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Introduction

[na simplified approach to the rigourous elastic halfspace approach,

for the behaviour of a rigid circular surface footing (Figure 1) acted
upon by a dynamic excitation force, the elastic half-space model is
replaced by an equivalent model, represented by a mass, a spring and a
dashpot, which 1s then used as the basic model for analysing the motion
of the footing. The expressions for the equivalent spring constant (K), the
equivalent damping factor (D) and a dimensionless mass ratio (B), for the
various modes of vibration of the footing are given in Table 1. A perusal
of these expressions reveals that a change in the dimensions of a footing
alters its values of B, K ond D. Consequently this modifies the response
of the footing at resonance and other operating frequencies. A quantifica-
tion of such variations in the response of the footings has been attempted
in this paper. The approach is based on the lumped—parameter models
for the elastic half-space solutions.

Dynamic Response of Footings

The difference in the dynamic response of a footing arises fundamentally
from a change in its value of mass ratio, B. The mass ratio can be
affected in different ways, by a change in radius alone with the mass of
the system remaining the same, by a change in the mass without any
change in its radius or by a change both in the mass and the radius. The
study here, considers the effect of change in the radius and the mass of
the footing, separately. Using the principle of superposition, the approach
;:outl_d be used when there is a change both in the radius and mass of the
ooting.
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FIGURE 1 Rigid circular surface footing
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TABLE 1

Expressions for Mass Ratio, Spring Constant and Damping Factor
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Consider two footings, say 1 and 2, with radius and mass of r, and 1,
and ry and m, respectively. Following four case have been investigated
for vertical, sliding, torsional, and rocking modes of vibration.

Case—A : Constant force (or moment) excitation and the mass of the
system is constant.

ryFE Iy, My =y

Case—B : Rotating mass excitation and the mass of the system is constant
ryFErg s my = Ny

Case—C : Constant force (or moment) excitation and radius is constant
ry="ry; My 7= My

Case—D: Rotating mass excitation and radius is constant
ry = TFg 5 My FE N

Results and Discussions

Expressions for ratio of amplitude of displacement and that of resonant
frequency of footing 2 to that of 1 have been developed using appropriate
results reported in literature (Richart et al, 1970). Appendix I briefly
describes how a typical expression is arrived at. Table 2,3,4, and 5
present thq results respectively for vertical, sliding, torsional, and rocking
modes of vibration. In Tables 2 to 5, Qg represents :

the quantity Q — which can take values like 4, amplitude of
motion; B, mass ratio ; ®, frequency,

for i-th mode vibration — i taking values like z, x, § and ¢ for vertical
horizontal, torisonal, and rocking modes
of vibration respectively,
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TABLE 2
Vertical Vibration

Case A

Rlz = Xlz X:I3 (1)

1—Y:)2--(0.7225 Y./B
R, — x13 J ( ”:3) +( / 21)”3 o)
4 (1—7Y; Xz )2+(0.7225 Y Xz /Bzg)

R = 1f X Xf” e
Case B

.Rlz = Xz Xl' e (4)

R,z = Same as Equation 2

Ry Ts XY .. (5)
Case C )

R,z = Same as Equation 4

Fos o (1— Y2)24+(0.7225 Y:/Bx) 6)

e (1—X: Y2)*+(0.7225 X; Y:/Bzy)

Raz= lengz ans (7)
Case D

Rlx = Xls e (8)

Ry = Same as Equation 6

Ry: = Xge .. 9

Note :
Xz = Bzg,Bn

Y: = (wfw,a)?

Ry: = Azgm/Asym

Ryr = Azy[Azy

Ryz = wigm[waym

X1z = [(Bn—0.18)/(Bz,—0.18)]t/2

Xa: = [(B3;—0.36125)/B:,—0.36125)]1 /2
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TABLE 3
Sliding Vibration
Case A
" 4/3
Rpp = Xz X .. (10)
Lt 2
Ry — x13 \/ (1 1/1;)5) +(0.332 Yx/Bxlll)s dn
% (1—Yx Xx )2+0.332 Yx Xx | Bxs
2
Ror = 1(Xpx X . (12)
Case B
Ryx = Xx Xyx . (13
R,» — Same as Equation 11
" 1/3 n
Rax — kzx Xx L] (1 )
Case C
Ryx = Same as Equation 13
B (1—Y)2-+-(0.332 Y4/Bx) . (15)
_ (I— Yx X2)?4(0.332 Yx Xx/Bxy)
Ryx = 1/Xx Xy« .. (16)
Case D
Rl-\' = )‘-flx asu (17)
R,x — Same as Equation 15
I . (18)
Note
X:c = szfol
Yy = (‘U[wnn)z

R]x == Axgm//jxlm
‘R-_;_x o Axgl’A,\‘l

Ryx =

Xl.t’
Xgﬁ.‘

wxgm/wxlm
— [(Bsy—0.083)/(Bxy—0.083)]*"2
— [(Bxy—0.166)/(Bx,—0.166)] 72
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TABLE 4
Torsional Vibration
Case A
Ryg = Xg X1g X4p/X3g .. (19)
(1—Yg J+(Yy [ Y3p)
Ryp = Xe'\[ ey ity 3 S
a- pXg VY, X "1 X,p
1/2 1/6 21
Ryg = Xy X' (X X5 ) il
Case B
2/3
10 =X g Xpo Xy X3 - (22)
R,y = Same as Equation 20
1/6
R33 B (X43/X33)“2 (ng/Xﬂ ) G (23)
Case C
Ryg = X19 X4p/X39 . (24)
7 J (1—Yy )*+(Yg [ X3) .
2= NT—X, Y5) (X Yo | Xa0) (3%
Rag = (X30/ Xg Xgp)*'* (1/X29) .. (26)
Case D
Rip = X190 X4p/Xg X3g Ty
Ryy = Same as Equation 25
Rag = Xop (Xag/ Xy X3p)'7 . (28)

Xg = Bpy/Bg1; Yy = (w/wgyy)?

Rio = Aoam ! Agim 3 Rog = Agaldgy ; Rag = wppplwgy,

X19 = [(X34—0.25)/(X4—0.25)]1/3
X2g =[ (X39—0.5)/(X4p—0.5)]1 /2
X3p = (142 By)?*; Xg9 = (142 Byy)?
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TABLE 5
Rocking Vibration

Cuase 4
Rlsb = R X¢ XN, X%{XM

_ \’ (1Y, PH0.00Y, [Xs5;)
T N =Xy Yy IRIPH009 Xy ¥y TX, )

R3p = R (Xsy [Xy XeoysY''#/ Xay

Case B
Ryy, = Same as Equation 30
R3,)L,;3': R(Xﬁzﬁ /X*#'E - iz

Case C

Ryyy= Xgy X1y Xagy X3y

\[ (1— Y, *H0.09 Yy /Xgy)
Ry = N (1=%, 7, P+ 0.09 X, ;[ Xe,)

Rage— [(Xsy.| Xy Xey )V Xay

Case D
Ryy = Same as Equation 35
Ryy = Xoy (Xey | Xy X5y )

Note :

Xy, = Byp, [Bpy i Yy = (0]oy1y)?

Ryy = Ayom! Agim

Ry = Agz [ Ay

Ry = @ppm [ 0yim

X1y = [(X3y Byy — 0.0225)[(Xyy, Byp — 0.0225)]'72
Xoy = [(Xs5y —0.045)[(Xg; —0.045)]112

Xy = (14-Byg }* s Xgy = (1+Byp )*

Xsp= (48,1 Xgy = (148
R = (rifry)

. (29)

.. (30)

.. (31)

= (32)

.. (33)

.. (34)

.. (35)

.. (36)

. (37)

.. (38)
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for j-th footing—- j-taking values of either 1 or 2. 4w corresponds to
the resonant amplitude of motion, wym to the resonant frequency and s
the natural frequency.

For example :

By = indicates mass ratio of footing 1 in sliding mode of vibration.

Azm = Indicates the amplitude of displacement of footing 2 in vertical
mode of vibration during resonance. The corresponding
resonant frequency is @z gm.

Az = indicates the amplitude of displacement of footing 2 in vertical
mode of vibration during frequencies other than resonance.

A comprehensive list of notations is included in Appendix II.

Figure 2 shows the variation of R, with By, for different values of B,
for CASE—A (i.e. Equation 1). A replot of the same data as a variation
of Ry: with Bz,/B:, (where Bz, > B:) suggests the following generalised
relationship for any combination of B;, and By, :

Ryz = 0.66 (Bz,y/Bx)10.34 ...(39)
for CASE—A where B,, > B,

Figure 3 shows the variation of R,s with w/w;, for different combina-
tions of By, and B;,, for CASE-4 (and also for CASE-B). The peak point in
the curves are obtained by differentiating Equation 2 with respect to
w/wzyn, setting the resulting expression equal to zero and then solving it
by trial and error. The values e/wsy, at which the ratio R, tends to attain
a value of unity is obtained by setting Equation 2 equal to unity and
solving for the values of w/t:n.

For CASE—A the variation of Ry with B;, (Equation 3) for two
different values of Bz, is shown in Figure 4.

FIGURE 2 Variation of Ry, with B,, for Case A
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FIGURE 3 Variation of R,, with w/w,;,, for Case A and B

FIGURE 4 Variation of Ry, with B, for Case A
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Figures similar to 2,3, and 4 can be developed for CASE—B, C
and D also, for vertical vibration and for all cases for the other three
The following discussions are based on a perusal of

all such figures which have been made but not presented here.

modes of vibration,



DYNAMIC RESPONSE OF FOOTINGS 179

It may also be noted that in the case of rocking vibrations, for CASE—
B, the equations in Table 5 are valid only when the axis of horizontal
force causing rocking is at the same vertical distance from the base for

both the footings 1 and 2. However, if as a result of change in B, the
vertical distances are different, say 2, and Z, for footings 1 and 2

respectively, then the Equations for CASE—B in Table 5 should be
multiplied by (Z,/Z,).

Resonant amplitude of motion

The results show that except in the case of torsional mode of vibration
for CASE—D, in_all other cases and for all modes of vibration,
the resonant amplitude of motion (displacement or rotation) increases as
the corresponding mass ratio, B, of the footing increases and vice-versa.
In CASE—A and CASE—B (where m; = m,) the increase in the value of
mass ratio is brought about by a reduction in the radius of the footing.
This reduces the values of both the damping factor and the spring
constant. The effect of each is to increase the amplitude of motion. It
can thus also be stated that increased contact pressure increases the
resonant amplitude of motion of a footing. It is further seen that this
effect is remarkable for rotational modes of vibration than for translational
modes. This may be attributed to the large decrease in damping in
rotational modes of vibration.

For torsional mode of vibration for CASE—D the value of area
moment of inertia, Iy, increases as the value of By increases. This causes

the decrease in the resonant amplitude of the footing.

Amplitude of motion at conditions other than resonance

Examination of Figure 3 indicates as though the amplitude of motion
increases if the mass ratio of the footing increases, for all frequencies of
excitation force. But this is not true always, even for vertical vibration.
For example, consider Figure 5 which depicts the variation A4 aa/er with
w/wen for CASE—C (and also CASE—D). In this case it is evident that
the increase in mass ratio results in an incréase in the amplitude of rotation
only up to a certain frequency after which the amplitude of rotation
becomes less than that for the footing with lower mass ratio. Hereagain,
the effect of change in mass ratio on the response of footings is more
significant in rotational modes of vibration than in translational vibrations.

Resonant frequency

For all modes of vibration and for all cases the resonant frequency
decreases as the value of the corresponding mass ratio increases.

Comparison with experimental observations

Experimental data on vertical vibration, for CASE—B and CASE—D,
have been collected from literature (Novak 1970, Anandakrishnan and
Krishnaswamy 1973, Sridharan and Raman 1977).  Using appropriate
equations the R;. values and R, values have been computed. Figures 6
and 7 show the comparison of these theoretically predicted values with
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FIGURE 5 Variation of A ..IA" with w/ay,, for Cases Cand D

those of actually measured values. The agreement between theory and
experiments is good in the case of resonant displacements but not as much
so in the case of resonant frequencies. Qualitatively, the increase in the
mass ratio decreases the resonant frequency but its actual value is more
than what is predicted by the theory.
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Comparison of theoretical and experimental ratios of resonant
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FIGURE 7 Comparison of theoretical and experimental ratios of resonant frequencies

Experiments show

(Sridharan and Raman.
compared to Lysmer’s theoretical value.

1977) little damping

Hence, direct use of elastic half-

space model will predict higher than actual displacements. This limitation
can be overcome now by considering the ratio of displacements.

Conclusions

Based on elastic half-space "model,

mathematical expressions to

quantify the variation in the dynamic response of footings have been deve-
loped. The following are the main conclusions from the study.

1. Except in the case of torsional mode of vibration for CASE—D
in all other cases and for all modes of vibration the resonant
amplitudc of motion (displacement or rotation) increases as the

corresponding mass ratio, B, of the footing increases.

This is

more significant for rotational modes of vibration than for transla-
tional modes.

2. The amplitude of motion during conditions other than resonance,
in many instances increases with an increase in the mass ratio only
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up to a certain frequency. Beyond this the amplitude of i
motion
becomes’ less than that_ for the footing with lower mass ratio.
Hereagain, the effect is comparatively more significant for
rotational modes of vibration than for translational modes.

3. For all modes of vibration and for all cases the resonant frequency
decreases as the value of the corresponding mass ratio increases,

4. Comparison with experimental results for vertical vibration
indicates that the theoretical quantification agrees very well in
the case of resonant displacements than in the case of resonant
frequencies.
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Appendix—1
Comparison of resonant amplitude of vertical dis placement— CASE—A’

From fundamental theory the resonant amplitude of displacement of
footing 1 and 2 arc given by Equation 40 and 41, respectively (Richart, et.
al. 1970)

B Qa (1___”) le e 40
Az = -+ ZI-_(JTI (.85 J_B,l—--().ls ( )

_ Oo(1-p) Bea H
Awn = 467 085 45018 =

From the definition of mass ratio ;
Fufty = (Bzy/By)3 since m; = m,
It can be now shown that
Azgm[Azym = (Bzy/B2))* 7 { (By—0.18)/(Bz,—0.18) } 112

i.e. Rlz = Xlz Xg i3 .(42)
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¥ Appendix—II Notations

A4
Aym
By
D;
G
Ky

my

amplitude of motion of footing j in i-th mode of vibration

resonant amplitude of motion of footing j in i-th mode
of vibration

mass ratio of footing j in i-th mode of vibration

= damping factor in i-th mode of vibration

I

shear modulus of soil
spring constant in i-th mode of vibration

mass of footing j

= radius of footing j

amplitude of constant force excitation

resonant frequency of footing j in i-th mode of vibration
natural frequency of footing j in i-th mode of vibration
sliding vibration

vertical vibration

torsional vibration

rocking vibration

Poisson’s ratio of soil





