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Introduction

In the limit equilibrium solution or the upper and lower bound limit
analysis of stability problems in geotechnical engineering, the problem
is one of finding the extrema of a function subjected to some constraints.
Many contemporary problems of design and analysis invelve not only
equality constraints but also inequalities. It has been realized that the
mathematical problems that arose in their study stretched the limits of
conventional analysis, and require methods, such as, mathematical prog-
ramming techniques for their successful treatment. The classical techniques
of Calculus and Calculus of Variations are occasionally valuable in these
new areas, but are clearly limited in their range and versatility.

As with the use of any type of analytic or numerical techniques within
the context of complex problem solving, the focus for discussion falls not
only on the various techniques available for the analysis but also on
the art of how such mathematical procedures are applied. Large scale
systems may present considerable problems in terms of the number of
decision variables and objectives. These issues must be acknowledged
and addressed in a straight forward manner with proper attention paid to
the particular important aspects of a given problem. No one procedure
or series of procedure will be the pinacea that solves all problems to the
last details. Optimization is a useful tool for design and analysis but its
successful application depends to a great extent on how it is used. While
optimization theory is well established for well defined systems with
specific objectives and models its successful applicationis problem oriented.
These methods are in extensive use in structural and other branches of
engineering. Recently some attempts have been made in this direction in
geotechnical engineering (Horn, 1960; Wu and Kraft, 1970; Lysmer, 1970;
Potchman and Kolesnichenko, 1972; Krugman and Krizek, 1973; Gioda
and Donato, 1979). Some studies had been undertaken by the authors
to explore the strength and limitations of these techniques in analysiné
some stability problems in geotechnical engineering and their findings were
reported (Basudhar, 1976; Basudhar et al, 1978, 1979a, 1979b). Thbe study
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reported herein, pertains to the application of sequential unconstrained
minimization technique (SUMT) to isolate the optimal lower bound
solution of bearing capacity problems.

Analysis

The generalized method of lower bound limit analysis as developed by
Lysmer (1970} and subsequently modified by Basudhar (1976) to incorpo-
rate the nonlinear no yield condition Constraints directly in the analysis
is used for the problem formulation. For the sake of completeness the
method is presented herein in brief and the readers are referred to the
original work of Lysmer (1970) and Basudhar et al (1979b) for details.

The first step in the analvsis of a typical problem, such as, the bearing
capacity problem shown in Figure 1, is the discretisation of the soil mass
under consideration into a mesh of finite number of triangular elements.
All nodal points, elements, ane element sides are then numbered in some
arbitrary order. The geometry of a typical element, n, the six external
stresses and the body forces acting on the element are shown in Figure 2,
Only the stresses at the nodes are considered since the stresses are assumed
to vary linearly within each element. Tn addition, one internal stress o” is
defined as the normal stress at node 7 acting on a plane parallel to the
side jk. The normal stresses on each eclement are combined to form a
vector {c}" defined as

Y 3 5
{o}" = {o" Gix 0} Oji Oj) Ckj Ok} seslil)

The external shear stresses are combined into a vector {r}?, where

T
s} = {7k 7ij Tji Tk Thy T} (2)
The internal stresses in each element are expressed as
{3}7 = {51 5 5} with {s.}T = {Gz, ; Ox, i Trx, i} €IC. {3)

{_s,-} are the internal stresses at node i, From the equilibrium of infinitismal
elements at node 7, j and k the following relations between the internal and
external stresses can be established:

{o}* = [S] {s} -(4)
{=} = [T] {s} --(5)
The matrices [S] and [7] consist of geometric properties of each clement,

Follov.:ing Lysmer (1970) the internal equilibrium can be maintained
by assuming a linear stress field and the external shear stress vector {r}n
and the internal stress vector {5} can be expressed in terms of the element
normal stress vector {¢}" as follows:

{=}* = [T1[B] {o}*+([T] {h} ..(6)
{s} = [B] {a}"-+{h} w7

in which
(Bl = [G] (S][GD) .(8a)
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FIGURE 1 Mesh for Beariug Capacity Problem
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FIGURE 2 Definition Sketch Geometry Nodal Normal and Shear Stresses
and body forces

{h} = {g}—[B][S] (g} .-.(80)
The matrix [G] consists of the node co-ordinates.
The vector {g} is as follows:
(37 = {¥2 2y Ye % 05 Y2 T, Y X5 0, Y2 Zps ¥x Xk, 0} (8c)

The elements of all {s}® vectors for all the elements are collected into a
general {0} vector as per the rule enunciated by Lysmer (1970). The
stresses are the principal unknowns. The interface and the boundary
conditions are expressed in terms of these values. A system consisting of
p clements connected at ¢ nodal peints will have (3p+42g—2) stress
variables.

The stresses acting on the interface between two typical elementsm and
n are shown in Figure 3. The continuity of normal and shear stresses
across any interface requires

n n m 7
g, = o agd g = 7 _ .+(9)
i 1 i i

for all corresponding values of 4, /, m and n. These conditions yields a
set of linear equality constraints in terms of the principal unknowns. 'The
bpundary stresses on the external faces of the systerm may be expressed
either in the form

Tij (__ K Tij (10)
or G = 1 and Tij == goi-j (11)
where i, n ane { are known constants.

Equations (9), (10) and (11) can be transformed inte the form
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FIGURE 3 Continuity of Nodel Stresses
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At any node i, the stresses should not violate the Mohr Coulomb failure
condition, i.e.

(Czyi— 02,1+ (2722, < [(045,;-F 0,0 Sin ¢+42¢ Cos ¢]? i (13}

The friction angle ¢ and ¢ are assumed to be constant within each element.

Equation (13) can easily be expressed in terms of the principal unknown
as follows:

02,0 = Zi{s}, 0x,; = X; {5} and e,y = T {5} ..(14)

Where Zi =(1,0,0,0,0,0,0, 0, 0) ...(15@)
Xi =(0,1,0,0,0,0,0, 0, 0) ...(15b)
T,=(0,0,1,0,0,0,0, 0, 0) ..(15¢)

Similarly for nodes j and &

ZJ == (Ol 0’ 0’ ls OJ 07 0: O, O) ...(160)

X;=10,0,0,0,1,0,0,0,0) ...(16b)

T;=(0,0,0,0,0,1,0,0, 0) ...(16¢)
and

Zx =(0,0,0,0,0,0,1,0, 0 ...(17a)

Xk =(0,0,0,0,0,0,0, 1,0) ~.(178)

T: = (0,0,0,0,0,0,0,0, 1) . (17¢)

Substitution of the valuc ) g : - .
Equation 13 yields lucs of a1, ov; and <a,; from Equation 14 in

(4, {5)*++4(Ts {)*—(B: {s) Sin $+2¢ Cos )2 < 0 ..(18)
Where A, = Z,—X, (19a)
Bi=Z4Xi ..(19b)
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Substituting 7 in Lquation 18 one gets
[Ai ([Blisyr— i) =4 T [ BHo ) 102
—[BA[B)}{a}"=-{h}) Sin ¢--2¢ Cos 2 < 0 (20}

Similar relations can be obtained for the nodes jand k. The elements of
{o}® vector can easily be picked up from the general stress vector {a} by
following the scheme enunciated by Lysmer (1970).

_ Since in general infinitely many stress fields will satisly the aforemen-
tioned conditions of static admissibility, the problem is therefore to isolate

the stress field which optrmms the bearing capacity. In such problems
the stress quality which is desired to be minimized is a linear combination
of the principal unknowns oj, as follows:

optimize 2 aj o) sabel)

The design restrictions are the interface equi]ibrium conditions and the
external boundary conditions, Equation 12, and the no yield criterion
Equation 20. As the soil can not take tet}‘-l()i], the following constraints
are also introduced.

—g; €0 -(22)

The inequality constraints are designated as
<0 +:(23)

The equality constraints of Equation 12 are written in matrix notation as
follows.

[4] {0} = (b} -.(24)

In some of the elements of vector are specified at the boundary the
following relation can be arrived at by eliminating the corresponding
columns of [A] matrix. Then

[A4*] {e*} = {6*} -(25)

By expressing some design variables, in terms of the remaining variables
the equality constraints (Equation 25) are implicitly satisfied. Such a
technique helps in reducing the complexity of the problem by elimination
of the equality constraints and reducing the dimensionality of the
problem.

The following calculations are performed for the gencral rectangular
matrix [A4*].

(i) The rank and the linearly dependent rows and columns if there be
any, of the matrix, is determined.

(if) A submatrix of maximal rank is expressed as product of triangular
factors,

{iii) The non-basic rows are expressed in terms of the basic ones.

{iv) The basic variables are expressed in terms of the free variables.
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The rank of the general rectangular matrix [A*] is determined using the
ctandard Gaussian elimination technique with complete pivoting. The
values of the free variables contained in {D} may be chosen arbitrarily.
In the present study the standary library subrouiine MFGR developed by
IBM has been used to perform the reduction of the design variables as
mentioned.

After elimination of all the linear equality constraints the problem
contains only inequality constraints of the form presented in Equations 12,
20 and 22,

Finding the minimum value of the objective function subjected to the
inequality constraints as described is formulated as a non-linear program-
ming problem which is stated as follows.

Find Dx: such that,

X a@j0; = F (Dm) is minimum ...(26a)

J
SubjCCt to &gj (Dm) < 0 ---(266)

Tn many complex physical systems, it is extremely difficult to obtain an
initial feasible design vector, and, as such the interior penalty function
method can not be used. In such cases the problem has to be solved
either by using the exterior penalty function method or obtaining an initial
feasible design vector following a procedure as suggested by Fox (1971)
and using the interior penalty function method. Even when the interior
penalty function method is used, during the progress of the unconstrained
minimization the path may be diverted into infeasible regions. In such cases
the function is set to an arbitrary high value and the mipimization pro-
cedtire is left to correct the situation on its own. Sometimes this approach
~ ats numerical difficulties. As such, in the present study an cxtended

.aalty function method enunciated by Kavlie (1971) has been used. This
ceadily accepts infeasible design points and needs no special treatment.
In the penalty function method the constraints are blended into a com-
posite function ¢ (D, r+) and a sequential unconstrained minimization of
this function is carried out. In somwe cases the penalty function approach
is the most efficient means of solving a problem. However, in a number
of cases it is preferred because of its simplicity rather than its clficiency.
The problem is stated as follows:

M
Ngn ¢ (D, re) = F(D)+r« ‘El Glg (D)] aoe (27)

where M is the total number of inequality constraints. The function
G [g; (D)] is chosen as suggested by Kavlie (1971).

1/g; (D) & <0
G g (D)) = { - : L (28)
(2 €—g; (D)/€}; g, (D) > ¢
where € = —ri/3: and §, is a constant that defines the transition between

the two types of penalty term. In this approach infeasible starting points
are acceptable to the minimization algorithms. Unconstrained minimiza-
tion is carried out using Powell’s algorithm aleng with guadratic fit (Fox
1971) for linear minimization. ‘ "
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Results and Discussions

I'o show the effectiveness of the present approach one of the examples .
presented by Lyvsmer (1970) is considered and solved.

]

The physical system consists of a smooth strip footing on a homo-
nzous purely cohesive (¢ == 488.2 kg'm?) soil having a unit weight (y:) of
01.8463 kg/m*,

1

N

Figure 1 shows the mesh used for the caleulation of the bearing
capacity.

The boundary conditions are :
g e TR R e Tewm B L (29)

Ty == Ty W gy == Ty T Gy BF gy T WaE T REL T

The expression to be optimized is (63 031)-

In this six-clement problem there are 32 elements in the general vector.
Two normal stresses are known from boundary condition, Rank analvsis
is performed for the matrix {4*] obtained from the coefficient matrix [4].
[4*] is a 1830 matrix. The rank is observed to be 17. Hence there
will be 12 number of free design variables. The rest of the variables are
expressed in terms of these free variables.

The optimal solution is obtained by nonlinear programming and the
complete solution is presented in Table 1. The Terzaghi bearing capacity
factor N, is

Ne = 0.5(4.977+5.016) = 4.990.

The value obtained by Lysmer (1970) is 5.03 and the exact value is 5.14.
Ifrom the comparison of the complete stress field (Table 1) it may be
concluded that the present approach gives fairely accurate results,

~The problem is solved with two different starting points and € values
(Table 2). For both the cases §,is taken as 10. To show the influence
uf‘[!;,c starting point the objective function plotted against the total number
of function evaluation and presented in Figure 4. It may be observed
that for set 1 when ¢ function is obtimized there is an initial decrease in
function value, ~ As the number of function evaluations increases, there is
a sharp rise in the objective functidn value upto a certain limit after which
Ih; m‘creasc in the function value is gradual. It may be observed that for
is-acrlc‘r;xs'gerilﬂthﬁ]Eotat!)_n‘umber of function evaluation is more than 1100, the
e e ;} j‘f.Ctl\fle function value is not at all appreciable and the
i Loy no)' co:}ycrge to the Lysmers vaiue. For the set 2 the
bu-l-.-:‘mgn s near optimum and t%]c progress of the solution is very slow

erges to the Lysmer’s solution (1970).

X 11151 Table 3 the optimum stress field along with the values of the equality
T!lj-L i‘r;cquahty constraints are present. It may be observed from the table
”;l: ttlie‘order gi the magnitude of the equality constraints are so small
tha iy may be_ considered to be satisfied. [t is also seen that all the
mequality constraints are satisfied. )
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TABLE 1
Comparison of the present solution with Lysmer's solution for a bearing capacity
problem
r Bearing Capacity Problem
‘ ¢ =4882kgim?
mﬂéc:\—[ T;?fiﬂi vz = 1601.8463 kg'm
No. oint
a,fc TeafC
Lysmer | Present i Lysmer Present ‘ Lysmer Present
‘i Analysis \ Analysis | i Analysis
1 1 5.030 4.977 3.030 3.016 0.0 0.0
2 12.000 11.977 10.000 10.000 0.0 0.0
3 3.030 3.016 3.030 3,013 0.0 0.0
2 2 11.200 11.173 9.600 9.591 0.620 0.574
4 19.200 18.924 17.600 17.520 0.616 0.705
8 4.170 4.160 2.590 2.580 0.614 0.611
3 3 15.500 16.315 17.500 17.379 0.0 0.0
4 17.900 16.665 17.500 17.379 0.289 0.141
2 8.680 8.878 9.440 9.447 0.0 0.0
4 4 17.300 17.481 17.500 17,463 0.991 0.993
5 17.300 17.129 17.500 17.463 0.993 0.980
8 2.280 2271 2.520 2.504 0.993 0.989
5 5 16.300 16.343 17.500 17.432° 0.791 0.823
6 16.400 16.231 17,500 17.419 0.832 0.798
3 1.340 1.339 2.480 2.466 0.805 0.802
6 6 15.000 15.000 17.000 16.975 0.0 0.059
7 0.0 0.0 2.000 1.866 0.0 0.0
8 0.0 0.0 2.000 1.985 0.0 0.0
TABLE 2
Initial design point and € value
Bearing capacity problem
Ser [
Design vector (D)
2.5000 3.1100 9.1400 8.9300 15,7000 16.300
17.0000 16.2300 16.1300 15.7460 15.4100 16.3000 4.5200
€ = —0.1.
Set 2
Design vector (D)
4.9365 2.9700 9.9670 9.3898 16.4500 15.8447
16.5507 17.4677 17,2127 16,3844 16,1870 17.089¢6 4.7005

L] "10‘“5
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Final optimal design point

(D) Vector

ITABLE 3

Bearing capacity problem

4.9769 3.0164 10.0000 9.4472 16.4002 16.3153
16.6655 17.4813 17.1293 16.3437 16,2313 17.0810
5.0161
(c) Vector
3.6787 9.8723 17.3165 17.0810 16.4177 15.0000
4.9769 5.0161 17.8455 2.8756 17.0736 2.1147
16.4002 1.4597 9.4137 17.2705 10.6683 3.6920
3.0164 10.006 9.4472 17.3791 16.3153 16.6655
17.4813 17.1293 16.3437 16.2313 15.7235 0.6306
0.0 0.0
Equality constraints
0.566E—05 0.536E—06 0.700E—06 —0.357E—06 —0.301E—05 0.262E—05
— 0.241E=05 —~0.161E—05 —0.625E—05 --0.103E-05 0.596E—07 0.268E— 06
—0.357TE—06 0.953E—06 —0.596E--07 —0.506E—06 0.204E—05 0.125E—05
Inequality constraints
—0.1565E00 —0.9441E--01  —0.1350E—02 —0.1775E00 0.3991E—01
—0.6797E—02 —0.28068E01 —0.3411E01 —0.3676E01  —0.4911E—01
—0.4517E—-01  —0.315 E—01 —0.1057E00 —0.4215E—01 —0.1489ECO
-0.82720--01 —0.5156E00 —0.3868E—01 —0.3678E01  —0.9872E01
~0.1732E02 —0.1708E02 —0.1942E02 —0.1500£02  —0.4977E01
—0.5016E01 —Q.1784E02 —0.2876E01 —0.1707E02  —0.2115E01
—0.1640E02 —0.1459E01 —0.9414E01 —0.1727E02 —0.1067E02
—0.3692E01 —0.3016E01 -—0.1000E0 —0.9447E01  —0.1738E02
—0.2631E02 —0.1666E02 —0.1748EQ2 —01713E02  —0.1634E02
—0.1623E02 —0.1572E02 —0.6306E00

Optimal value of the objeective function = 9.9928.

Conclusions

The usefuluess of the penalty function technique in conjunction with
finite elements for solving bearing capacity problems is demonstrated with
remarkkable success. Thenon-linear no-yield conditions are incorporated
directly in the analysis. By expressing some of the unknown variables in
terms of the design variables, the lincar equality constraints are implicitly
satisfied. Such a technique helps in the reduction of the number of design
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‘.)Jl:s_;md1 elimination of cquality constraints, saving much of the
utational effort. Some times premature termination may occur. As
the problem <hould be solved with different starting point to have

an idea about the global optimumn.
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Notations

aj

(4]

F(D)

= Coefficient to o; in linear function to be optimized.

; = Coefficient to o in linear constraint number i.

= Coeflicient matrix of the linear equality constraints.
= Coefficients.

= 9 X7 matrix, geometrical property of the element.
= Cohesion for nth clement,.

= Design Vector.

= Optimum design vector.

== Objective function.

[G] = 9x7 matrix, zeometrical praperty of the element.
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= 9 component vector, refated to body forces in nth element.
. g = Inequality constraints,

{hY = 9 component vector related to body forces in nth element.

i = Subscript referring to nodal point § or running index.

j == Subscript referring to nodal peint j or running index.
k == Subscript referring to nodal point £.

m = Element number,

= Subscript or superscript referring to element 7.

N = Total number of design variables.

v = Response factor
[S] = 7 %9 matrix, geometrical property of nth element.
5i = 3—component stress vector which defines stress state at corner i

of nth element.

{s} = 9-—component stress vector which defines internal stress in nth

element.

[T] = 6x9 matrix. geometrical property of nth element.
xi = x Coordinate to nodal point 7.

z, = z Coordinate to nodal point j.

= body force per unit volume in z direction and x direction,
respectively.

Parameter showing the transition between the two types of penalty
terms.

Coeflicient.

[
I
i

m
i

n = Coeflicient.
8, = Slope of element side connecting nodal points i and j.
ox,i = Normal stress on vertical plane through nodal point 7.

= Normal stress on horizontal plane through nodal point i.

¢" = Normal stress on vertical plane through nodal point 7.

n
oy = Normal stress at point i of element n on side connecting nodal
point 7 and ;.
{o} = Stress vector which defines the complete stress state.

{6}" = 7—component stress vector which defines external normal
stresses on nth clement,
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7:.4 = Shear stress on horizontal plans nodal point /.
- }I 4 - 4l .1 .
= Shear stresss at point i of element 7 on side connecting nodal
ij
points i and j.

{z}* = 6—component stress vector which defines the external shear
stresses on nth element.

& == Angle of internal friction.





