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Introduction 

The equations for stresses due to single point load on an idealized soil 
mass were first completely presented by Boussinesq (1885). As the 

load, in most civil engineering structures is actually spread over a certain 
area, solutions are necessary for different shapes of loaded area and diffe• 
rent loading configurations. Several solutions are currently available 
either in the form of tables and charts or FEM solutions, for loads placed 
on layered media. Use of charts, tables, etc. is cumbersome and time 
consuming whereas FEM solutions are proving to be costlier due to large 
capacity computers needed. Simplified procedures are, therefore, called 
for, for evaluation of stresses, strains and displacements in soil systems 
which are usually assumed to be linear elastic. 

An attempt is made in the present study to develop simple numerical 
solutions for obtaining vertical stresses, strains and displacements in a 
semi-infinite mass due to distributed vertical and shear loads of circular 
and rectangular shapes. The same are extended for multi-layered media, 
by using equivalent thickness criteria. The solutions developed can easily 
be programmed and run on a Mini/Microcomputer of a memory of 
about I K. 

Development of Solutions 

Calculation of Stresses and Displacements due to Distributed Normal and 
Horizontal Loads on a Single Layer 

For a point load acting normally on the surface of a semi-infinite 
homoge_neous, isotropic, elastic mass (Figure 1 (a)), Boussinesq's solutions 
for vertical normal stress and vertical deflections respectively are 

and 

3Pz3 

a, = 21r R 6 

w = p (l + v) [2 (1- )+ ~] 
21rER V R2 

... (I) 

... (2) 
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For a horizontal point load acting along the surface of a semi-infinite 
mass (Figure 1 (b)) Cerutti's solution (Poulos and Davis, 1974) for vertical 
normal stress and vertical deflections respectively are 

and 

3Pxz2 

az = 2 7r_R5 

P (1 + v) 
w = 2nER [ ~ + (l - 2v )x ] 

R2 (R+ z) 

... (3) 

... (4) 

Equations (1) to (4) are only valid for a surface point load. However, 
in actual practice, surface loads are usually distributed over a certain area. 
Though analytical solutions for such distributed loads are available, their 
actual use is rather laborious and time consuming. Simpler solutions can 
be sought by use of numerical integration. In the present work, numerical 
integration of equations (!) to (4) has been carried out using the 
multidimensional numerical integration rules as per Abramowitz and 
Stegun (1965). 

For a distributed load over a circular area either ninepoint integration 
rule or 21-point integration rule can be conveniently used. The general 
integration rule is 

n 
If f(x, y) dxdy = TT a2 ~ wif (x,, y;) 

i = l 

where f (x, y) = function to be integrated 

a 

w, 

ll 

= radius of the circle 

= weighting function 

= co-ordinates of the integration points 

= total number of integration points 
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FIGURE 1 Definition Sketch for Boussinesq's solution 

, . . (5) 
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For th~ 21 point i~tegration rule (n = 21) used in the present study 
the C?•ordmates of mtegration points (Figure 2(a)) and the weighting 
functions are 

x,, y, 
0,0 

( / 6-./6 a cos 2 rck 
\/ IO 10' 

J 6-/6 a Sin 2 1rk) 
10 10 

a cos 2 ,,,k • 
10 

a sin 2 1tk) 
10 

where k = 1, ............... , 10. 

16+/6 
360 

16-/6 
360 

For a distributed load over a rectangular area, (Fig. 2(b) ), the general 
integration rule is 

n 
J J /(x, y) dx dy = ab }; wd(x,, y,) 

i = l 
... (6) 

where a and b are the lengths of the sides of the rectangle. For a nine
point (n = 9) integration rule, which was used for the present work, the 
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FIGURE 2 Location of points for numerical Integration 
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co-ordinates of the integration points and the weighting functions are 

w, 
16/8 l 

25/324 

10/81 

10/81 

The function/ (x, y) in the equation (5) and (6) can be either that of 
stress, displacement or strain, the solutions for which is desired. 

Calculation of stresses and displacements due to distributed normal load on 
a multi-layered media : 

For obtaining stress distribution in layered, like flexible pavements a 
simplified method is used, where the equivalent layer approach (Odemark, 
1969) is coupled with numerical integration technique, with the underlying 
assumption that the stresses, strains and displacements below a layer will 
be unchanged as long as the flexural stiffness of the layer remains constant. 
Thus for two layers of moduli £1 and £ 2 and thicknesses h1 and h1 

respectively, 

A two.layer system can be transformed to a semi-infinite space, as illustra
ted in Fig. I by replacing layer 1 with a material having the properties of 
the semi-infinite space and a thickness of h,, in such a way that 

(7) 

rA< ;,.;c 

FIGURE 3 Transformation of a 2-layer system 
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A generalization of this principle yields the equivalent thickness of the 
(n- 1) layers above the layern, as 

n-1 / (l 2 ) 
"" 3 E, - vn 

h, ,n = "" h, ✓ E 2 
i = l n(l-v.) 

l 

(8) 

Using the aforesaid numerical integration rules for circular and rectan
gular areas, computer program was developed on ICL 2960. The following 
cases were studied : 

(i) Uniformly distributed vertical, and shear loads on circular area. 

(ii) Uniformly distributed vertical and shear loads on square (a/b = I) 
and rectangular (a/b = 2) areas. 

The above cases have been analysed for normal vertical stress (a,), 
vertical displacement (w) and normal verical strain(€,) for poission's ratio 
(v) = 0.2, 0.3, 0.4 and 0.5, but only the results for the first two parameters 
have been presented herein. 

Results and Discussions 

As detailed in the earlier section, values of three parameters, namely, 
normal vertical stress, vertical displacement and normal vertical strain 
have been obtained using the numerical solutions developed. An 
attempt has been made to compare these results with available analytical 
solutions. Such comparison is presented in the following two steps. 
Firstly, for a constant value of Poisson's ratio (v = 0.3) the three parame
ters were compared through tables for z/ a ranging from O to 2 and r/a 
ranging from O to 2. In next, the effect of Poisson's ratio has been 
investigated for the different cases through figures. 

Uniformly distributed vertical load on a circular area 

The variation of normal vertical stress (a,/ao), and vertical displacement 
(w/a) with depth (z/a) for different values of (r/a) are presented in Tables I 
a and b. Included in these tables are the values obtained by the analytical 
method (Poulos and Davis, 1974) as well as those by 21-point integration 
rule. Comparison of the results obtained by the two methods for (z/ a) 
upto 1.0 and for values of (r/a) from O to 2.0, reveals that in general there 
is a zone in the vicinity of the loaded area, wherein the results for 
the stress, displacement as well as strain do not match. The two zones 
are differentiated by a thick line in these as well as other tables. Whereas 
this zone of mismatch is relatively small for vertical displacement, it is 
significantly large for_stress_ (i.e. from (z/a) = 0.6 to 0.8. extending from 
r/a = 0 to 1.5). Outside this zone one notes perfect matching. 

Uniformly distributed vertical load on a rectangular area 

Table 2 presents the variation of vertical normal stress and vertical 
displacement beneath the corner of uniformly loaded rectangular (a/b = 2) 
and square (a/b = 1) areas. Both the analytical and numerical solutions are 
included in this table. Here again one notes perfect matching below a 
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TABLE la 

Stresses due to uniformly distributed vertical load on a circular area 

z/a r /a = 0 1.0 2.0 

Anal I Num. Anal I Num. Anal X I 0-1 I N um. X l 0- 1 

0.2 0.992 4.236 0.468 1.023 0.009 0.009 
0.4 0.949 1.336 0.435 0.505 0.060 0.060 
0.6 0.864 0.924 0.400 0.410 0.161 
0.8 0.756 0.766 0.366 0.367 0.289 

1.0 0.646 0.648 0.332 0 .333 0.418 0.418 

TABLE l b 

Displacements due to uniformly distributed vertical load on a circular area for v = 0.3 

w/ax 10-• 

zfa r/a = 0 1.0 2.0 

Anal I Num. Anal I Num. Anal I Num. 

0.2 1.701 2.038 1.100 1.162 0.472 0.472 

0 .4 1.559 1.608 1.037 1.045 0.475 0.475 

0.6 J.409 1.417 0.973 0.973 0.478 
0.8 1.265 1.267 0.909 0.909 0.479 
1.0 1.135 1.135 0.849 0. 849 0.478 0.478 

depth of z/a = 0.2 for a rectangular area for all the parameters studied 
and for square area this depth is around z/a = 0.4. The matching in the 
case of displacement (w/a) is excellent for all depths for both square and 
rectangular loaded areas. 

Uniformly distributed shear load on circular area 

Variations in the normal vertical stress and vertical displacement by 
both analytical and numerical methods are presented in Tables 3 a and b 
for uniformly distributed shear load on a circular area. From these tables 
one notices that the comparison between the values obtained for shear 
loading by the analytical and the the numerical methods is very similar to 
that observed in case of uniform vertical loading. 



S8 

z/a 

0.0 

0.2 

0.4 

0.5 

0.6 

0.8 

1.0 

z/a 

0.25 

0.50 

0.75 

1.00 

1.50 

2.00 

tNDlAN GEOTECHNICAL JOURNAL 

TABLE 2 

Stresses, displacements and strains beneath the corner due to uniformly distributed 
vertical load on a rectangular area for v = 0.3 

a/b = 2 I a/b = 1 

az/a0 w/bx10-• az/ao w/b = 10-• 

Anal I Num. Anal I Num. Anal I Num. Anal I Num. 

0.250 0.697 0.672 0.250 0.500 0.499 

0.244 0.269 0.635 0.642 0.249 0.293 0.481 0.488 

0.218 0.223 0.562 0.563 0.240 0.252 0.446 0.447 

0.200 0.201 0.526 0.526 0.232 0.235 0.428 0.428 

0.182 0.182 0.493 0.492 0.223 0.223 0.409 0.409 

0.148 0.148 0.432 0.432 0.200 0.199 0.372 0.372 

0.120 0.120 0.381 0.381 0.175 0.175 0.338 0.338 

TABLE 3a 

Stresses due to uniformly distributed shear load on a circular area 

a,/a0 

r/a = 0 0.25 I 0.75 1.50 

Anal Num. Anal I Num. I Anal Num. Anal Num. 

0. 0. 0.0223 0.3036 0.1595 0.2320 0.0439 0.0460 

0. 0. 0.0564 0.1054 0.2201 0.2232 0.1019 0.1033 

0. 0. 0.0698 0.0763 0.2028 0.2025 0.1266 0.1266 
0. 0. 0.0656 0.066S 0.1688 0 .1687 0.1275 0.127S 
0. 0. 0.0434 0.0434 0.1071 0.1071 0.1049 0.1049 
0. 0. 0.0263 0.0263 0.0670 0.0670 0.0700 0.0700 

Uniformly distrib11ted shear loading on rectangular area 

In Table 4 is presented a comparison between the numerical and 
analytical values of normal vertical stress and vertical displacement beneath 
the corners of both rectangular (a/b = 2) and square (a/b = 1) areas (only 
the analytical values for surface displacement are available in literature). 
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TABLE 3b 

Displacements due to uniformly distributed shear load on a circular area for v = 0.3 

w/axlO_. 

z/a r/a = 0 0.25 I 0.75 1.50 

Anal Num. Anal I Num., Anal Num. Anal Num. 

0.25 o. 0. 8.642 13.135 26.238 26.833 22.060 22.069 

0.50 0. 0. 9.357 10.064 25.780 25.785 23.974 23.974 

0.75 0. 0 . 8.726 8.823 22.805 22.788 23.587 23.588 

1.00 o. o. 7.519 7.535 19.390 19.385 22.028 22.028 

1.50 o. 0. 5.177 5.167 13.590 13.590 17.900 17.900 

2.00 o. 0. 3.541 3.547 9.618 9.618 14.077 14.077 

TABLE 4 

Stresses, displacements and strains beneath the corner due to uniformly distributed 
shear load ,on a rectango)ar area for v = 0.3 

a/b = 2 I a/b = 1 

zfa a,la0 I w/bxt<i-1 I a./oo I w/bx 10-• 

Anal I Num. I Anal• I Num. I Anal I Num. I Anal• I Num. 

o.o 0.159 0.040 0.140 0.159 0.025 0.094 

0.2 0 .145 0.177 0.168 0.152 0.0195 0.116 

0.4 0.115 0 .113 0.142 0.133 0.132 0.103 

0.5 0.100 0.097 0.128 0.121 0.119 0.095 

0.6 0.085 0.084 0.114 0.109 0.108 0.087 

0.8 0.062 0.062 0.090 0.086 0.086 0.073 

1.0 0.045 0.045 0.071 0.067 0.067 0.060 

•Equations for displacement not traceable in literature. 

A study of this table along with Table 2 brings out that whereas the 
behaviour is very similar for rectangular area, it improves in the case of a 
square area. Perfect matching for both square and rectangular areas is 
observed for all parameters below a depth of z/a = 0.2. In the case of a 
uniform vertical load such a matching was observed below z/a = 0.4 for 
square area and z/a = 0.2 for rectangular area. 



60 1NDIAN GEOTECHNICAL JOURNAL 

w/o x 10- 2 
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FIGURE 4 Variation of vertical displacement beneath the centre with depth for a 
uniformly distributed vertical load over a circular area 

Influence of Poisson's ratio : 

Figs. 4 and 5 present the influence of Poisson's ratio on vertical 
displacement for uniformly loaded circular and rectangular areas. As is 
common knowledge, the normal vertical stresses are not influenced by 
Poisson's ratio. 

Fig. 4 presents the variation of displacement (w/a) below the centre of a 
uniformly distributed vertical load over a circular area, with depth (z/a) 
for values of Poisson's ratio ranging from 0.2 to 0.5. In this figure and 
the following ones the thick lines are those obtained by analytical method 
and the dotted ones are for those of the numerical technique. It is clearly 
noticed that below a depth of z/a = 0.6, there is perfect agreement between 
the values obtained by the two methods for all values of v. Above this 
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w/b x 10-2 

0.1 0.2 0.3 0-4 0 .5 
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FIGURE Sa Variation of vertical displacement beneath the corner with depth for a 
uniformly distributed vertical load over a rectangular area 

depth the values obtained by the numerical technique are generally 
larger. 

Figs. 5(a) and (b) present ihe variation of vertical displacement beneath 
the corner with depth for a uniform vertical load over rectangular and 
square areas, respectively. In both these cases there is excellent matching 
for all values of v between the results obtained by the analytical and 
numerical methods below z/a = 0.4. 
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FIGURE 5b Variation of vertical displacement beneath the comer with depth for a 
uniformly distributed vertical load over a square area · 

Uniformly distributed circular load on three-layered media 

0.6 

For illustrating the results of the method presently adopted, the data 
used by Ullidtz and Peattie (1980) is considered, as shown in Fig. 6. Table 
5 gives the results obtained by the numerical solution of the equivalent 
layer as well as those computed analytically by Ullidtz and Peattie (1980), 
by the use of the equivalent layer approach. Excellent matching is 
obtained at both interfaces 1 and 2, in respect of the vertical normal stress 
a, as well as vertical strain Ez, 
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TABLE 5 

Comparisons of vertical stresses and strains in 3-layered media due to uniformly 
distributed circular load 

Interface 
Number 

1 

2 

Parameter 
Prediction by Prediction by 

Ullidtz & Numerical 
Peattie Solution 

az (MP a) 0.024 0.02395 

lcz 4.93 X 10- • 4.9335 X 10-6 

az (MP a) 0.012 0.01177 

€ . 596 x 10-• 595.48 X 10-• 

7 a =i60mml...-l _ 
lJ = o. 3j 

j t ~ J t ♦ 0o = O. SM Pa 

E1=10000MPa h1= 150mm 
Interface 

Interface 2 

FIGURE 6 Typical uniformly distributed circular load on a 3-layer system 

Conclusions 

Multi-dimensional numerical integration technique has been used to 
obtain simple numerical solutions for stresses, strains and displac~ments 
due to distributed vertical and shear loads over rectangular and circular 
areas. 

Except in the vicinity of loading, where singularity problems arise, the 
matching between the analytical solutions a lready available and the 
numerical solutions presently developed is excellent, for uniform vertical 
as well as shear loading for the different shapes studied. 

However, when vertical stresses and strains arc computed at interfaces 
in 3-layered media, there is excellent correspondence. 

To minimise the discrepancies occuring in the stress/strain distribution 
descretization technique can be adopted. Such studies are in progress, 
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List of notations 

a 

axb 
E 

f 

h, 
n 
p 

R 

r 

w 

Wt 

x, y, z 
Xi, Yt 

Clz 

Ez 

" 

= radius of circular area 

= size of rectangular area 

= Young's modulus 
= the function to be integrated 

= equivalent thickness 
= number of integrating points 
= vertical or horizontal point load 

= y'x1 + yz + z2 

= polar co-ordinate for circular area 
= vertical displacement 
= weighting function values of integration points 
= cartesian co-ordinates of a point 
= co-ordinates of numerical integration points 

= intensity of uniformly distributed load 

= normal vertical stress 
= normal vertical strain 
= Poisson's ratio. 




