7 / 1) eo -:- ( rt5 / 1 + ots) &lk e,,, 

Using expressions for / 1, / 2 and I 3 (Eq. 1), Eq. (6) can be written as 

3 
a1; = (21X1 €kk + 41X3 e:kk +oc, €kk£mne:mw+t IX5 £/k £km €ml 

2 
+ ½ «7 em~ Em~) SwHa:2+ oc, £ kk + ota &kl Ek/ + ot1 &kk) £iJ 

+ («5 e:11+ix8) ''" EkJ 

... (6) 

... (7) 

It is interesting to note that if higher order terms are neglected from Eq. 
(7), it essentially specializes to an equivalent form of well known Hooke's 
Law of linear elasticity (Desai and Siriwardane (1984) and Eringen (1962)) 

... (8) 

Equation (7) is the general form of stress-strain relation for the assumed 
strain energy density function (Eq. 3) in which rt, (i = I, 2, ... , 8) are 
material constants which are to be determined from appropriate laboratory 
test data. 

In the following it will be shown that the eight material constants 
present in Eq. (7), can be reduced to five by imposing certain conditions 
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observed in the laboratory. Imposition of such constraints will provide a 
non-linear model with fewer parameters, compared to existing similar 
models (Ko and Masson (1976) and Saleeb and Chen (1980)) and possibly 
increase computational efficiency in terms of solution of large boundary 
value problems. To accomplish this goal, Eq. (7) is written in an 
incremental form for various ~tress paths. The initial or reference state is 
assumed as hydrostatic compression with the following strains. 

0 0 0 
El = e:

2 
= t

3 
= -b0 ; e:11 = 0, i -=j=j ... (9) 

A state of deviatoric strain is then super-imposed on the previous initial 
state such that 

6£1 = - E, 6£2 :=..: £, t,E3 = 0: /:::.£ij = 0, i #;j 

in which f:::.e:i, 6 e:2 and !:-,e:2 are incremental strain components, and E 

represents the amount of increment. 

Thus, the total strain components become 

... (10) 

where super-script o (zero) represents initial state_ a'?-d l represents _final 
state ; also for convenience a repeated subscnpt is replaced b~ a single 
subscript. Substituting the total strain components _of Eq. (10) mto Eq. 
(7) a relation between the total stress and strain_ ~o_mponents can ~e 
written. A similar relation can be obtained for m1t1al state of strain 
which can be subtracted from the total stress-strain relationship to get 
relation between the super-imposed quantities. Thus, 

1 0 2 2 2 
L, a

1 
= u - a =- (or.2 + 9or., b +6or.5 b

0 
+ 3or.6 b0 -3or.7 b0 

1 1 0 

- 2cx
8 

b
0
) e:-(6ix, b0 +5or.5 b0+2016 b0 -017 -cx8) e:2 - 2or.6 e:3 

... (Ila) 

l O 2 2 2 
f:::.a2 = a - a = (or.d-9or.4 b +fu5 b0 + 3or.6 b0 -3a.1b 

2 2 0 o 

-2or.
8 

b
0

) e: -(6ix, b0 +5ix5 b2+2ot.6 bo-r1.1-rJ.s) e:i+ 2or.o e:3 
.. . (llb) 

L,a
8 

= a1 
- u0 

=- (6r1., b0 +2et5 b0 -l-2016 b0 -011) e:2 
.. . (lie) 

3 3 

6 a,; = 0, i=/= j ... (lld) 

. For simple shear state of stress it is known that 

... (12a) 

... (l2b) 

The condition of Eq. (12a), cannot be satisfied by Eqs. (Ila) and (I lb) 
unless the coefficients · of e:2 in both equations vanish such that 

... (13a) 
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Also, to satisfy the condition of Eq. (12b), the following relation must hold 
in Eq. (Ile) 

.. . (l3b) 

Triaxial Shear Test 

Initial state : 

Superimposed state : L:i.ti = - e, ,6.£2 = -6.ts = ½ e:, f::.e,1 = 0, i ::/:- j 

The resulting stress-strain relation is given by 

I o 2 2 2 b 
6.u1 = crI - crI = -(cx2+9ix4b O + 6cx5 b0 + 3cx6 b0 -30t1 o 

- 2cx8 b0) e-(,cx, b0+ , «5 bo+ ~ rte bo-icx1) £
2 

-(¼a&+ ~cxs) £
3 

I O .. 2 3 b2 • b2 A b 
£ CJ2 = (J2 - (J2 = (½cx2+ . o.,bo + CX5 0 + .ris O - .ri7 0 

- ri8 b0) e-(,ri, b0 -t !cx5 bo + ? as bo- fa1- las) £
1 

- ¼a5- f«s) 

,6.crs = 6.a2 ; f::.a,1 = 0, i -;;j;j 

... (14a) 

. . . (14b) 

... (14c) 

In this test, f::. a2 = 6 a3 = - ½ f::.u1 . This condition can be satisfied by 
Eqs. (14a) and (14b) if 

-½ (tcx, b0 + ,a6 bo ..J._ ¾01s bo-fa1) = fri, bo-+ fas ho 
+ ¾as bo -!o.1- ·¼e1s 

and 

-½ {!as + ¾as) = (¼a5·-iao) 

From Eq. (16) it is seen that 

CX5 = 0 

... (15) 

... (16) 

.. . (17) 

Subtracting Eq. (13b) from Eq. (13a) and substituting the value of a5 (Eq. 
17) into the resulting equation we get 

«s = 0 .. . (18) 

Knowing 015 and a 8, a 7 can be expressed in terms of a,, 116 and b0 using 
Eq. (15) 

.. . (19) 

Thus, the number of parameters a, is reduced from eight to five; the stress
strain relations developed with these five parameters satisfy the condition 
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that - 6a1 = 6a2 and 6 a3 = 0 for simple shear and-l/26a1 = 6a2 
= 6 a3 for triaxial shear tests. It is noted that a5 and a8 which become zero 
(Eqs. 17, 18) are coefficients of the terms of energy density function (Eq. 

, 
5) containing / 8• It can also be noted that a7 is a materia l parameter 

(Eq. 19), and rx.7 ( = rx; b0) is a function of the initial strain state b0 ; this 

signifies that the present model accounts for the effects of initial state. 

Substitution of Eqs. (17), (1 8) and (19) into Eqs. (11) and (14) will 
yield modified stress-strain relation for simple shear and triaxial conditions 
respectively. 

Simple Shear Condition 

6 CJ1 =- '116-~2&
3 

6 CJ2 = 131£ + '12 
6a3 = 0; 6 a1J = 0, i=/=j 

where 

b2 3 b2) (,1 = (rx2- 9rt.4 0 - rt.a 0 

(,2 = 2<1.s 

Triaxial Shear Condition 

6 a1 =- !3st-{,,e:3 

6 a2 = ½~ae: +½'1,13 

6 as = 6a2 ; 6q,, = 0, i=/=j 

where 

... (20a) 

... (20b) 

. . . (20c) 

. .. (20dJ 

... (20e) 

... (21a) 

... (2lb) 

... (2lc) 

... (2ld) 

... (2le) 

The corresponding relations for a conventional triaxial compression 

(6c1 = e:1 ; 6e:2 = b, e:3 = e:2 ; f,e:u = 0, i=/=j) can be written as 

2 2 3 2 
6 <11 = -~se:1-f3se:2-f31 e: 

1 
-f3se:11t2-~s 1:

2 
- !3e 6

1 -lho e:1 ltz 

2 3 
-1311 e:1 e:

2 
- '112 e:

2 
. .. (22a) 

2 2 3 
6.aa = 6 ua = f:l1a1t1-(,14e:z-(,7e:

1 
-{,9c1e:2- {:ls e:2 - i[,1ot1 

2 2 3 
- ½~u e:

1 
£2-~1~ £1 e:2 -~1s e:2 

... (22b) 
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where 
2 

(35 = {(20G1 + 0G2) + (1080G3-60G4 -50G6) b O} 

~ 6 = {40:1 + (216o:s+ 6o:4-4Gt6) b~} 

~ 7 = (36oc8 + 3ocJ ho 

{38 = (1440G3+ 12«4) ho 

(39 = ( 4«a + 2,x4 + aa) 

~10 = (24Gt3 + 6«4) 

~ 11 = (480Ga + 6ocd·21)'.o) 

~12 = (320G3 +4ocJ 

2 
~ 13 = {2011 + (108°'a+ 3e<4-2ocs) b0 } 

~ 14 = {(4ot1+ Gt2) + (216a8-3oc4-7cxa) b~} 

~15 = (48e<3 + 6ixJ 

{316 = (32cx3+8e<d·2«G) 

... (22c) 

. .. (22d) 

.. . (22e) 

... (22/) 

... (22g) 

... (22h) 

... (22i) 

.. . (22j) 

... (22k) 

.. . (22/) 

... (22m) 

... (22n) 

... (220) 

Note that Eqs. (22) can be specialized to one dimensional compression 
condition and triaxial shear condition by putting e2 = 0 and e2 = - ½ ei, 
respectively. For hydrostatic compression condition, the equivalent stress-
strain relation is 

... (23) 

Dilatancy 

To study the dilatant behavior of granular material, volumetric strain 

(ev = e~ + e~ + e;~ ) is frequently plotted against deviatoric stress 

1 1 
a 

1 
- a

3 
) . For the case of conventional triaxia l compression condition, 

expressions for these quantities can be obtained using Eqs. (22) and follow
ing the steps shown in Eq. (1 !). 

. .. (24) 

2 
(a1- a 2) = - {Gt2- (9C(;d ·3Gts) b

0
} (e1- e2) - {(ocd ·et.6) (e1-e2)3} 

2 
- {(3ix4 + ix6) (2e1e2+ e

2 
) (e1-e2 } . .. (25) 
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Eqs. (24) and (25) are used subsequently in predicting the dilatant 
behaviour of Ottawa sand. It should be noted that compressive strain 
has been designated as a negative quantity in the formulation, therefore 
appropriate sign of e:1 must be used in numerical evaluation of Eq. (25). 

Comments 

The major weaknesses of the formulation outlined above are that it 
accounts for only monotonic loading paths and assumes isotropic state of 
initial stress and homogeneous material. Very often a soil medium is 
non-homogeneous and state of stress is anisotropic in nature. None the 
less, from the comparison of experimentally observed and model predicted 
response presented subsequently it is evidenced that the proposed model 
is capable of representing some important behaviours (e.g., dilatancy and 
effects of initial state) of granular materials; Although the reduction of 
the number of material constants is based primarily on simple and triaxial 
shear conditions, predictions for other stress paths are also fairly 
reasonable. 

From Eq. (8) it can be noted that the parameters o:1 and oi:2 are associ
ated with the elastic properties of a material. The remaining parameters 
(oi:3, oi:4 and oi:6) account for (material) nonlinearity. The constant oi:7 which 
is dependent on oi:4 and oi:6 accounts for the initial state of stress. 

Determination of Material Parameters 

The five material parameters (oc1, oi:2, oi:3, oc4 and oi:6) w~ich define the 
stress-strain relation for a granular material can be det~rmmed from test 
data obtained from appropriate laboratory tests and usmg a least square 
collocation curve fitting procedure (Ayala and Arboleda (1976), J?esat and 
Siriwardane (1984) and Ko and Masson (1976)). In orde~ to obtam mean
ingful values of the material constants it is important to include test data 
from as many different paths as possible in evaluating the parameters. 
Various commonly used stress paths are depicted in Fig. 2. 

HC 

FIGURE 2 Various Stress Paths 
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In the present paper, the laboratory test data originally presented by 
Chang et. al., (1967) are used to determine the material constants. These 
tests are strain controlled tests and were performed using dry Ottawa sand 
(passing ASTM sieve No. 20 but retaining on ASTM sieve No. 40) in a 
multi~x~~l tes~ cell_ (Chang et. al. (1967) and Ko et. al. (1967a, b)). 
The m1tial void ratio was kept constant at 0.52 for all tests. A detailed 
description of the test device, testing procedure and results, is given by 
Ko et. al., (1967a, b). 

Parameters are determined in two steps. In the first step, incremental 
stress-strain relations for a give stress path (e.g., Eq. 20 for simple shear) 
are evaluated at number of discrete points to get an overdetermined 
system of simultaneous equation in terms of ~, (e.g. 131 and ~2 for Eq. 12); 
these equations are solved using a least square method to obtain the values 
of ~i- This step is repeated for all the stress paths to be included in the 
evaluation of parameters. In the second step, explicit expressions for f31's 
are written in terms of o:.'s (e,g. f35 is given by Eq. 22d) and equated with 
the corresponding values obtained in the previous step. This gives another 
set of equations in terms of cx1, 1:t2, 1:t3, 1:t4 and 1:t6 which is solved by least 
square method. 

It should be noted that in the least square method used here, we can 
assign different weights for different points as well as for different stress 
paths to reflect their relative importance. Thus, the values of the 
parameters are not unique and depend upon the weights used in the 
procedure. Since the behavior of granular material is usually predominant 
in shear, more weights can be assigned to the shear tests data. A general 
computer program was written to evaluate the parameters. Different 
weights were tried to get the best possible predictions of various stress 
paths. The final values of the material parameters for the Ottawa sand 
are 

1:t1 = 172.0 kg/cm2 (2446.3 psi) 
,x2 = 346.3 kg/cm2/(4926.2 psi) 
a;3 = 137 X 105 kg/cm2 (1948.6 x 105 psi) 
a;4 = 348.5 x 102 kg/cm2 (4957.7 x 102 psi) 

<Xs = - 219.5 X 104 kg/cm2 (-3122.5 x 104 psi) 

Comparison of Experimental and Predicted Curves 

... (26) 

Knowing the material constants a1 , a2 , a3 , a4 , and a6 , the stress-strain 
:esponse for any stress path can be predicted by using the specialized 
mcremental form of Eq. (7) (see e.g. El.'j_. 21 for triaxial shear condition). 
For several selected stress paths, the comparisons of the predicted stress
strain response with the corresponding experimental curves are presented 
in this section. 

For_ hydrostatic compression, the predicted and experimental values are 
approximately the same (Fig. 3) and very little difference can be detected. 
A reason~bl~ agreement between observed and predicted values is obtained 
for the tnax1al shear stress path also (Figs. 4 and 5). However, it should 
be noted that J:iere the predicted curves deviate from the experimental 
curves after stram equal to 0.75 x 10-2• This is due to the assumed cubic 
relatio!1ship between stre~s and strain in the present model. It is possible 
to adJust the error at higher strain levels by assigning suitable weights to 



40.0 

30.0 

i 20.0 

-b 

10.0 

AN HYPERELASTIC MODEL 173 

Exper i1,1ental 

o.o 
0.00 0.25 0.50 o. 75 1.00 

-3 
< 1 ~ 10 
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FIGURE 5 Comparison Between Experimental and Predicted Curves for Triaxial 
Shear Test for o2 (1 kg/cm• = 14.2 psi) 

different points in the least square fitting procedure. However, this will 
result in a comparatively poor prediction at low strain levels. Figures 6 
to 9 show that for other stress paths (one dimensional confined compres
sion and simple shear) also the predicted and experimental values are in 
fairly good agreement. 

Prediction of Dilatancy 

To demonstrate the applicability of any constitutive model, it is not 
sufficient to show reasonable prediction of the stress paths which are used 
in the determination of material parameters; the model should also be 
able to predict other stress paths which are not included in the evaluation 
of parameters. For this purpose, the d ilatan behavior of Ottawa sand is 
predicted using a 1 ' s (Eq. 26) in E q s. l24) and (25). The comparison bet
ween the predicted and experimental curves is shown in Fig. 10. The 
experimental curve for Ottawa sand was prese i:.: te<l by Ko et al., (7). It is 
seen that the present model predicts dilatant b~haviour of the material with 
sufficient engineering accuracy, at least qua itatively. Since the dilatant 
behaviour of granular material is one of the most important aspectst the 
present model is expected to be well suited and successful in representing, 
deformability characteristics of such materials. 

It should be noted that because the proposed model assumes cubic 
stress-strain relation, no matter how the material constants are chosen, the 
nature of predicted stress-strain response (third order) remains unchanged. 
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Thus, this model may not be very accurate for certain stress paths. Saleeb 
and Chen (1980) pointed out that a third order hyperelastic model is very 
sensitive to the change in material constants associated with the higher 
order terms in stress-strain relation (Eq. 7), especially for proportional 
loading paths and at high stress levels. This is because the "cubic" 
stress-strain curve either exhibits inflection points or shows much softer 
behavior than experimentally observed response. To demonstrate whether 
the reduction of number of material constants from nine to five wifl 
improve this situation, is presently under investigation. 

Effect of Initial State 

The stress-strain behaviour of any granular soil may be significantly 
affected by the initial state or confining pressure. With increased confining 
pressure, soil usually becomes more stiff and, as a result, can sustain more 
load to reach a given level of strain. This important aspect of material 
behaviour is included in the present model by incorporating the term bo 
(initial strain) in the formulation. The qualitative demonstration of the 
influence of bo on the stress-strain relation of granular material is shown in 
Figs. 11 to 14. It is seen that ror given strain level, the stress increases with 
increased bo, i.e., the material becomes stiffer which is consistent with 
observed behaviour. 
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Boundary Value Problem 

In the preceding section the efficiency of the proposed hyperelastic 
model in predicting stress-strain response of granular materials for 
va~ious stress paths is demonstrated. To verify its practical applicability, 
this model bas been implemented in a finite element computer program 
capable of solving soil-structure interaction problems wi th two-dimensional 
idealizations. Typical results of a boundary value problem are presented 
in this section. 

Figure 15(a) depicts plane strain idealization of a Conventional 
Triaxial (CT) test. Chang et. al., (1967) solved a similar problem to illus
trate application of their second order hyperelastic model. It may be noted 
that the plane strain model is probably not a very accurate representation 
of the CT test. However, because the objective here is to test the 
essential features of the constitutive model. plane strain representation 
should suffice. The finite element mesh used in the analysis is shown in 
Fig. 15(b). The advantage of symmetry is utilized in constructing the 
mesh. 

A solution of the aforementioned boundary value problem will require 
specialization of Eq. (7) for plane strain condition. A simila r approach as 
outlined previously for triaxial shear test is adopted to accomplish this 
task. 

The loads are applied in increments. First the specimen is subjected 
to a uniform hydrostatic stra in state, that is e:11 = e:22 = 0.00068 and 
c11 = 0 for i -=I= j , then the load Pis applied to the rigid platen in ten equal 

t y 
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increments. The platen-specimen interface is assumed to be continuous 
during the entire loading process. 

Figure 16 shows the variation of platen displacement B with load 
increments 6,P. The origin corresponds to the state of the specimen after 
hydrostatic strain is applied. The results are normalized with respect to 
constant •'a" (Fig. 15) associated with the dimension of the specimen ana
lyzed. As can be expected, in Fig. 16 the effect of nonlinearity is seen to be 
increasingiy predominant at higher load level. For instance, at P/2a = 16, 
the ratio of platen displacements for nonlinear and linear material behaviour 
is 1.102. For P/2a = 32, this ratio is l.148. 

Qualitatively, a representative response of granular material under 
monotonic loading situation is observed in this figure. 

Conclusions 

A third order hyperelastic constitutive model is presented for granular 
mate_rial. Th~ mo_del is_ deri~ed from an assumed fourth order energy 
density funch~n mcludmg e1gh~ constants. These eight constants are 
reduced to five mdependent materral parameters by imposing certain condi
tions observed in the laboratory. 

The parameters «1. a2 , a.3, a, and a6 are derived for Ottawa sand using 
the test data reported by Chang et. al. , (1967) and a least square curve fitting 
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procedure. The predicted stress-strain relationships are compared with the 
corresponding experimental values for a number of stress paths and 
reasonable agreements are observed for all the stress paths. In addition, 
dilatant behavior of the material is predicted and compared with experi
mental data. A reasonable agreement is observed over the entire range. 

This model also includes the effect of initial state on the material 
behaviour. The study of the effect of the initial state qualitatively shows 
that the material becomes stiffer with increased b0 which is consistent with 
observed behaviour. 

The model is implemented in a finite element computer program based 
on plane strain idealization. For illustration, response of dry Ottawa sand 
in a Conventional Triaxial test is predicted. Numerical results show that 
the proposed model can successfully represent some essential features of 
granular soils under monotonic loading. 
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