Short Communications

Graphical Method for Dynamic Earth Pressure of Cohesionless Soils

by
K.M. Soni*
D.N. Krishnamurthy**

Introduction

Coulomb's theory of earth pressure behind a retaining wall is based on the following assumptions:
(i) Deformation condition is satisfied,
(ii) Soils is cohesionless, and
(iii) Sliding occurs along a rupture surface.

A graphical construction to determine the lateral earth pressure according to Coulomb's theory was given by Culman. Mononobe (1929) and Okabe (1929) were the first to modify the Coulomb's expression for incorporating the effect of inertia forces. They gave expressions both for active and passive cases. Kapila (1962) as reffered by Shamsher Prakash et al (1979) gave a graphical construction incorporating the intertia forces for the failure wedge.

In the present paper, a graphical method is suggested for determining the earth pressure of cohesionless soils considering the inertia forces based on Rebhan's construction. The method presented here is simpler than the earlier methods.

Method of Construction

(a) Active case

1. Draw a dimensional sketch of the retaining wall, (Fig. 1).
2. Draw $B M$ at an angle $(\phi-\theta)$ with the horizontal in upward direction.

[^0]

FIGURE 1 Method of Construction for Active Case
3. Draw $B S$ at an angle $\psi=90-(\alpha+\delta+\theta)$ with $B M$
4. With $B D$ as diameter, draw a semicircle.
5. Draw $A G$ parallel to $B S$ cutting $B M$ at G.
6. Draw $G J$ perpendicular to $B D$, cutting the semicircle at J.
7. With B as centre and $B J$ as radius, draw an arc $J E$, cutting $B D$ at E.
8. Draw $E C$ parallel to $B S$ or $A G$ cutting $A D$ at C.
9. With E as centre and $E C$ as radius, draw $E K$ cutting $B D$ at K.
10. Join $C K$.

Total dynamic active earth pressure $P_{A(d y n)}$ is given by $P_{A(d y n)}=\left(\frac{1 \pm a_{\nu}}{\operatorname{Cos} \theta}\right) \cdot \gamma \cdot$ Area of triangle $C K E$.

Proof :- From similar triangles $A G D$ and $C E D$

$$
\frac{C E}{C D}=\frac{A G}{A D}
$$

$$
\begin{equation*}
\text { or } C E^{2}=\left(\frac{A G}{A D} \cdot C D\right)^{2} \tag{1}
\end{equation*}
$$

From triangle $G A B$.

$$
\begin{align*}
\frac{A G}{A B} & =\frac{\operatorname{Sin}(90+\alpha-\phi+\theta)}{\operatorname{Sin}(90-(\alpha+\theta+\delta))} \\
\text { or } \frac{A G}{A B} & =\frac{\operatorname{Cos}(\phi-\alpha-\theta)}{\operatorname{Cos}(\alpha+\theta+\delta)} \tag{2}
\end{align*}
$$

Also

$$
\frac{A D}{C D}=\frac{A C+C D}{C D}=\left(\frac{A C}{C D}\right)+1
$$

But $A C=L E$

$$
\text { Therefore } \frac{A D}{C D}=\frac{L E}{C D}+1
$$

From triangles $B C D$ and $B L E$

$$
\begin{gather*}
\frac{L E}{C D}=\frac{B E}{B D} \\
\text { or } \frac{A D}{C D}=\frac{B E}{B D}+1 \tag{3}
\end{gather*}
$$

But from the properties of a circle,

$$
B G \times G D=G J^{2}
$$

or $B G(B G+G D)=B J^{2}=B E^{2}$

$$
\begin{equation*}
\text { or } \frac{B G}{B E}=\frac{B E}{B D} \tag{4}
\end{equation*}
$$

\therefore from equations (3) and (4)

$$
\begin{equation*}
\frac{A D}{C D}=\sqrt{\frac{\overline{B G}}{\overline{B D}}+1} \tag{5}
\end{equation*}
$$

In triangle $G A B$.

$$
\begin{gather*}
\frac{B G}{A B}=\frac{\operatorname{Sin}(\phi+\delta)}{\operatorname{Cos}(\alpha+\theta+\delta)} \\
\text { or } B G=A B \frac{\operatorname{Sin}(\phi+\delta)}{\operatorname{Cos}(a+\delta+\theta)} \tag{6}
\end{gather*}
$$

From triangle $A B D$,

$$
\begin{aligned}
\frac{B D}{A B} & =\frac{\operatorname{Sin}(90-a+i)}{\operatorname{Sin}(\phi-\theta-i)} \\
\text { or } \frac{B D}{A B} & =\frac{\operatorname{Cos}(\alpha-i)}{\operatorname{Sin}(\phi-\theta-i)}
\end{aligned}
$$

$$
\begin{equation*}
\text { or } B D=\frac{A B \operatorname{Cos}(a-i)}{\operatorname{Sin}(\phi-\theta-i)} \tag{7}
\end{equation*}
$$

Substituting the values from equations (2) and (5) in equation (1), we get.

$$
C E^{2}=(A B)^{2} \frac{\operatorname{Cos}^{2}(\phi-\alpha-\theta)}{\operatorname{Cos}^{2}(\alpha+\theta+\delta)}\left[\frac{1}{\sqrt{\frac{B G}{B D}+1}}\right]^{2}
$$

And from equation (6) and (7)

$$
C E^{2}=(A B)^{2} \frac{\operatorname{Cos}^{2}(\phi-\alpha-\theta)}{\operatorname{Cos}^{2}(\alpha+\theta+\delta)}\left[1+\sqrt{\frac{\operatorname{Sin}(\phi+\delta) \operatorname{Sin}(\phi-\theta-i)}{\operatorname{Cos}(\alpha+\theta+\delta) \operatorname{Cos}(\alpha-i)}}\right]^{-2}
$$

Therefore, the total dynamic active earth pressure

$$
\begin{aligned}
P_{A(d y n)}= & \frac{1 \pm a_{v}}{\operatorname{Cos} \theta} \cdot \gamma \cdot \quad \text { Area of triangle } C K E . \\
& =\frac{1 \pm a_{v}}{\operatorname{Cos} \theta} \cdot \gamma \cdot \frac{1}{2} \cdot C F . L E \\
& =\frac{1 \pm \alpha_{\nu}}{\operatorname{Cos} \theta} \cdot \gamma \cdot \frac{1}{2} C E^{2} \operatorname{Sin} \psi
\end{aligned}
$$

Rearranging we get.

$$
\begin{aligned}
& \therefore P_{A}\left({ }_{d y n}\right)=\frac{1}{2} \cdot \gamma \cdot h^{2} \frac{\left(1 \pm a_{v}\right)}{\operatorname{Cos} \theta \operatorname{Cos}^{2} \alpha} \frac{\operatorname{Cos}^{2}(\phi-\alpha-\theta)}{\operatorname{Cos}(\alpha+\theta+\delta)} \\
& \quad\left[1+\sqrt{\frac{\operatorname{Sin}(\phi+\delta) \operatorname{Sin}(\phi-\theta-i)}{\operatorname{Cos}(\alpha+\theta+\delta) \operatorname{Cos}(\alpha-i)}}\right]^{-2}
\end{aligned}
$$

which is the same as the expression given by Mononobe and Okabe.

(b) Passive Case

1. Draw a dimensional sketch of the retaining wall, showing the backfill line (Fig. 2).
2. Draw $B M$ at an angle of $(\phi-\theta)$ with horizontal, downward in direction.
3. Draw $B S$ at an angle of $\psi=(90+\theta+\delta-\alpha)$ with $B M$.
4. Extend $M B$ and $P A$ backwards cutting each other at D.
5. With $B D$ as diameter, draw a semi-circle.
6. Through A draw a line parallel to $B S$ cutting $B D$ at G.
7. Draw $G J$ perpendicular to $B D$ cutting the semicircle at J.
8. With B as centre and $B J$ as radius, draw $B E$ cutting $B M$ at E.

FIGURE 2 Method of Construction for Passive Case
9. Draw $E C$ parallel to $B S$ cutting $A P$ at C.
10. With E as centre and $E C$ as radius, draw $E H$ cutting $B M$ at H.
11. Join CH .

Calculation :

Dynamic passive pressure

$$
P_{P}(d y n)=\frac{1 \pm a_{\nu}}{\operatorname{Cos} \theta} \cdot \gamma \cdot \text { Area of triangle } C E K .
$$

Proof :
Draw $C F$ perpendicular to $B M$.
From the properties of a circle.

$$
\begin{gather*}
B G \times G D=G J^{2} \\
\text { or } B G \times G D+B G^{2}=G J^{2}+B G^{2} \\
\text { or } \frac{B G}{B E}=\frac{B E}{B D} \tag{8}
\end{gather*}
$$

In similar triangles $A G D$ and $C E D$

$$
\begin{gather*}
\frac{C E}{C D}=\frac{A G}{A D} \\
\text { or } C E^{2}=\left(\frac{A G}{A D} C D\right)^{2} \tag{9}
\end{gather*}
$$

from triangle $G A B$

$$
\begin{align*}
& \frac{A G}{A B}=\frac{\operatorname{Sin}(90-a-\phi+\theta)}{\operatorname{Sin}(\pi-\psi)} \\
& \text { or } \frac{A G}{A B}=\frac{\operatorname{Cos}(\alpha+\phi-\theta)}{\operatorname{Cos}(\theta+\delta-\alpha)} \\
& \text { or } A G=A B \frac{\operatorname{Cos}(\alpha+\phi-\theta)}{\operatorname{Cos}(\phi+\delta-\alpha)} \tag{10}\\
& \text { Also } \frac{A D}{C D}=\frac{C D-A C}{C D}=1-\frac{A C}{C D} \\
& \quad \text { But } A C=E L \\
& \text { And } \frac{E L}{C D}=\frac{B E}{B D} \\
& \text { or } \frac{A D}{C D}=1-\frac{B E}{B D} \tag{11}
\end{align*}
$$

From equation (8)

$$
\begin{gather*}
\frac{B E}{B D}=\frac{B G}{B E} \\
\text { or } \frac{B E^{2}}{B D^{2}}=B D \times \frac{B G}{B D^{2}} \\
\text { or } \frac{B E}{B D}=\sqrt{\frac{B G}{B D}} \tag{12}
\end{gather*}
$$

From equations (11) and (12)

$$
\begin{equation*}
\frac{A D}{C D}=1-\sqrt{\frac{B G}{\overline{B D}}} \tag{13}
\end{equation*}
$$

In triangle $A B G$

$$
\begin{align*}
\frac{B G}{A B} & =\frac{\operatorname{Sin}(\phi+\delta)}{\operatorname{Sin}(\pi-\psi)} \\
\frac{B G}{A B} & =\frac{\operatorname{Sin}(\phi+\delta)}{\operatorname{Sin}(90+\theta+\delta-\alpha)} \\
\text { or } B G & =A B \frac{\operatorname{Sin}(\phi+\delta)}{\operatorname{Cos}(\theta+\delta-\alpha)} \tag{14}
\end{align*}
$$

In triangle $B D A$

$$
\begin{align*}
& \frac{B D}{A B}=\frac{\operatorname{Sin}(90+\alpha-i)}{\operatorname{Sin}(\phi-\theta+i)} \\
& \text { or } B D=A B \frac{\operatorname{Cos}(\alpha-i)}{\operatorname{Sin}(\phi+i-\theta)} \tag{14}
\end{align*}
$$

Putting the values from equations (10) and (13) in equation (9)

$$
\left.C E^{2}=\frac{\operatorname{Cos}^{2}(\alpha+\phi-\theta)}{\operatorname{Cos}^{2}(\theta-1} \delta-\alpha\right) A B^{2}\left[1-\sqrt{\frac{B G}{B D}}\right]^{-2}
$$

And from equations (7) and (8)

$$
C E^{2}=\frac{A B^{2} \operatorname{Cos}^{2}(a+\phi-\theta)}{\operatorname{Cos}^{2}(\theta+\delta-a)}\left[1-\sqrt{\frac{\operatorname{Sin}(\phi+\delta)}{\operatorname{Cos}(a-i)} \frac{\operatorname{Sin}(\phi+i-\theta)}{\operatorname{Cos}} \frac{(\theta+\delta-a)}{}}\right]^{-2}
$$

Dynamic Passive pressure

$$
\left.\left.\begin{array}{l}
P_{P}(a y n)=\frac{1 \pm a_{v}}{\operatorname{Cos} \theta} \cdot \gamma \cdot \frac{1}{2} C F \times C E \\
=\frac{1}{2} \cdot \frac{1 \pm a_{v}}{\operatorname{Cos} \theta} \cdot \gamma \cdot C E^{2} \operatorname{Sin} \psi \\
=\frac{1}{2} \cdot \gamma \cdot \frac{(1 \pm \alpha v)}{\operatorname{Cos} \theta} A B^{2} \frac{\operatorname{Cos}(\theta+\delta-a)}{\operatorname{Cos}^{2}(\theta+\delta-\alpha)} \cdot \operatorname{Cos}^{2}(a+\phi-\theta) \\
\cdot\left[1-\sqrt{\frac{\operatorname{Sin}(\phi+\delta) \operatorname{Sin}(\phi+i-\theta)}{\operatorname{Cos}(\alpha-i) \operatorname{Cos}(\theta+\delta-\alpha)}}\right]^{-2} \\
=\frac{1}{2} \cdot \gamma \cdot \frac{\left(1 \pm \alpha_{v}\right)}{\operatorname{Cos} \theta} A B^{2} \frac{\operatorname{Cos}^{2}(\alpha+\phi-\theta)}{\operatorname{Cos}(\theta+\delta-\alpha)} \\
\cdot
\end{array}\right] 1-\sqrt{\frac{\operatorname{Sin}(\phi+\delta) \operatorname{Sin}(\phi+i-\theta)}{\operatorname{Cos}(a-i) \operatorname{Cos}(\theta+\delta-a)}}\right]^{-2} .
$$

Which is the same expression as given by Mononobe and Okabe.

Conclusion :

A graphical method based on Rebhan's construction is given for determining the earth pressure of cohesionless soils, considering the effect of inertia force. Rebhan's construction is limited to uniform deposits of cohesionless soils only and as such method is also limited for use in the case of uniform deposits of cohesionless soils only.

References

MONONOBE, N. (1929) 'Earth Quake Proof Construction of Masonary dam'. Proc. Word Engineering Congress, 9:275.

OKABE, S., (1929), 'General Theory of Earth Pressure and Seismic Stability of Retaining Walls and Dams', Journal Japan Society of Civil Engineers : 1:6.

SHAMSHER PRAKASH, et. al. (1979) Analysis \& Design of Foundation \& Retaining Structures, Sarita Prakashan, Meerut.

Notations

$i=$ angle of backfill with horizontal
$a=$ angle of wall with vertical
$\boldsymbol{\delta}=$ angle of wall friction
$\phi=$ angle of internal friction
$h=$ height of wall
$a_{h}=$ horizontal seismic coefficient
$a_{\nu}=$ vertical seismic coefficient
$\boldsymbol{\gamma}=$ density of backfill
$\theta=\tan ^{-1} \frac{\alpha_{h}}{1 \pm \alpha_{\nu}}$

[^0]: * Teaching Assistant, Civil Engineering Department, Maulana Azad College of Technology, Bhopal-462007, India. Presently, Assistant Executive Engineer, CPWD, Nirman Bhawan, N. Delhi, India.
 ** Professor, Civil Engineering Department, Maulana Azad College of Technology, Bhopal-462007, India.
 (This technical note was received in January, 1983 and is open for discussion till the end of December 1983)

