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All civil engineering structures are built on soil or roc_k bed and th_e live 
and dead loads acting on such structures are transmitted to the soil and 

rock through the individual footings or foundation strips and rafts. 
Because of this load transfer, contact pressures are developed at the 
interface between the foundation structure (footing, raft) and the soil. 
Three methods are available to determine the contact pressure : 

(i) Conventional method, which assumes _th<: fo1;1ndation structure to 
be rigid and linear contact pressure d1stnbut1on. 

(ii) Subgrade reaction method which is based on Winkler's hypothesis. 
In this method it is assumed that the contact pressure, p, at a 
point is proportional to the vertical displacement, w, of that point 
or simply 

p = kw ... {I) 

in which k is the prportionality constant called modulus of 
subgrade reaction. 

(iii) Elastic half space method in which soil media is considered as 
continuum and material behaviour is assumed to be elastic. 

The simplified assumptions of conventional method can be considered 
satisfactory for preliminary studies only and should not be used for the 
analysis if important structures since displacement compatibility is not 
taken into account. The behaviour of both soil and rock foundations 
differs considerably from Winkler's hypothesis. This happens in case of 
a rigid raft. The subgrade reaction method results in uniform settlement 
and therefore, uniform contact pressure, whereas the actual contact 
pressure is parabolic. Elastic half space method represents the realistic 
behaviour of the structure. 

In the present paper, finite element solution of foundations usino 
elastic half space method bas been presented assuming perfectly smooth 
raft base. The finite element formulation is general and applies to any 
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shape of raft in plan, e.g. rectangular, circular etc. The results predicted 
~Y t_he method have been compared with the analytical solutions available 
m hterature. 

Elastic Half Space Method 

It is a common experience that in the case of soil media surface 
deflections occur not only under the loaded area but also within' certain 
zone outsid~ the loaded area. ~oussinesq and Cerruti gave solutions 
(stre~ses, displacements). for vertical and horizontal point loads on the 
elastic half space, respectively. These solutions were integrated to obtain 
solutions for distributed loading on the elastic half space. Poulos and 
Davis (1974) have compiled various analytical solutions available in 
literature for distributed loading on elastic half space. For rafts resting 
on isotropic elastic half space, analytical solutions in the form of 
expressions and charts have been derived by Borowicka (1939) for 
circular rafts, by Gorbunov- Possadov and Serebrjanyi ( 1961) for 
rectangular and square rafts. 

Brown (1969) and Teng (1974) used finite difference method to analyse 
circular and rectangular rafts. The earliest application of the finite 
element method to rectangular rafts resting on elastic half space is due to 
Cheung and Zienkiewicz ( 1965) and Cheung and Nag (1968). They 
considered 4-noded rectangular plate bending elements and assumed that 
the contact pressure is uniformly distributed around each node. Svec and 
Gladwell (1973) developed a refined triangular plate bending element 
resting on the elastic half space. Buragohain and Shah (1981) formulated 
a half space element for the analysis of rafts of any shape. In the present 
paper, eight noded isoparametric quadrila teral plate bending element 
(Hinton and Owen, 1977) has been used to represent any shape of the 
raft. The plate element takes into consideration shear deformations, 
therefore, the formulation can be applied to thick rafts as well. 

Finite Element Formulation 

Plate Bending Element 

Isoparametric quadrilateral plate bending element (Hinton and Owen, 
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FIGURE 1 Parabolic Isoparametric Plate Bending Element. 
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1977) has been used for the present analysis. This element consists of 
eight nodes (Fig 1 ). The degrees of freedom at each node are lateral 
deflection w, two average rotations 8x and 8,. (Fig 2). 
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FIGURE a Deformatioa of the CrON-Sectlon of Plate. 

The displacement vector { d} at a point is expressed as 

r w 1 r w I 
I l = I~+ c/>x \ {d} = I 8x 
i rx ) I I I 
I I ow I 
L 81 J oY + cf>,, J 

and {cf,} = { -c/>x} 
- cf,y 

(2) 

. .. (3) 

In Equation (3), </,x and cf,, represent the average shear deformations in 
x and y directions, respectively. 

The displacement variation over the element is defined in terms of the 
nodal displacement components by the following expression : 

r w r r w, l I I 8 
-{ 8x >- = i [N,] i 0xt ~ .. . (4) 
I I i=l I I l 0y J L e,,, J 

8 

= ~ 
i= l 

[N,] {d,} 

where [N1] = N, [/8] 

and [13) is the 3 x 3 identity matrix and Ni is the shape function for the 
node ' i'. 
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The strain matrix which relates strain components to nodal displacement 
vector is given by the relation 

where 

{E} = (B] {d} 

{E} is the strain vector, 

{d} is the displacement vector, and 

{B} is the element strain matrix. 

Equation (5) cane be written as 

where 

[ B1,] [B,] = - = B,, 

in which 

8 
{E} = I [B,] {d,} 

i= l 

r 0 
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[Bi,] Strain matrix associated with bending deformations, 

[B,.] - Strain matrix associated with shear deformations, and 

{d,} 

r Wi l I 
is the displacement vector at node 'i '. 

~I Bxt >-
I 

L e,,, J 

.. . (5) 

... (6) 

... (7) 

The stress-strain relationship for an isotropic elastic material may be 
written in the form 

{a} = [D] {€} ... (8) 

where {a} is the stress vector and [D] in the matrix of the elastic constants 
given by 
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where Ep, vp are Young's Modulus and Poisson 's ratio of plate and h . is 
its thickness. 

The plate element stiffness matrix is then obtained as 

[Kp] = f J (B)T [OJ [BJ h dx dy ... ( 10) 

The integration of Equation (10) is carried out numerically (Zienkie
wicz, 1977). The stiffness matrices for each element are assembled to get 
overall (global) plate bending stiffness matrix. 

Soil Stiffness Matrix 

The contact pressure distribution in an element is represented in terms 
of shape functions as 

8 
p (x, y) = • .. • N,pi 

i = l 
... (11) 

where N, are shape functions and p; are the nodal contact pressures. 

By integrating Boussinesq solution for a point load, vertical deflection 
at node (x1 ,Yi) due to the contact pressure p(x, y) on an element area can 
be written as 

2 

(I-vs ) J f p(x, y) dx dy 
.,,£, V (x~x1)1+(Y-Yi)2 ... (12) 

where E,. v, are the Young's modulus and Poisson's ratio of soil respec
tively. 

Substituting for p (x, y) from Equation (11) into Equation (12), we 
get 

. .. (13) 
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where (x, y) are the cartesian coordinates of Gauss points. [J] is the 
determinant of Jacobian matrix and (s, t) are the local coordinates. 

For all the nodes constituting the whole raft, Equation (13) takes the 
form 

(t - v2 ) 1 

11E, S I I 
- 1 - 1 

{W} = 1: 
n 

__ [N] ds dt [J] {p} 
,./ (X-X1)2+ (Y-Yt)2 

... (14) 

Where n is the total number of elements in the raft and { W} is the 
global nodal vertical displacement vector. 

In matrix form Equation (14) can be written as 

{W} = [N]{P} 

where {P} is global nodal contact pressure vector. 

.. . (15) 

The load vecor {/} due to the contact pressures can be written as 

{/} = JJ [NJT p(x, y) dx dy ... ( 16) 

substituting for p(x, y) from Equation ( 11) we get 

{/} = Jf[NJT [N] dx dy {p} 

Assembling Equation (17) for all the elements, one obtains 

{F} = [A] [P] 

whers {F} is the global nodal force vector. 

or 

Solving for {P} from Equation (15) 

{P} = [N]-1 {W} 

Premultiplying both sides by [A], we get 

[AJ {Pj - (AJ [NJ-1 {W} 

{F} - - [K,] {W} 

. .. (17) 

... (19) 

where [K,] = (A] [.Nr1 is the required global soil stiffness matrix using 
elastic half space method. 

Combined Stiffness Formula tion 

The soil stiffness matrix [K,] is to be combined with that of the raft, 
[Kp]. Let {R} be the vector of externally applied nodal loads on the raft 
then ({R}-{F}) is the effective externally applied load on the raft at th~ 
nodal points, i.e, 

{R}- {F} = [KP] {d} .. . (20) 
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Substituting for {F} from Equation (19) and rearranging the terms 
we get 

[Kp] {d}+ (K,] {W} = {R} ... (21) 

Since the vertical displacement vector { W} is also included in {d} both 
the terms on left hand side can be combined together to give 

[K] {d} = {R} . .. (22) 

where [K) is the over all stiffness matrix taking into account both the raft 
and soil stiffness. 

Once the nodal displacements are calculated using Equation (22), stres
ses (bending moments and shear forces) in the raft and contact pressures 
are computed using Equiations (6), (8) and (15). 

Ep = 2 x 106 t I m2 

Es = 4000 t/m2 
Number of elements = 40 

Number of nodes = 137 

FIGURE 3 Finite Element Discretization for Circular Raft 
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Results and Discussion 

A computer program has been developed on ICL 2960 based on the 
finite element formulation presented in the last section. The program is 
capable of handling rafts of any shape. Material properties, thickness of 
raft can be varied from element to element. Rafts with cut-outs can also 
be analysed. 

For the numerical integration of Equation (14), it has been found that 
4 X 4 Gaussian quadrature rule gives sufficiently accurate results. Equation 
(10) was integrated using 2 X 2 Gaussian quadrature rule (Hinton and 
Owen, 1977). 

Using the program, rectangular soil areas subjected to uniformly 
distributed loading were analysed. The results were compared with the 
analytical (Poulos and Davis, 1974) and it was found that both the 
results are very close (Garg, 1983) with maximum error in displacements 
of 0.44 per cent. 

A ciroular raft of different rigidities resting on soil and subjected to 
uniformly distributed loading was analysed to obtain displacements, CO?-· 
tact pressures, bending moments. The raft is of 20m diameter and 1s 
discretized into 40 elements as shown in Fig 3. For the soil stiffness 
matrix, all the forty elements are needed. The material properties used 
were as follows : 

Plate : Ep = 2 x 106 t/m1 

Vp = 0.1 5 

Soil E, = 4000 t/m2 

v, = 0.15 

The rigidity of circular raft is expressed by a factor, K (Brown, 
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FIGURE 4 Contact Pressure Variation for Uniformly Loaded 
Circular Flexible Raft (K - 0.1). 
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1969) as 

E11 h 
K = -(1- v2 ) (-)3 

E, s a .. . (23) 

where a is the radius of the raft. 

For the present analysis, solutions were obtained for three values of 
K, viz. O.l (corresponding to flexible raft), 1.0 and I 0.0 (corresponding to 
rigid raft). The results have been compared with those given by Brown 
(1969). In Table I are presented vertical displacements at the centre of 
raft by the finite element method and by analytical method for three 
values of K . It is seen that both the results are close with maximum error 
of 2. 86 per cent. 

Contact pressure va riations have been plotted in Figs. 4 and 5 for 
K = 0.1 and 1.0, respectively. Analytical results have also been plotted 
in these figures. Both analytical and numerical solutions compare very 
well. 
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TABLE 1 

Displacements at the Centre of the Circular Raft 

Displacement at Centre in cm. 

Analytical Present 
method method 

0.4789 0.46S2 
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FIGURE 5 Contact Pressure Variation for Uniformly Loaded 
Circular Rigid Raft (K = 1.0). 

Radial and tangential moments have been plotted in Figs. 6 and 7 for 
K = 0.1 and in Figs. 8 and 9 for K = 1.0, respectively. Again the two 
solutions match closely. 



E 
~ 

z 
' + -

C 
o; 
E 
0 
E 

ci 
,3 
0 a:: 

1.6 

1. 4 

1 2 

E 

1.0 

~ 

C 

08 a, 
E 
0 
E 

Q 06 c 
a, 
CJ\ 
C 

,E' 
04 

0 2 

00 

1.6 

1.4 

12 

1.0 

08 

06 

0.4 

0 2 

0.0 

FINITE ELEMENT ANALYSIS OF RAFTS 

- - - - ---------

Present so!ut1on 

Brown ; 196<: I 

' \ 
\ 

' \ 
\ 

\ 

\ 

2.0 4.0 60 8.0 

D istonc2 frcm cenl re Im) 

FIGU RE 6 Radial Moment (M,.) Variation for Uniformly 
Loaded Circular Flexible Raft (K = 0.1). 

\ 

-- ------ ------

- - - Present solution 

- --- Brown 11969) 

2.0 4.0 1 0 

01s tui-ic.:: f rom ce:ni re {;11) 

FIGURE 7 Tangential Moment (Mt) Variation for Uoiformly 
Loaded Circular Flexible Raft (K = 0 .1). 

\ 
\ 

\ 

\ 
\ 
\ 

I 
\ 
\ 
I 

37 

10.0 

1 0 



38 

E -
-i: 
c 
QI 
E 
0 
E 

Q 
-0 
Cl 

0:: 

E -
-C 

"' E 
0 
E 

Q 
c 
QI 

6.0 

40 

2.0 

00 

6.0 

g 2.0 
I-

00 

INDIAN GEOTECHNICAL JOURNAL 

--

--Present solution 

-- --Brown {1969} 

2.0 4.0 6.0 8.0 
Distance fro'll centre Im I 

FIGURE 8 Radial Moment (M,) Variation for Unformly 
Loaded Circular Rigid Raft (K = 1.0). 

------ -

Present solution 

Brown 119691 

2.0 4.0 6.0 80 
Distance from cent re Im) 

FIGURE 9 Tangential Moment (Mt) Variation for Uniformly 
Loaded Circular Rigid Raft (K = 1.0). 

10 0 

10.0 



FINITE. ELEMENT A.NA.LYSIS OF RAFTS 39 

Conclusions 

The finite element formulation for rafts resting on elastic half space 
has been presented in this paper. The formulation applies to any shape of 
the raft. The numerical results compare very well with the analytical 
results available in the literature. 
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