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by 
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Introduction 

The p_roblem of _d_ete~inat(on of ultimate . beari_ng capacity of a strip 
footing on sem1-mfimte soil mass has been mvest1gated by many investi

gators (Fellenius 1929, Terzaghi 1943, Meyerhof 1951, Sheild 1954, Brinch 
Hansen 1961, Sokolovskii 1965, Chen and Dividson 1973.) using the 
methods of limit equilibrium, slipline and limit analysis. The limit equili
brium method adopted for <{, = 0 soil assumes a semi-circular section of 
soil mass which fails by ro tation about its centre located at the corner 
of the footing. It has been possible to predict the fai lure load and the 
geometry of the failure surface by taking moments of all the forces about 
the centre of rotation and equating them to zero. Button 's (I 953) ana lysis 
shows tha t the magnitude of the ultimate bearing capacity is 5.51' t imes 
the cohesion for a surface footing in which case the centre of the failure 
surface lies not at the corner of the footing, but at a radial d istance of. 
1.0881 t imes the width from the outer corner of the footing and t he arc 
makes a n a ngle of 2.33 radians at the centre (Figure I). Chen's (1 9 75) 
analysis of the same problem indicates that, using the upper bound method 
of limit analysis, the ultimate bearing capacity is found to be 5.52 times 
the cohesion and the critical circle makes an angle of 2.33 radians at the 
centre. Further it is seen that the centre of this critical circle lies above the 
inner corner of the footing. Hence Button's analysis, which is similar to 
Fellenius solution obtained from the method of limit equilibrium, agrees 
with the Chen's solution obtained by the method of limit analysis. 
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FIGURE 1 Single Footing 
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~tudie_s conducted by Stuart (1962), Mandel (1963,1965) and several 
other mvest1gators reveal th~t the loa~ carrying capacity of a footing is 
affected by the presenc~ ?f adJacen! footing (s). In order to investigate into 
the problem of determmmg the ~lt1m~te bearing capacity of a strip footing 
on th~ surface _of a pure!y cohesive soil mass when another strip footing 
carrymg certam load 1s located nearby, the following assumptionsare 
made. 

( I) The slip surface is an arc of a circle having its centre at a radial 
distance of r from the outer corner of the footing. This arc makes 
a central angle of 28. 

(2) The failure one being symmetrical about the centre of the circle, 
vertical line passing through its centre of gravity passes through the 
centre of the circle. Therefore the weight of the soil mass within 
this zone does not cause any moment about this centre. 

(3) Soil mass on the outer side of the footing loaded to failure is 
prevented from heaving and consequent failure. (A wall footing 
with additional construction for flooring on one side represents 
such a situation.) 

( 4) Shear stress along the rupture surface is uniform and equal to 
cohesion in magnitude. 

(5) The adjacent footing carrying a load of p/unit area acts as a 
surcharge only. It does not develop any failure surface of its own. 

The conventional method of limit equilibrium has been adopted here to 
th obtain the solution. 

Analysis 

Case I 

Both the footings are no one side of the centre of the circular arc. 
(Figure 2) 

Taking moment about 0, 
26 

qu11 B (r sin 0- B/2) + pB (r sin6- B/2-SB)- J c r2 d8 
0 

0 

... ( l) 

1/ 28 
{ crd 8 

FIGURE 2 Case I Two footings 
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where, 

qu11 = ultimate bearing capacity of footing, 

B - width of footings, 

r = radius of circular rupture surface, 
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0 = half of the angle subtended by the rupture surface at its 
centre, 

p = load intensity on the adjacent footing, 

S = Spacing between the footings/width of the footing, 

and c = cohesion. 

On simplification, 

2 c R2 8 - pR sin 0 + 0.5 p + Sp q,,,, = _____ .;..._ _____ :...._ _ ___c_ 

R sin 8-0.5 

where R = r/8 

Since 8 = 0, q.1,= c Ne , 
where Ne is the bearing capacity factor. 

or, 
2 R2 0- AR sin 8 + 0.5 A+ SA 

Ne = 
R sin 8-0.5 

where A= p/c 

... (2) 

.. , (3) 

... (4) 

... (5) 

In order to determine the values of R and 8 for the minimum value of 
Ne, i.e. for the most critical arc, the expression for Ne is differentiated with 
respect to R and 8 separately and equated to zero. 

On simplifica.tion 

R __ l ± ,.{ I + A S sin2 8 / 6 
- 2 sin 8 

Also o Ne I o 8 = 0 

On simplification. 
l ± 4° l+ 8 SA cos 6 (sin 6 - cos 8) 

R = 4 (sin 8 - 6 cos 8) 

. .. (6) 

... (7) 

... (8) 

... (9) 

The magnitudes of R and 8 for the most critical arc are (ound out_ by 
computing the magnitudes of R for different values of ,f, usmg Equ_ati<?ns 
7 and 9, and plotting the same to determine the values of Rand 8 sat1sfymg 
both the equations. 

Validity of the solution 

For both the footings to remain on one side of the centre of the 
circular arc, 

or 

SB < r sin 8 - B/2 

S < R sin 8 - 0.5 

... (10) 

,., (11) 
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Hence the values of R and 0 satisfying the relationship as stated in 
Equation 11 are only considered for determining the .value of Ne, 

Case JI 
The footings are on either side of the centre of the circular arc. 

(Figure 3) 
Taking moment about O, 

28 
qur, B (r sin 0 ,- B/2) f c r2 d 0 + p B (SB + B/2 - r sin 0) ... (12) 

0 

or, on simplification, 
2 c R2 9 - P R sin 9 + 0.5 P + S p ... (13) 

quit= R sin 0 - 0.5 

Since, for 0 = o, quit = c Ne 
2 R2 8 - AR sin 9 + 0.5 A + SA 

or Ne = R sin 8 - 0.5 
... (14) 

It is seen that the expression for Ne in both the cases, i.e. Eq.uations 4 and 
14 are similar. Hence, for Case 11, the expression for R satisfying 
a Ne / a R = 0 and a Nc/o 0 = 0 are also similar to Equations 7 and 9 
respectively. 

Validity of the solution 
In order that the footings shall not remain on one side of the centre, 

SB>rsin0-B/2 ... (15) 
or S > R sin 0 - 0.5 .. . (16) 

Case JJI 
When there is no load on the adjacent footing. 

(p = 0) 
In the Equations 4 and 14, by substituting O in place of A (= p/c), the 
equations reduce to 

2 R2 0 
N.= -----

R sin 8 = 0.5 
.. . 17) 

The following numerical values are taken into account to study (i) the 

0 

FIGURE 3 Case 11 Two footings 

28 / .£ crd8 
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~hange in t~e geometry of the failure surface, (ii) the nature of variation 
in th~ magnitude of !'!_c due to t!1e presence of adjacent footing carrying 
certam load, and (m) change m the magnitude of Ne due to the presence 
of an unloaded adjacent footing, 

c = 0.28 kg/cm2 

p = I .50 kg/cm2 

S = 2.00 to 5.50 at an interval of 0.50. 

From the calculated values of R at various 8 values using the Equations 
7 and 9 the values of R and 8 satisfying Equation 6 and 8 at different 
footing spacings are computed. The magnitudes of Ne at different 
footing spacings are calculated using Equations 4. Considering the 
limitations as stated in Equations 11 and 16, it is seen that only at a 
spacing of 2.00 B c/c, the conditions for case I is satisfied. In the rest 
of the spacings case If is satisfied. 

The effect of an unloaded adjacent footing on the bearing capacity 
factor is determined by comparing the magnitude of N e using the Equa
t ion 17 keeping the geometry of rupture surface same as in case of a 
loaded adjacent footing. A factor designated as-Interference Factor is 
calculated as the ratio of Ne for p =I=- 0 and Ne for p = 0. The calculated 
values of R critical, 8 critical, Ne (p =I=- 0), N e (p = 0) and Interference 
factor for different footing spacings have been presented in Table l . 

TABLE 1 

Computed Magnitudes of Bearing Capacity and Interference Factor for 
Various Footing Spacings _ 

s R cr ef>cr No 
p = 1.50 

Ne Interer. Remarks 
p = 0 factor 

2.00 2.7253 1.19 8.6291 8.7155 0 .9901 Case I 

2.50 2.9675 1.19 9.8780 9.3059 1.0615 

3.00 3.1876 1.19 11.0129 9.8478 1.1183 

3.50 3.3903 1.19 12.0601 J0.3504 l .1652 

4.00 3.5805 1.19 13.0373 10.8239 1.2045 Case II 

4.50 3.7588 1.19 13.9570 11.2693 1.2384 

5.00 3.9279 1.19 14.8282 11.6941 1.2729 

5.50 4.0892 1.19 15.6578 12.0966 1.2941 

Conclusion 

The following conclusions are drawn from the analysis 

The geometry of the rupture surface is dependant on load 
adjacent footing, cohesion, and spacing between the footings. 

intensity of 
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With the increase in spacing between the footings, the magnitude of 
Rc,i1i<a1 increases, while the central angle of the rupture surface (2 80,1,ical) 
remains constant. 

The locus of the centre of the circular rupture surface is a straight line 
passing through the outer corner of the footing and inclined at an angle of 
e,,,1,1cal with vertical. 

As spacing between the footings increases, the adjacent footing assisting 
failure at closer spacing, resists failure and increases the ultimate bearing 
capacity. This is evident from the increase in the magnitude of 
Interference factor from less than unity to greater than that as spacing 
increases. 

The magnitude of Ne for p = 0 case is more than 5.51 in all footing 
spacings investigated in this analysis. This indicates that the _unloa~ed 
adjacent footing resists the movement of failure zone, thereby mcreasmg 
the load carrying capacity of the footing loaded to failure. However, the 
effect of an unloaded footing on the geometry of failure zone needs further 
investigation. 
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