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JT is diffi.c1;1lt to d~ive a pile so ~hat i~ is absolu_tely strai~~t. . Tn most 
foundation proJects where driven pipe or cast-111-place ptlmg 1s used or 

where the piling is installed in long lengths, it is commonly found that 
some of the piles get bent during installation. There were instances in 
which two piles formed a conjuctive (U) so that one rose while the other 
was driven down and vice versa (Johnson, 1968). According to Cummings 
(1956), piles are sometimes distorted into long pitch helical curves, some­
times into long sweeping bends and occasionally into sharp bends, called 
dog-legs. Hanna (1968) investigated long H-piles and found that very 
small bending radii of about 60 m occurred, inducing stresses in the pile 
section well exceeding the normally accepted values. Hanna (1968) has 
demonstrated, with the help of inclinometer measurements that initially 
bent piles do bend further under vertical loads. Consequently there will 
be additional lateral deflections. Fellenius (1972) dealt with the bending 
of slender precast concrete piles with double curvature. Kim et al (1973) 
reported that the vertical H-piles installed in groups have deflected about 
the weak axis of the pile section during driving. Response of such piles 
to vertical loads is presented in this investigation. 

Bent and Imperfect Piles 

Piles are expected and designed to be straight. No structure can be made 
without some initial imperfection in shape. The centre line of even the 
best pile would show before driving ini tial deviations from the perfect 
straight line. Such a pile is considered to be imperfect. When the pile is 
smoothly and uniformly curved without any sharp kinds, during driving, 
it is called a bent pile. Tile bending can be in one or more planes. 

Figure 1 shows the schemtaic diagram for a pile under the action of an 
axial force. The soil modulus is assumed to be constant with depth for 
cohesive soils as represented in Figure 2. The pile is idealised as a beam 
and the soil as a Winkler medium, characterised by the modulus of the 
:>ubgrade re~ction .. Figure 3 shows the pinned-pinned and Fixed-Fixed 
1mperfe_ct plies. Pmned-pinned and Fixed-Pinned Bent Piles are also 
shown m the same figure. 
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FIGURE 3 Pile boundary conditions 

Imperfect Pile with Pinned-Pinned End Conditions 

Very long piles may develop large deviations near the centre of their 
length and they may be approximated 'by a half sine curve as shown in 
Figure 3. The initial shape satisfying the boundary conditions may be 
represented by 

W1 = ~ Sin 1T Z ... (I) 

C 
where T is the non-dimensionalized offset of the pile at the centre of its 

length; W1 is the initial deflection of the pile from the vertical axis and Z 
is the non-dimensionalized depth from ground. The function W1 need 
satisfy both geometric and natural boundary conditions of the problem. 
The geometric boundary conditions refer to deflection and slope and 
natural boundary conditions refer to bending moment and shear at the 
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FIGURE 4 Relationship between load and additional deflection for different soil 
modulii for pinned-pinned imperfect pile 

boundaries. Equation (I) satisfies the explicit geometric conditions 

(W1),-o; ( W1)z=1·0 = 0 •·· (2a) 

as well as implicit geometric boundary conditions, 

( dW1 ) =I= 0 and ( ddWZ1 ) =I= 0. 
dZ ,_o 1=1 

. .. (2b) 

The explicit equilibrium boundary conditions 

( d2W1) - O· (dZWl \ = 0 
dZ2 ,_0 - ' dZ2 Jz- 1 

... (2c) 

as well as implicit equilibrium boundary conditions 

(d3Wi) :¢:0; (d
3~1) :¢:0 

dZ3 Z=O dZ la l 
... (2d) 

are satisfied. 

The governing differential equation representing the force system on the 
pile for the constant moment of inertia / and load P was given by Marcus 
and was reported by Johnson (1968). The non-dimensionalized form of the 
same is given by Kurma Rao (1975) as below 

d'1W2 d2 W1 d2W1 
dZ4 + al dZ2 + a2 W2 = -al dZ2 ... (3) 
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PL'l kD 
where a1 = 7f/" ; a2 = EI . L4

; Ws = additional non-dimensionalized 

deflection un~er the load P; k = soil modulus of the pile and D = dia­
meter of the p!le. 

. Substi~uti~g Equation _I_ in Equati~n 3, the governing differential equa­
tion for pm-pm end co ndttions o f an imperfect pile may be written as 

d4W2 d2W2 W. 2 C s· Z dZ4 +a1 dz2 +a, 2 = a1 7T ·y;· , m rr . .. (4) 

Let the particular soluti on of Equation 4 be 

W~ = A Sin 1rZ 

where the constant, A, can be obtained as 

A - 1T2 «1 C 
- L(1r4-a1 1r2+a2) 

The solution for homogeneous pa rt of Equation (4) is 

w; = C1 Sin (m1 Z). cos h (m~ Z)+ C2 cos (m1 Z). sin h (m1 Z) + 

D1 sin (m1 Z ). sin h (m1 Z) + D2 cos (m1 Z). cos h (m9 Z) 

... (5) 

... (6) 

... (7) 

where Ci, C1, D1 and D2 are constants to be determined by boundary 
conditions and 

2 r-;;; a 1 2 r-;;; a1 

m l = '\J 4+ 4 and m2 = \J 4 -4 

Substituting the following four boundary conditions, the constants C1, C2, 

D1 and D2 can be evaluated. 

when z = 0, W2 =- w; +w; = Oand ~;2 = 0 

Z = 1, W2 = w; +w;' = 0 and a;;, = 0 

. .. (7a) 

... (7b) 

Solving Equations 7a and 7b, the constants C1 , C2, D1 and D 2 are found 
to be zero and therefore the homogeneous part of the solution becomes 
zero in case of pinned pinned end conditions. 

Imperfect Pile with Fixed-Fixed End Conditions 

The initial shape can be represented as 

C 
W1 = 0.5 L (I - cos 21rZ) ... (8) 

The governing differential equation for fixed-fixed end conditions of 
the imperfect pile may be obtained by substituting Equation 8 in Equation 
3 and let the particular solution be 

w; = A cos 21rZ .. . (9) 
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where A= 2 1r2 a 1 C/L 
(1 61r4 -41r2 a 1 + a 2) 

Substi tu ting the ai:p~·opriate boundary conditions, the constants C
1

, c,, 
D1 and ~ 2 pert~mmg to homogeneous part can be obtained and arc 
presented m matrix form as 

where 

( 0 0 0 l ( C1 ' ( -A I 
I I I I I I I ln1 1112 0 0 I I C2 I I o I 
I I l I co I I I R s T u I I Di I I - A I 
I I I I I I 
l I J K L J l n. ) l 0 J 

I = m1 U+m2• T; J = m2 U-111 1 T 

K = m2 R +m1 • S ; L = m2 S-m1 R 

R = sin m1 • cosh m2 ; S = cos m1. sinh m2 

T = sin m1. sin/z m2; U = cos m1 . cosh m2 

Bent Pile with Pinned-Pinned End Conditions 

... (10) 

The initia l shape for pinned-pinned boundary conditions in non­
dimensiona l form may be represented as 

W1 = L (Ki~s~ KL) (2KLZ+ KLZ cos KLZ - 3 si n K LZ) ... (1 J) 

where KL is the root of the transcendental equation tan KL = KL. 

One of the roots is 4.494 2 is the offset of the pile tip from the 

vertical axis. 

The governing differential equation for pinned- pinned end cond itions 
of bent piles may be obtained by substituting Equation 11 in Equation 3 
and the par ticular solution may be presented as 

, 
w

2 
= A sin (KL.Z)-B.KL.Z cos (Kl.Z) ... (12) 

where 
D (KL)2 , OCt C B = F: ; Di = 2 (KL-sin KL) L 

F1 = (KL)4 - a1 (KL)2+ a2 . . . ( 12a) 

A = B[4(KL)4 -2a1(KL) 1] - D 1 

Fi 

The constants Ci, C2 and D1 and D2 tha t are related to the homogeneous 
part can be obtained by following boundary conditions. 

a 2w2 For Z = 0 and Z = 1 W2 = 0 and --,-.::.... = O 
dZ2 ... ( 12b) 
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Fixed-Pinned Bent Pile 

In dimensionless form, the initial shape 
conditions, may be represented by 

for fixed-pinned boundary 

W1 = ~ ( I - cos 
77

: ) 

The solution to Equations 3 and 13 can be obtained s\11_1ilar 
previous cases substituting the following four boundary cond1t1ons. 

I ,, dW2 0 
For z = O W1 = W2 +W2 = 0 and dZ = 

T he total additional deflection under load Pis 

W2 = W ' + W " 
2 2 

... (13) 

to the 

... (14) 

... (15) 

Radius of Curvature 
The radius of curvature of the pi le can be obtained from the relation-

ship 

L 
R = d2W 

dV 

where W = W
1 
+w2 • Equation I 6 may also be written as 

R LtD 
D = d2 W 

dZ2 

Load Carrying Capacity of Bent Pile 

... (16) 

.. . (17) 

The load carrying capacity of straight R.C.C. pile when loaded axially 
is given by (Johnson, I 968), 

Ps = 0.85 R Ag (0.25 f' +f. P11) 
C 

... (18) 

where P, = allowable axial load on pile; R = reduction factor for length, 

Ag = gross area of column,/; = compressive strength of concrete,!, = 
allowable stress in column reinforcement, P8 = ratio of area of vert ical 
reinforcement to gross area of columm. R is taken as unity in this 
investigation. 

The allowable stress S = Ps 
Aa 

... (19) 

In case of beI?-t pile, three types of stresses, namely, the residua l 
stress S1 , the bendmg stress S 2, u nder the load Pb on bent pile and the 
axial stress S3 are acting and they are cumulative. The load on the bent 
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pile Pb is obtained by satisfying the condition, 

243 

S1 +~2+Sa ~ I .O ... (20) 

Equation. 20 is solved for p,, using iterative procedure until the ratio is 
within an error of± 0.0001. 

Results and Discussion 

The maximum values of the additional deflection, W2, that occur along 
the depth of a round pile under different loads, P are evaluated from 
Equations 5 and 7 and plotted in Figure 4 for a pinned-pinned imperfect 

C L 
pile for y = 0.001; 75 = 60 for different values of soil modulii , 

a = 64 k D . It is observed from the figure that these deflections 
nEc 

increase almost linearly with load. For lesser values of soil modulus 
(a = 0.001), it is observed that the relationship is slightly non-linear. 

From the figure it may also be concluded that as the value of soil 
modulus increases, the additional deflection, W2, decreases, the loading 
being the same in both the cases. Figure 5 shows similar relationship for 

0-003.__ ___ .,__ ___ ..,__ ___ ...._ __ __. 

60 120 180 
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El 
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FIGURE 5 Relationship between load and additional deflection for different 
soil modulii for pinned-pinned imperfect pile 
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FIGURE 6 Relationship between soil modulus and additional deflection for 
different vertical loads for pinned-pinned imperfect pile 

c; = 0 025 and !:... = 80 for various soil modulii, a = 0.001, 0.002, 
L . D 
0.005, 0.008 and 0.01 , the only difference being that W2 is plotted on a 

'd . . f UT • h d PL2 Tl Jog scale to accommodate the wt e van at10n o rr 2 wit ex. an EI . 1e 

practical range of values of a 1 and a 2 are 50 to 300 and 250 to 1,00,000 
respectively. Figure 6 shows the relationship between a and W2 for 
various loading conditions. It is observed that the variation of W2 with 
soil modulus a for different loads decreases with increase of the soil 
modulus. Figures 7 and 8 represent the relationsip between the non-

dimensionalized radius of curvature }; and the additional deflection W2 

for fixed-fixed imperfect pile and pinned-pinned bent pile, respectively 
The response is found to be linear in both the cases and as 

~ increases, the additional lateral deflection is found to decrease. In 

h fi 1 . h' b R d Pb t e same gures, re attons tp etween D an percentage Ps is also 

drawn. Pb represents the load carrying capacity of bent or imperfect 
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FIGURE 7 Additional deflection and load carrying capacity of fi,-..ed-fixed imperfect pile 
with respect to radius of curvature 
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FIGURE 8 Additional deflection and load carrying capacity of pinned-pinned bent pile 
with respect to radius of curvature 
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pile as the case may be and Ps relates to the load carrying capacity of a 
straight pile. The relationship in both the cases is non-linear and unique ii 
irrespective of the shape and end-conditions. 

Figure 9 shows a relationship between Pfr2 
and W1 for fixed-pinned 

bent pile for three different soil modulii. The relationship is linear as is 
the case with the earlier types. This type of linear behaviour may be 
attributed to the assumption that the soil modulus is invariant with depth 
while formulating the governing differential Equation 3 for pile-soil system 
(Madhav et al, 1975). From Figure 9 it may also be concluded that for~ 
given load, the additional deflection W2 dec!eases as t_he v~lue of soil 
modulus increases. Figure 10 represents a linear relat1onsh1p between 

0.35· 

0-30 

0 25 

0 20 

..., ·~ 
X 0-15 
3-N 

0 -10 

0-05 

0 
~ 60 

5 < IQ0.0 

S... : 0- 020 
L 

2,0 

FIGURE 9 Relationship between load and additional deflection for 
different soil modulii for fixed-pinned bent pile 

~ and W2 for three soil moduli i. At approximately ~ = 127 5, these 

lines merge on the horizontal axis. In case of a Fixedhinged bent pile, 

f 
R . 

or D rat10s equal to 1275 or more, there will not be any lateral } 

additional deflection when loaded. 
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FIGURE 10 Relationship between radius of curvature and additional deflection 
of pile for different soil modulii for fixed-pinned bent pile 
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The response of imperfect and bent piles to vertical loads is studied in 
this investigation. Initially bent and imperfect p iles do bend further 
under load and the maximum additional deflection are found to be 
proportional to load. It is also observed in this investigation that_ the 
additional deflection decreases with increase of soil modulus, other thmgs 
being same. 
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Introduction 

Failure Mode of Soils During Static and 
Dynamic Penetration 

by 

Umcsh Dayal* 

well established bearing capacity formulae are available for estimation 
of foundation load for static condition. Most of these formulae are 

derived by assuming a failure pattern based on laboratory studies and field 
performance. The demands of foundation that are properly designed for 
dynamic load have increased the need for further research effort. The 
proper design of foundation for dynami~ load requir~s a. clear under­
standin" of various factors such as the stram rate effect, rnert,al effect, and 
modes if failure. The first two factors are broadly discussed by Whitman 
(1970) and for a part icular case of low velocity penetration by Dayal and ¥ 
Allen (1975). The scope of the present paper is limited to third factor, 
i.e. modes of failure during dynamic loading. 

In order to study the difference, if any, in failure pattern during 
dynamic loading, constant velocity penetration tests were performed on a 
two dimensional target. The experiments provided a means of viewing 
sub-surface soil movement associated with penetration of the penetrator. 
The tests were performed at velocities ranging from 0.0044 fps (0.13 cm/s) 
to 2.662 fps (81.14 cm/s) onto the soil target varied from gravelly sand 
through to clay of various strength and moisture content. 

The Experimental Procedure 

The experiments consisted of driving a penetrator in to a prepared soil 
target at various speeds. The penetrator was coupled to a hydraulic 
actuator which in turn was connected to a structural laboratory's ·Material 
Testing System' (M.T.S.) which provided the required velocity and con­
trolled penetration. The veloci ty and penetration depth for any particular 
test could be adjusted from M.T.S. speed and stroke console. The 
maximum velocity of 2.66 fps (81.1 crn/s) and a stroke of 2 ft (61 cm) could 
be obtained from this system. 

The target tank used for this test was 12 in. (30.5 cm) wide by 24 in. 
(61 cm) high and 1.5 in. (3.8 cm) thick so that either a half-sectional or 
a _complete - rod penetrator of 1.4 in. (35.6 mm) diameter could enter 
with mininum t:riction on its rront o~ back. The front face of the target 
tank was of 3/4 m. (I 9 mm) tl11ck plex1glas to permi t observations of the 
movement of the target material during penetration. 

To facilitate the visual observations of the movement of the soil a 
reference grid was required. Following t he required compaction, the 
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