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In t he limit equili brium solution or the upper and lower bound li mit 
a nalysis of stability problems in geotechnical engineering, the problem 

is one of findi ng the extrema of a fu nction subjected to some constraints. 
Many contemporary problems of design and analysis involve not only 
equality constraints but also inequalities. It has been rea lized tha t the 
mathematica l problems that arose in their study stretched the limits of 
conventional analysis, and require methods, such as, mathematical prog­
ramming techniques for their successful t reatment. T he classical techniques 
of Calculus and Calculus of Variations a re occasionally valuable in these 
new a reas, but are clearly limited i n their range and versatility. 

As with the use of any type of a nalytic or numerical techniques within 
the context of complex problem solving, the focus for discussion falls not 
only on the various techniques available for the analysis but a lso on 
the a rt of how such mathematical procedures are applied. Large scale 
systems may present considerable problems in terms of the number of 
decision variables and objectives. These issues must be acknowledged 
and addressed in a straight for ward manner with proper attention paid to 
t he particular important aspects of a given problem. No one procedure 
or series of procedure will be the pinacea that solves all problems to the 
las t deta ils. Optimization is a useful tool for design and analysis but its 
successful application depends to a great extent on how it is used. While 
optimization theory is well established for well defined systems with 
specific objccti ves and models its successful application is problem oriented. 
These methods are in extensive use in structural and other branches of 
engineering. Recently some attempts have been made in this direction in 
geotechnical engineeri?g (Horn, 1960; Wu and Kraft, 1970; Lysmer, 1970; 
Potcbman and Koles01cbenko, 1972; Krugman and Krizek, 1973· Gioda 
and Donato, 1979). Some studies had been undertaken by the 'authors 
to explore_ ~he strength a_nd limitati<;>ns of _thes~ techoique_s in analysing 
some stability pro blems rn geotechn1cal engmeenng and their findino-s were 
reported (Basudhar, 1976; Basudhar et a l, 1978, 1979a, 1979b). T h~ study 

• Lecture~. Civil Eagi!Jcering Department, Institute of Technology, Banaras Hiadu 
Ua1vcrs1ty, Varana-si-221005, India. 

•• F ormerly Assistant Professor, Civil Engineering D epartmeat, Indian Institute of 
Technology, Kanpur-'.!08016, Jndia. 

••• Professor, Civil Engineering Department, Indian Institute of Technology 
Kanpur-208016, Jndia. ' 
This paper·was receired in !.fay /980 and is open f or discussion till the end 

0
,r 

May 1981. ~ 



LOWCR BOUND BEARING CAPACITY AN.\LYS1S 43 

r cp~rt~d h_c r.:in , per:ains to the app licat io n o f sequentia l unconstrained 
mm1i:11zat1on t~chnrque (SUMT) to isola te the o p timal lower bound 
solu t1on of bearing capacity problems. 

Analysis 

The generalized method o f lower bound limit ana lysis as developed by 
Lysmer ([970) and subsequently modified by Basudhar (1976) to incorpo­
rate the nonlinear no yield condition Constraints directly in the analysis 
is used for the problem formulation. For the sake of completeness the 
method is presented herein in brief and the readers are r eferred to the 
original work of lysmer (1 970) and Basudhar et al (1979b) for details. 

The first step in the analysis o f a typical problem, such as, the bearing 
capaci ty problem shown in Figure 1, is the discretisation of the soi l mass 
under consideration into a mesh of finite number of triangular elements. 
All nodal points, elements, ane element sides are then numbered in some 
arbitrary order. The geometry of a typical element, n, the six external 
stresses and the body forces acting on the element are shown in Figure 2. 
Only the stresses at the nodes are considered since the stresses a re assumed 
to vary linearly within each element. lo addi tion, one internal stress an is 
defined as the nornul stress at node i acting oo a pla ne parallel to the 
side jk. The normal stresses on each element are combined to form a 
vector {a}n defined as 

T 
{a} 11 = {on v,k a ,1 Gji Ojk Gkj Ok ;} ... ( 1) 

The external shear stresses are combined into a vector { r}n, where 

T 
{-r} II = { Tik Tij Tji Tjk •kj T,1:i} . . . (2) 

The internal stresses in each element are expressed as 

{j}T = {s°; sj;,} with {s,}T ={a,,; ax,;,,,,,;} etc. ...(3) 

{s;} a re the internal stresses at node i. Prom the equilibrium of infinitismal 
elements a t node i, j and k the following rela tions between the internal and 
external stresses can be established: 

{a}n = [SJ {s} ... (4) 

{,}n = [TJ {s} ... (5) 

The matrices [SJ and [TJ consis t of geometric properties of each element. 

Follo~ing Lys~1cr (1970) the internal equilibrium can be maintained 
by assu~mg a h near stress field and the external shear stress vector { r}n 
and the mtcrnal stress vector {s} can be expressed io terms of the element 
normal stress vector {£T}" as follows: 

in which 

{-r}n = [TJ [BJ {a}n -1- [T] {h} 

{s} = [BJ {a}n+{h} 

[B] = [G] ([SJ (G])-1 

.. . (6) 

. .. (7) 

... (8a) 
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FIGURE 1 Mesh for Beariug Capacity Problem 
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FIGURE 2 Definithn Sketch Geometrv ~odal ~onnal and Shear Stresses 
and body forces • 

{h} = {g}-[B] [SJ {g} 

The matrix (GJ consists of the node co-ordinates. 

The vector {g} is as follows: 

... (Sb) 

{g}T = {yz Z;, Yx X; , 0, y, Zj , Yx ·' J• 0, y, zk, Y•· Xk, O} (Sc) 

The elements o f a ll {a}n vectors for all the elements are collected in to a 
general {a} vector a s per the rule enunciated by Lysmer (1 970). The 
str esses are the principa l unknowns. The interface and the boundary 
conditions are expressed in terms of these values. A system consisting of 
p elements connected a t q nodal points will have (3p+2q-2) stress 
variables. 

The stresses acting o n the interface bl:'tween two typical elements m and 
n are shown in Figure 3. The continui ty of normal and shear stresses 
across any interface requires 

1/l n 1/l ll 
a .. = a .. and -. = 1" . . 

I} I } ij lj 
. .. (9) 

for all ~orrespond i_ng values of i, }, m and 11. T hese conditions yie lds a 
set of lmear equa lrty const raints in terms of the principal unknowns. The 
boundary stresses on the external faces of the system may be expressed 
either in the form 

or cru = '7) and Tij = ~a.,; 

whereµ,, 71 ane ~ are known constants. 

Equations (9), (10) and (lt) c.i.n he t r:1.n. fonned into the form 

... (10) 

... (11) 
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FIGURE 3 Continuity ofNodcl Stresses 

3p+ 2q-2 3p+ 2q-2 
~ a,i oj = b; and/or · ~ a,1 aj < b; 

j = l j = l 
... ( 12) 

At any node i, the st resses should not violate the Mohr Coulomb failure 
condition, i.e. 

. .. (13) 

The friction angle rf, and c are assumed to be constant wi thin each element. 
Equation ( I 3) can eas ily be expressed in terms of the principal unknown 
as follows: 

a,,1 = Z; {s}, ax,;= X; {s} and -rzx,, = T; {s} 

Where Z; = (I, 0, 0, 0, 0, 0, 0, 0 , 0) 

X1 = (0, l , 0 , 0, 0, 0, 0, 0, 0) 

T; = (0, 0, I, 0, 0, 0, 0, 0, 0) 

Similarly for n odes j and k 

and 

Zi = (0, 0, 0, I, 0, 0, 0, 0, 0) 

X; = (0, 0, 0, 0, 1, 0, 0, 0, 0) 

Ii = co, o, o, o, o, r, o, o, O) 

Z k = (0, 0, 0 , o, 0, 0, I , 0, 0) 

.\'k = (0, 0, 0, 0, 0, 0, 0, I, 0) 

T1c = (0, 0, 0, 0, 0, 0, 0, 0, I) 

... (14) 

.. . (!Sa) 

... (15b) 

... (I Sc) 

... (16a) 

. .. (l6b) 

... (1 6c) 

.. . (I 7a) 

... (1 7b) 

... ( I 7c) 

S_ubsti~ution <;> f the values of a,,;, ax,; and -r,r,; from Equation 14 in 
Equation 13 yields 

Where 

(A; {s}f+4(T; {s})2-(B, {s} Sin rf,+2c Cos cf,)2 ~ 0 

A1 = Z1-X1 

B; = Z;+ X; 

... (18) 

.. . (1 9a) 

... (19b) 
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Substituting 7 in I:q uat ior I S o ne gets 

[ A; ([fl] :cr}" - : h;)F - 4[ T., [ B]{o ' ' +U:}) F 

-[B,([D)(o}" --H lt}) Sin ,f, ~- 2 c C os 4,)2 cs.;; 0 

47 

. .. ( 20) 

Similar relat ions can be obtained for the nodesj and k. The e lements of 
{a}" vector can easily be picked up from the general stress vector {a} by 
following the scbeme enunciated by Lysmer (1970). 

Since in general infinitely many stress fi elds will satisfy th e aforemen­
tioned conditions of static admissi bility, t he probl em is therefore to isola te 
the stress fi eld which optimizes the bearing ca pacity . In such problems 
the stress qual ity which is desired to be minimized is a linear combination 
of the p rincipal unknowns aj, as follows: 

optimize l: a; a1 , .. (21) 

The design restrictions a re the interface equilibrium conditions a nd the 
external bounda ry conditions, Equation 12, and the no yield criterion 
Equation 20. A s the soil ca n not take tension, the following constraints 
a r e also introduced. 

- Oj < 0 

The inequality const raints are designated as 

gj < 0 

... (22) 

... (23) 

T he equa lity constraints of E quation 12 a re written in matrix notation as 
follows. 

[A] {a} = {b} ... (24) 

Tn some of t he elements of vector are specified a t the boundary the 
followin g r.elation can be a rrived at by e liminating tue corresponding 
columns o f [A] matrix. Then 

[A*J { a*} = { b*} ... (25) 

By expressing some des ign variables, in te rms of the remarnrng variables 
the equality constraints (Equation 25) are implici tly satisfied. Such a 
technique helps in reducing the complexity of the problem by elimination 
of the equality constra ints and reducing the dimensionality of the 
problem. 

The following calculations are performed for tbe general rectangular 
matrix [A*]. 

(i) The rank and the linearly d ependent rows and columns if there be 
aoy, of the matrix, is determined . 

(ii) A subma trix o f maximal rank is expressed as product of triangular 
factors . 

(iii) The non-basic rows arc expressed in terms of the basic ones. 

(iv) T he basic variables are expressed in terms of the free variables. 
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The rank of the general rectangular matrix [A*] is determined using the 
standard Gaussian elimination technique witb complete pivoting. The 
v:3.\ues o f the f ree variabli.:s contained in {D} may be chosen arbitrarily. 
Tn rhe present study the standary library subroutine MFG R developed by 
lBfv1 has been used to perform the reduction of the design variables as 
mentioned. 

After elimination of all the linea r equality constraints the problem 
contains only inequali ty constraints of the form presented in Equations 12, 
20 and 22. 

Finding the minimum value of the objective function su~jected to the 
inequality constraints as described is formulated as a non-lrnear program­
ming problem which is stated as follows. 

Find Dm such that, 

Subject to 

..._. a1 <1J = F (Dm) is minimum 
j 

gi (Dm) <; 0 

.. . (26a) 

. .. (26b) 

Tn many complex physical systems, it is extremely difficul t to obtain an 
initial feasible design vector, and , as such the interior penal ty function 
method can not be used . Jn such cases the problem has to be solved 
either by using the exterior penalty fu nction method o r obtaining an initia l 
feasible design vector fo llowing a procedure as suggested by Fox (1 971) 
and using the interior penalty function method. Even when the interior 
penalty function method is used, during the progress of the unconstrained 
minimization the path may be diverted into infeasible regions. In such cases 
the fu net ion is set to an arbitrary high value and the minimization pro­
cedt , rr is left to correct the situation on its own. Sometimes this approach 
i' ' nts numerical difficulties. As such , in the present study an extended 

.. 1aity function method enunciated by Kavlie (1 971) has been used. This 
r.:adily accepts infeasible design points and needs no special treatment. 
In the penalty fu nction method the constraints are blended into a com­
posite function ef, (D, rk) and a sequential unconstrained min imization of 
this function is carried out. In som<! cases the penalty fu nction approach 
is the most efficient means of solving a problem. However, in a number 
of cases it is preferred because of its simplicity rather than its efficiency. 
The problem is stated as follows: 

.\ [ 

M in </> (D, rk) = F (D)+rk I; G [gi (D)] 
D j = l 

where M i~ the total number of inequality constraints. 
G [gj (D)] 1s chosen as suggested by Kavlie (1971) . 

( 
{ 

1/gj (D) g1 < 0 
G [g; D)l = . 

[2 E-g1 (D)/ E2] ; g1 (D) > E 

.. . (27) 

The function 

. .. (28) 

where E = -rkiS, and i, is a constant that defines the transition between 
the two types of penalt~ t_er~1. _ T n this approach infeasible starting points 
~re ~ccept~ble to the_ mm1m11.at1on algorithms. Unconst rained minimiza-

t ion 1s car~1ed out _u~in~ P?well's a l~orithm along with quadratic fit (Fox; 
!97 l) fo r l1ae::1r m1n1m1zat100., · · 
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Results and Discussio ns 

r ,, show the e ffec ti\·en ' , s of the present approach c n e o f the exa mples . 
pre,entcd by Lysmer (l 970) is considered and solved. 

The physical system consists of a smooth s rrip footing on a homo­
~e □ eous purely cohesi,·e (c = 488.2 kg 'm2) so il having a unit weight (y,) of 

J60 l.S46 3 kg/ m1
. 

Figure l shows the mesh used for the calculation of the bearing 
capacity . 

The bo undary cond itions arc : 

The expression to be optimized is (cr1~_.!.._aR1)-

ln this si.\•clcment p rob lem there arc 32 elemen ts in t he general vecto'. . 
Two norm:.il st res ses a re known from boundary condition, Rank analys is 
is performed for the matrix [A*] obtained from the coefficient matrix [A]. 
[A*J is a 18x30 matrix. The rank is observed to b<:' 17. H~nce there 
\\ill be 13 number of free design variables. The rest of the variables are 
oprcssed in terms of these free variables. 

-1 he optimal solution is obtained by nonlinear programmi~g and t_h_e 
complete soluti on is p resented in Table 1. The Tcrzaglu beanng capacity 
factor Ne is 

Ne= 0 .5 (4.977+5.0l6) = 4.996 . 

The va lue obtained by Lysmer (1970) is 5.03 a nd the exact va lue is 5.1 4. 
From the comparison of the complete stress field (Table I) it may be 
concluded tha t the present approa ch gives fai rely accurate results. 

The problem is solved ,,· ith t,1·0 d ifferent starting points and E values 
(Table 2) . For both the cases 81 is taken as 10. T o show t he influence 
of 1hc st:irting point the objective function plo tted against the total number 
or funct ion ernluation and presented in Figure 4. lt may be obser ved 
that fo r set l when¢, function is obtimized there is an initial decrease in 
function :·alue. As the number o f function evaluations increases, there is 
a sh_ar p n se i_n the objective function value upto a certain limit after which 
the increase in the funct ion value is gradual. I t may be obser ved t hat for 
~c t I whe:1 t he total number of function evaluation is more t han 1100, t he 
incrc' ~sc 111 the o bjective functio n value is not a t all appreciable and the 
s,)!u t1on d_oes_ no t converge to the Lysmers value. For the set 2 the 
design pomt ts near optimum and the progress of the solution is very slow 
hut converges to t he lysmer·s solution (1970). 

In Table 3 the optimum stress field along with the values of the equality 
and 111equality constraints a re present. It may be obse rved from the table 
tha t the o rder of the magni tude of the equality constraints are so small 
tha t they m ay be considered to he satisfic'd. I t is also seen that all the 
ineq uali ty constraints are satisfied. 
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Comparison of t he present solution with Lysmer's solution for a bearing capacity 
problem 

Ele­
ment 
No. 

2 

3 

4 

5 

6 

Ser I 

No<lal 
Point 

1 

2 

8 

2 

4 

8 

3 

4 

2 

4 

5 

8 

5 
6 

8 

6 

7 

8 

Design vector (D) 

Lysmer 

5.030 

12.000 

5.030 

11.200 

19.200 

4.170 

15.500 

17.900 

8.680 
17.300 

17.300 

2.280 

16.300 

16.400 
1.340 

15.000 

0 .0 

0 .0 

2.5000 3.1100 

17.0000 16.2300 

< = -0.1. 
Set 2 

Design vector (D) 

4.9365 2.9700 

16.5507 17.4677 
e = - 10- 5 

a,lc 

P resent 
Analysis 

4.977 

11.977 

5.016 

11.173 

18.924 

4 .1 60 

16.315 

16.665 

8.878 

17.481 

17.129 
2.271 

16.343 

16.231 

1.339 

15.000 

0.0 

0.0 

Bear ing Capacity Problem 

c = 488.2 kg/m2 

y, = 1601.8463 kg_1m' 

Lysmer I 
3.030 

10.000 

3.030 

9.600 

17 .600 

2.590 

17.500 

17.500 

9.440 

17.500 

17.500 

2.520 

17.500 

17.500 

2.480 

17.000 

2.000 

2.000 

TABLE 2 

Presen t 
Analysis 

3.01 6 

10.000 

3.013 

9.591 

17.520 

2.580 

17.379 

17.379 

9 .447 

17.463 
17.463 
2.504 

17.432 

17.419 

2.466 

16.975 

1.866 

1.985 

Initial design point and < value 
Bearing capacity problem 

9.1400 

16.1300 

9.9670 

17.2127 

8.9300 

15.7400 

9.3898 
16,3844 

15.7000 

15.4100 

16.4500 

16.1870 

Lysmer l P resent 
Analys is 

0.0 

0.0 

0.0 

0.620 

0.610 

0.614 

0.0 

0.289 

0.0 

0.991 

0 .993 

0.993 

0.791 

0.832 

0.805 

0.0 

0.0 

0.0 

16.300 

16.3000 

15.8447 

17.0896 

0.0 

0.0 

0.0 

0.574 

0-705 

0.611 

o.o 
0.141 

0.0 

0.993 

0.980 
0.989 

0.823 

0.798 

0.802 

0 .059 

0 .0 

0.0 

4.5200 

4.7005 
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J" \13LE J 

---- -- -- ---
Final oplimnl tlesii;n poin t 

(D) Vector 

4.9769 

16.6655 

5.0161 

(o) Vector 

3.6787 

4.9769 

16.4002 

3.01 64 

17.4813 

0.0 

3.016-l 

17.4813 

9.8723 

5.( 161 

1.4597 

10.006 

l 7.1 29> 

0.0 

Equality co11strni11ts 

DeJring c~p 1cit~ prohl<"m 

10.0000 

Ii. i'.!93 

17.~ 165 

l ; .8455 

9.4137 

9 . ..\.\72 

16.3437 

9.4472 

16.3437 

17.0810 

~.8756 

I 7.2709 

17.3791 

16.2)13 

16.4002 

l 6.23] 3 

16.4 l 77 

I 7.0736 

I 0.6683 

16.3153 

15.7235 

16.3153 

17.0810 

15,0000 

2.1147 

3.69W 

I 6.6655 

0.6306 

0.S66E- 05 0.536E-06 0.700E-0G -0.357E-0S - 0.301E- 05 0.262E- 05 

- 0.241E - 05 - 0.161 E-05 - 0.6'.!SE- 06 -0. 103E- 05 0.596E-07 0.268 E- 06 

- 0.357E- 06 0.953E-06 - 0.596E--0 7 -0.506E-06 0.204E- 05 0.1 25E- 05 

Inequality constraints 

- 0.156SE00 - 0.94-11[-- 01 -0. l 350E- 02 -0.1 775E00 0.3991E- 0l 

-0.6797E-02 -0.2868E0 I -0.3411E0 I - 0.3676E01 -0.4911E- 0 l 

-0.4517E-0! - 0.315 E-01 - 0.1057E00 -0.-121SE--0 I -0.1489ECO 

-0.8"'2L-0l - 0.5156E00 - 0.5868E-0l - 0.3678E01 -0.9872E01 

-0. l132E02 - 0.1708E02 - 0.1942E02 - 0.1500£02 -0.4977E01 

- 0.50!<iE0 I -0.1784E02 - 0.~S76E0I - 0.1707E02 - 0.2115E01 

- 0.1640E02 - 0. 1459£01 - 0 .9-!14E0 l -0. 1727E02 - 0.1067E02 

- 0.3692E01 - 0.3016E01 ··-0.1 000E02 - 0.9447£01 - 0.1738E02 

- 0.2631£0:! - 0.1666E02 - 0. l 748E02 - 0 1713E02 - 0.1634£ 02 

- 0. 1623£02 -0. 1572£02 - 0.6306[00 

Optima l value of the objcectivc function = 9.9928. 

Conclusions 

. The usefuluess of. the penalty function technique in conjunction with 
finite elements for solvrng bearing capacity pro blems is demonstrated with 
remarkkable success. Theno n-linear no-yield conditions are incorporated 
directly in the ana lysis. By expressing some of the unknown va riables in 
term~ of the design var_iablcs, the _l inear equa lity constraints a rc implicitly 
sat1shcd. Such a technique helps 111 the r eduction of the number of design 
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va riables. nnd elimrnation o f . .::q ua lity constra ints, saving rnuch of the 
computational effor t. Some t imes p remature termination may occur. As 
such, the problem should be solved with di fferen t starting point to have 
an idea about the global optim~1m. 
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Notations 

ai = Coefficient to ai in linear function to be optimized. 

a,; = Coefficient to 17j in linear constraint number i. 

[A] = Coefficient matrix of the linear equal ity co n straints. 

b;, {b} = C oefficient s. 

[B] = 9 X 7 matrix, geometr ical property o f the clement. 

c = Cohesion for nth clement. 

{ D} = Design Vector. 

Dm = Optimum design vector. 

F(D) = Objective fu nc t ion. 

(G] = 9 X 7 matrix, geometrical prapcrty o f the element. 

--
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{g} = 9 component vecto ~, related to body forces in llth element. 

, gJ = Inequality constrai;its. 

{lz} = 9 component vector related to body forces in 11 th element. 

i = Subscript referring to nodal point i or running index. 

j = Subscript referri ng to nodal point} or ru nning index. 

k = Subscript referring to nodal point k. 

m = Element number. 

n = Subscript or superscr ipt referring to element 11. 

N = Total number of design variables. 

Yk = Response factor 

[SJ = 7 x 9 matrix, geometrical property of nth element. 

S: = 3-component stress vector which defines stress state at corner i 
of nth element. 

{s} = 9-component stress vector which defines internal st ress in nth 
element . 

[T] = 6 x 9 matrix. geometrical property of 11th element. 

Xi = x Coordinate to nodal point i. 

z, = z Coordinate to nodal point j. 

y,, y" = body force per u nit volume in z direction and x direction, 
respectively. 

8, = Parameter showing the transition between the two types of penalty 
terms. 

E = Coefficient. 

"1l = Coefficient. 

Bu = Slope of element side connecting ~nodal points i and j. 

a,,,, = N ormal stress on vert ical plane through nodal point i. 

a =,i = Normal stress on horizontal plane through nodal point i. 

an = Normal stress on vertical plane through nodal po;nt i. 

n 
a .. = Normal stress at point i of element n on side connecting nodal 

I} 

point i and j. 

{a} = Stress vector which defines the complete stress state. 

{ cr}" = ?-component stress vector which defines externa l normal 
stresses on nth element. 
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-~ , .,; = Shear stress o n ho rizontal phr:~ noc~I pc 'nt i. 

-: 
11 = Shear strcsss at point of element n on side connecting noJal 
i j 

po,nt s i and j. 

{ r}" = 6-componen t stress vector which dcf1nes the external shear 
stresses on nth element . 

if, = A ngle o f internal fr ic tio n . 




