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Introduction

The stress distribution and displacement under shallow foundations are

generally determined as the corresponding distribution in a linear,
homogeneous, isotopic elastic medium with boundary condition approxi-
mating those of the actual problem of interest. Whereas the soil medium
usually departs from such idealised behaviour. Hence it should be generally
treated as non-linear, non-homogeneous and anisoiropic, There are solu-
tions available for some very simple cases (Michell 1500, Frohlich 1934,
Wolf 1935, Westergaard 1938, Holl 1940, Burmister 1947, Taylor 1948,
Burmister 1956, Klein 1956, Barden 1963, Gibson 1967, Huang 1968, Gibson
and Sills 1971, Bushan and Haley 1976, Babu Shankar 1977). At an advanced
level, the finite element method incorporating more realistic conditions
has been used successfully (Duncan and Chang 1970, Burland, Sills and
Gibson 1973, Carrier and Christian 1973). Butmost solutious are too com-
plex for routine use in design office. Evidently there is a need for better and
simpler solutions which take into account the departures in the behaviour
of soil from the idealised behaviour.

Hruban (1958) examined the effect of non-linearity and non-homo-
geneity for a point load acting on the surface of a half-space (Figure 1). He
concluded from field observation that the actual curves representing the
ratio of the deflection to the applied load corrospond approximately to
the non-linear relation.

€ = (o) (1)
where, ¢ == a constant, characteristic of the material
P 1 m = 2 s 2 —€ 2 %
€= 7 ooy (@€ HE-erHE—e)

o= [ (e Hormet o :

€,, €,, €3, = principal strains
o,, 0, 6, = principal stresses
n = a constant
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FIGURE 1 Case of axial symmetry

m == reciprocal of Poisson’s ratio = 1 i

Taking the above non-linear relation into account, Hruban derived the
expression for a radial stress og and for displacement u and v in the R
and ¢ direction respectively, for axially symmetric case for point loading.
He considered in his solutions different values o_f n, different ty;:es of non-
linearity and different values of m. Table 1 gives the Hruban s relations
between €;, m, #, v and og. The particular case of n =1, Equation 1 rep-
resents Hooke’s law, ¢ being the Young’s modulus of eIastlcgty. Wuh that
the well known expression given at Case No. 1 in Table 1 is obtained. In
consequence of pressure produced by the weight of the soil itself, the
modulus of deformation of natural deposits increases sometimes with
increasing depths. Case No. 6 and 7 of Table 1 give solutions for such a
type of non-homogeneity.

If the modulus of elasticity, LF, is not constant but is a function of co-
ordinates, i.e. if LF = f (R, $), the solutions, as far as a simple radial
distribution is possible, can be obtained, Hruban obtained solutions for
stresses and displacements for some cases of heterogeneity which are
reported in Table 2.

Considering the necessity for simple solutions which take into account
some of the departures from idealised behaviour of soil, an attempt has
been made in this paper to develop simple enough expression for comput-
ing stresses and displacements based on the work of Hruban. The expres-
sions for vertical stresses and displacements due to concentrated and
distributed loading have been developed separately for various cases of
non-linearity and variable modulus of elasticity. The investigations and
the results are presented in the following sections.

Vertical Stress Below Loaded Areas

In order to find expressions for vertical for stress (o:), it is desirable to
transform the expressions for stresses and displacements in spherical co-



Hruban’s Solutions for Stresses and Displacements Assuming Parabolic Deformation Law (Nonlinear Case)
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TABLE 2
Hruban’s Solutions for Stresses and Displacements for Variable Modulus of Elasticity
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ordinate system given in Tables 1 and 2 into cylindrical co-ordinate sys-
tem, The expressions for o for concentrated point loading for the case
of non-linearity and variable modulus of elasticity are presented in Tables
3 and 4 respectively. These Tables indicate that for the chosen cases of
non-linearity and non-homogeneity the expressions for g and o: are still
found to be linear functions of external load P, The expression for the
vertical stresses for concentrated point loading are now integrated over the
loaded areas to find the vertical stress at any point within the medium.
lEollution's have been obtained for a number of cases which are explained
elow.

Stresses in Nonlinear Medium (Table 3)

(/) The expression for total vertical stress o zyey A @ point on the axis

of loading at a depth z below the surface of a circular loaded
area of radius 4 with a uniform load intensity of ¢ per unit area
1s given as

P2ncy = 9 1z ey «(2)
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Modified Hruban's Solutions for Vertical Normal Stress (g,) due to Concentrated Point

TABLE 3

Loading for Parabolic Deformation Law (Nonlinear Case) Given in Table 1
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where IZ‘VCU — dimensionless influence factor for vertical stress

under the centre of uniformly loaded circular area
in nonlinear medium, a function of the dimension-

less parameter L ( = A/Z)

Table 5 presents the expressions for the influence factors for the
different cases.

(ii) The case of parabolic loading on a_circ_:ula_r area has been
investigated. The expression for the loading is given as

G [1—- (% )2] .(3)

where ¢r = intensity of loading at distance r from the centre of
circular loaded area and

I

gr =

gmax = maximum intensity of loading at the centre of the
circular loaded area,



272

INDIAN GEOTECHNICAL JOURNAL

TABLE 4

Modified Hruban’s Solutions for Vertical Normal Stress (o,) due to Concentrated

Point Loading for Variable Modulus of Elasticity Given in Table 2
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(iii) The vertical stress UZNU at a depth z below the corner of a
R

The vertical stress o, o at a point at a depth z below the centre
NCP

of the circular area is given by the expression

where g
I

Zncp

g
“Nep

:q]z

NCP

w.(4)

the mean load intensity on the loaded area = guax/2
dimensionless

influence factor for vertical stress

under the centre of a circular area with parabolic
loading in a nonlinear medium.

Table 6 gives the expressions for the influence factors for the

different cases.

uniformly loaded rectangular area is given by the expression,

c =gl
Zvur - 112y

UR

+.(5)
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TABLE 5

Influence Factors for Vertical Stress (o ZNCU) Under the Centre of a Uniformly
Loaded Circular Area for Nonlinear Cases Given in Table 3
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where I, = dimensionless influence factor for vertical stress

under the corner of a uniformly loaded rectangular
area, a function of dimensionless parameters

M(=a/b)andN(=z/b).
The expressions for IZNURfor the different cases are shown in
Table 7.
Stresses in Nonhomogeneous Medium (Table 4)

The expression for vertical stresses o: at any point vertically below
the centre of a loaded circular area for all cases of variable modulus of
elasticity given in Table 4 can be obtained as,

o oy = 11z, (for uniform loading) ...(6)



Influence Factors for Vertical Stress (o 3

TABLE 6 ) .
) Under the Centre of a Circular Area with Parabolic Loading for

Nonlinear Cases Given in Table 3
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TABLE 7

Influence Factors for Vertical Stress (o e ) Under the Corner of a Uniformly Loaded
RU

Rectangular Area for Nonlinear Cases Given in Table 3
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9z

or =4 IZVCP (for parabolic loading) ...(7)

where IZVCU and IZVCP are dimensionless influence factors, The expressions
for these are presented in Table 8.
The expression for the vertical stress L2 below the corner of a

uniformly loaded rectangular area in terms of a dimensionless influence

factor I can be obtained as
VRU

_ (8
92 p g IZVRU

Table 9 presents the expressions for I - for the different cases.

Vertical Displacement Below Loaded Areas

ertical displacement p: for concentrated point
loading for the cases of non-linearity and variable modulus of elasticity

are presented in Tables 10 and 11, respectively. The solutions developed
for the various cases using these expressions are explained below.

The expressions for v

Displacement in Nonlinear Medium (Table 10)

In the expressions for vertical displacement given in.Table 10, thp
term P is taised to some power (index). Therefore direct integration 1s
not possible in these cases. The method used in the analysis 1s explained
by Shahi (1980). This method has also been used to obtain the vertical
displacement under the centre of uniformly loaded circular area for Case
No. 1 (linear case) of Table 10 and the same result as given by Egorov
(1958) has been obtained proving the correctness of the approach.

The vertical displacement - at a point at depth z below the centre

of a uniformly loaded circular area can be expressed in terms of a

dimensionless influence factor K, . The expression for p, and
NCU NcU

KZ

s for the various cases are presented in Table 12,

Displacement in Nornhomogeneous Medium (Table 11)

 The displacement in all these cases is a linear function of the load and
is as such amenable for direct integration. The expressions for vertical
displacement below the centre of a circular loaded area are developed in
terms of the dimensionless influence factor szcufor uniform loading

and KZVCP for parabolic loading respectively. Table 13 gives the

expressions for displacement and the corresponding influence factor,
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Influence Factors for Vertical Stress Under the Centre of a Circular Loaded Area for Uniformly Distributed (o = ) and
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TABLE 9

Influence Factors for Vertical Stress (o . ) Under the Corner of a Uniformly
VRU

Loaded Rectangular Area Considering Variable Modulus of Elasticity for
Cases Given in Table 4
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TABLE 10
Modified Hruban’s Solutions for Vertical Displacement (>, ) due to Concentrated Point Loading for Nonlinear Cases Given in Table 1
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TABLE 11

Modified Hruban’s Solutions for Vertical Displacement Due to Cencentrated Point Loading for Variabie Modulus of Elasticity Given in Table 2
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TABLE 12

Expressions and Influence Factors for Vertical Displacement Under the Centre of a Uniformly Loaded Circular Area for
Nonlinear Cases Given in Table 1
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TABLE 12—(Continued)
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TABLE 13

Expressions and Influence Factors for Vertical Displacement Under the Centre of a Circular Area for Uniformly Distributed and Parabolic Loading
Considering Variable Modulus of Elasticity Given in Table 2
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TABLF 13—(Continued)
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Similarly in the case of displacement below the corner of a uniformly
lqaded' rectangllllar area, the displacement is expressed in terms a
dimensionless influence factor K, . Table 14 opresents these

VRU

expressions.

Results

Taques 'i to 14 present a number of expressions which will aid in the
dctermmatmq of vertical stress and settlement below certain loaded areas,
For a convenient use of these expressions, it will be desirable to present
the results in the form of charts for a range of parameters. The values of
the influence factors have been computed using ICL 1909 computer and
the results are given in the form of graphs by Shahi (1980). Where the
influence factors could not be obtained in closed form solutions,
numerical integration using Simpson’s one-third rule has been adopted.
Only a few typical results are presented here in Figures 2 to 10.

Discussions

Vertical Stresses

It can be shown that the expressions for vertical stresses presented in
Tables 3 and 4 take the form of Frohlich’s equation for particular values
of stress concentration factor k. Frohlich’s equation is as follows:

Pk 1 .. 9)

%= % 5y TR

Where k = Frohlich’s stress distribution factor. The values of k
corresponding to the different cases of non-linearity and variable modulus
of elasticity are showd in Table 15 and Table 16 respectively. K varies
from 2 to 3 in non-linear cases and 2 to 5 in the case of variable modulus
of elasticity. In Frohlich’s solution Kk = 3 corresponds to the case of a
linear medium. In Tables 15 and 16 the expression for ¢: due to Hruban
also correspond to that of a linear medium when Kk = 3 (cases 1 and 7 of
Table 15 and Cases 2 and 3 of Table 16). This observation suggests the

following:-
(@) The solution developed for cases of nonlinearity and variable
modulus of elasticity can be used in the case of anisotropic soils
also.

(b) The vertical stress distribution for a state of non-linearity would
be identical to another state of variable modulus of elasticity or to
another state of linear elastisity (or vice-versa). Sometimes a
combination of these is also possible. For example, the stress
distribution for case 6 of Table 15 which is a case of non-linearity
cum uon-!lompgcneity, will be identical to the stress pattern in a
anisotropic soil medium for which k = 2.25.

A perusal of the various figures indicate the following:

(a) The different relationships considered by Hruban for non-linear
cases indicate that there is little likelihood of k being greater
than 3. In such cases the stresses below the loaded area are less
than that given by Boussinesq’s solution. (e.g. Figure 2).



TABLE 14

Expressions and Influence Factors for Vertical Displacement Under the Coraer of a Uniformly Loaded Rectangular Area

Considering Variable Modulus of Elasticity Given in Table 2
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FIGURE 2 Influence factor for vertical stress under the centre of a uniformly loaded
circular area for nonlinear cases given in Table 3
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FIGURE 3 Influence factor for vertjcal stress under the centre of a uniformly loaded circular
area for cases of variable modulus of elasticity given in Table 4.
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FIGURE 4 Influence factor for vertical displacement u_nder'the centre of a uniformly
loaded circular area for nonlinear cases given in Table 10

(b) The vertical stress below a loaded area on a non-homoenous
medium can be either greater than or less than that given by
Boussinesq’s solution (e.g. Figure 3), depending on the value of
K being more than 3 or less than 3 respectively. However, the
type of expressions chosen by Hruban for LF (ie. variable
modulus) are generally for increasing modulus with depth and for
almost incompressible soil. For such type of soil the vertical
stress is more than that given by Boussinesq’s so[utlon. But a
particular type of non-homogeneity which also includes non-
linearity (case 6 of Table 15, Figure 2) gives stresses lower than

those given by Boussinesq’s equation.

Withm = 3and deformation modulus varying linearly with depth Klein
presented solution for vertical stress below the centre of a circular footing.
The comparison of Klein’s influence factors with those of Cases 2 and 7 of
Table 8 (modulus increasing linearly along radial direction and m = 3) is
presented in Table 17. Among these three, Case 2 is for the least
compressible medium and Case 7 is for the most compressible, with
Klein’s medium being in between cases 2 and 7 in compressibility. From
the influence factors listed in Table 17, it is evident that the stresses
transmitted in the medium depend on the deformability of the medium.
Lesser the compressibility, lesser are the stresses.
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FIGURE 7 Influence factor for vertical displacement under the centre of a uniformly loaded
circular area for cases of variable modulus of elasticity given in Table 11

TABLE 15

Values of Frohlich’s Stress Concentration Factor for Vertical Stress due to Concentrated
Point Loading for Nonlinear Cases Given in Table 3

Frohlich stress
Case &) m o concentration
No. factor (K)
0)’ ) 3) 4) (5)
o 3P
L1 2 Tn R .
a, \3/2 4p z8/3
5 ('E' ) a . 4o 2.67
g g Pz
3 (—g) 3 TR 2
- 5P z5/2
¢+ (7) 4 dm RO 2
: \3/2 P22
s (%) S :
o; \2 d \1/2 Qp 294
s (2(5) 35 g R e
6 \3'2 7 d \1/2 3Pz
¥ (7) (_z—) g In Ko )
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FIGURE 8 Influence factor for vertical displacement under the centre of a parabolically
loaded circular area for cases of variable modulus of elasticity given in Table 11

Expressions in Table 5, 6 and 7 for cases of nonlinearity indicate
that a change in the value of m or Poisson’s ratio has no effect on
vertical stresses (Cases 6 and 7). But when the medium is non-
homogeneous (Cases 1 and 2 and Cases 6 and 7 of Tables 8 and 9) the
value of Poisson’s ratio influences the vertical stresses. It can be
observed from numerical calculations that a decrease in Poisson’s ratio
increases the vertical stress.

Vertical Displacements

From Figures 4, 5 and 6 it can be seen that an increase in the value of
mora decrease in Poisson’s ratio for the same case of non-linearity
causes an increase in displacement.

The results in case of non-homogeneous medium reported in Tables
13 and 14 for Cases 1,2,6 and 7 are noteworthy. These are cases in
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FIGURE 9 Influence factor for vertical displacement under the corner of a uniformly
loaded rectangular area for case of variable modulus of elasticity given in Table 11.

TABLE 16

Values of Frohlich’s Stress Concentration Factor for Vertical Stress due to Concentrated
Point Loading for Variable Modulus of Elasticity Given in Table 4

C Frohlich’s stress
1\? - LF = F(R, v) m oz concentration
i factor (k)
(1) (2 () (4) (5)

=2
1 E, R ) it 2
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EO zZ 3P 23
. (S . 2m R .
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2P 24
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FIGURE 10 Influence factor for vertical displacement under the corner of uniformly
loaded rectangular area for cases of variable modulus of elasticity given in Table 11.

TABLE 17

Comparison of Klein's Influence Factors for Vertical Stress Under the Centre of a
Uniformly Loaded Circular Area with those of Cases 2 and 7 of Variable
Modulus of Elasticity Given in Table 8

& I 2y by .Klein’s I - - by case 2 I Zcw by case 7
No Alz solution of Table 8 of Table 8
' (E = F,2) (E = E, R) (F = E,cosp)
| @ (3) 4) ()
1 a 1.000 1.000 1.000
2 4 0.996 0.985 0.999
3 2 0.960 0.910 0.982
4 1 0.750 0.646 0.823
5 0.5 0.360 0.284 0.427
6 0.2 0.077 0.057 0.093
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which modulus of deformation increases linearly along the radial

directions. Tt can be noted that the displacement is independent of the
size of the foundation in these cases.

) T}le comparison of the influence factors for Cases 1,2, 6 and 7 shown
in Figures 78,9 and 10 reveals the following. Cases 1 and 2 have
identical expression for modulus of deformation, with the latter having a
higher value of m than the former. The same is true for the combination
of Cases 6 and 7. Because of the higher value of m the latter cases show
a higher displacement than the former. Between the two combinations of
cases, Cases 6 and 7 have a higher displacement than Cases 1 and 2. This
is because, the modulus increases at a slower rate for Cases 6 and 7 than
for Cases 1 and 2.

Conclusions

Hruban’s solutions for stresses and displacement for point loading in
non-linear and non-homogeneous soil medium have been extended to
circular loaded areas with uniform and parabolic loading and to
rectangular areas with uniform loading. The expressions for vertical
stresses and displacements in all cases are expressed in terms of non-
dimensional influence factor which is again a function of dimensionless
parameters. To facilitate a convenient use of the different expressions
and also for a better appreciation of the results, the influence factors are
presented in the form graphs for a useful range of variation of the
parameters. It has been demonstrated that the solutions for stresses
developed herein for cases of non-linearity and variable modulus of
elasticity can be used for anisotropic soils also. The vertical stress and
displacement are shown to depend upon the value of Poisson’s ratio.
Lower the Poisson’s ratio, higher will be the vertical stress and the
associated vertical displacement, Similarly a decrease in deformation
modulus also causes an increase in vertical stress at any point,
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Notations

A
a
b

I
‘Nep

IZNCU

I
ZNRU

vce

== radius of the circular loaded area

= half the length of rectangular loaded area
half the breadth of rectangular loaded area
= constants, characleristic of the material

= Young’s modulus of elasticity at surface

= modulus of deformation = a,/€;

= a constant

= influence factor for vertical stress under the centre of a circular
area for parabolic loading for nonlinear cases

= influence factor for vertical stress under the centre of a uni-
formly loaded circular area for nonlinear cases

= influence factor for vertical stress under the corner of a uni-
formly loaded rectangular area for nonlinear cases

= influence factor for vertical stress under the centre of a circular

area for parabolic loading considerin variabl
elasticity g variable modulus of
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]zycu = influence factor for wvertical stress under the centre of a
uniformly loaded circular area for variable modulus of
elasticity

Iz,.., = influence factor for vertical stress under the corner of a unifor-
mly loaded rectangular area for variable modulus of elasticity

Kz, ., = influence factor for vertical displacement below the centre of a
uniformly loaded circular area for non-linear cases

KzV cr = influence factor for vertical displacement below the centre of a
circular area with parabolic loading considering variable
modulus of elasticity

szc g = influence factor for vertical displacement below the centre of a
uniformly loaded circular area for variable modulus of elasticity

KZVRU = influence factor for vertical displacement below the corner of a
uniformly loaded rectangular area for variable modulus of
elasticity

L — dimensionless parameter, 4/z

M = dimensionless parameter, a/b

m = reciprocal of Poisson’s ration, I/u

N = dimensionless parameter, z/b

n = a constant

P — concentrated vertical load

q = average intensity of loading

qr — intensity of loading at distance r from the centre of a circular
area for parabolic loading

Gmax — maximum intensity of loading at the centre of a circular area

for parabolic loading (=29)
R, 9, = spherical co-ordinates
r, 0, z = cylindrical co-ordinates
— displacements in R-and g-directions respectively, for axially
symmetric case due to point loading
€ = (ai/c)"
Pz = vertical displacement due to point loading
— vertical displacement below the centre of a uniformly loaded

", v

Pzyey )
circular area for non-linear cases

Py = vertical displacement below the centre of a circular area with
parabolic loading considering variable mouduls of elasticity

. vertical displacement below the centre of a uniformly loaded

circular area for variable modulus of elasticity

By = vertical displacement under the corner of a uniformly loaded
rectangular area for variable modulus of elasticity
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oz = vertical stress due to point loading
= verl:cl:al stress under the centre of a circular area for parabolic
loading for non-linear cases
Ozycy = Vertical stress under the centre of a uniformly loaded circular
area for non-linear cases
vertical stress under the corner of a uniformly loaded rectan-

a,
ZNC P

l

gz -
NRU .
gular area for non-linear cases
az = vertical stress under the centre of a circular area for parabolic
rcp N . . -
loading considering variable modulus of elasticity
Gz = vertical stress under the centre of a uniformly loaded circular
vcu . .
areca for variable modulus of elasticity
oz = vertical stress under the corner of a uniformly loaded rectan-
VRU . .
gular area for variable modulus of elasticity

— Frohlich’s stress concentration factor





