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Introduction 

Jn most of the limit equilibrium methods of slope stability a nalysis a 
number of trial surfaces are analysed and the critica l surface is 

obta ined by some iterative procedure. With the advent of high speed 
digital computers attempt s (Little and Price 1958, Horn 1960) for 
automated embankment analysis have b een made. In this communication 
the usefulness of nonlinear programming technique has been demonstrated 
for automatic determination of critica l slip circle a nd the corresponding 
minimum factor ?f safety. As with the use of a ny type of analytic or 
numerical techntques within the context of problem solving, the focus for 
discussion falls not only on the various techniques available for the 
analysis but also o n the art of how such mathematical procedures are 
applied. No one procedure or series o f procedure will be the panacea 
that solves all problems to the last d etail. Optimization is a useful tool 
for design and a~a.lysis, but its successful application depends to a gre~t 
extent on how it 1s u sed. Since the efficiency of the optimization techm­
ques is problem o riented, the application of these methods to new 
problems needs critical evaluation. 

The object of the paper is to present the usefulness of such techniques 
and to provide a comparative study of the different minimizing schemes, 
when applied to s lope stability analysis. The problem is one of non­
linear programming with strict inequality constraints. 

Analysis 

Derivation of the Objective Function 

U sing the well-known ordinary method of slices a nd neglect~ng the 
imbalance of lateral forces on a n individual slice , the factor o f safe1y for a 
no n-submerged fi~ i.te s lope in a homogeneous and isotropic c-¢ soil 
with a circular critical potentia l slip surface (Figure 1) is 

F 
c 'i.b i sec r,.; + tan if, 'f.(ybJli cos r,.;-u;b; sec eti) 

y ~ b;li; sin r,.; 
... ( 1) 
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FIGURE 1 Typical° slope with a trial arc and a slice 

In reference to the figure and the slice equation, c = effective cohesion, 
rf, = effective angle of friction, b; = width of the i th slice, a;, u, = angle 
of inclination of the slip surface and the pore water pressure at the base 
of the i th slice respectively, w; = weight of the individual slice, r = unit 
weight of the soil. 

The factor of safety of a slope in purely cohesive soil or under 
undrained condition (rf, = 0) can be obtained as follows: 

where 

p,_ _c_N 
yH 

2 b~ sec rt1 

N - =-' ---,---
-""' b~ h~ sinri. L., I I 

,;, (2) 

... (3) 

andb: = b./H. h* = h_/H,Histheheightoftheslope. 
. I I i I 

For a given slope b: h~ and rt. are functions of the coordinates of the 
l l I 

centre and the radius of the slip circle. Depending on the types of 

failure, viz, base failure, toe failure and slope failure, b~ h~ and rJ.. are 
I I l · 

expressed in terms of the x and y coordinates of the centre (xo, Yo) and 
the radius (R) oftb.e slip circle. For reasons of space aiid brevity these 
are not presented_h.erein. The factor of safety, as expressed by Equations 
I and 2, is a nonltnear function of the design variables. 

Design Variables and the Objective Function 

There are many Possible circular arcs through a cross section. The 
location of the critical, or the most dangerous, arc · is determin_ed by 
minimizing the factor of safety. The design variables are the co-ordinates 
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of the centre and the radius of the slip circle, and the objective function is 
the factor of safety F. The design variables are collected in D vector as 
follows; 

IJT = ( x; y: R*) 
where x: = xo/H, Y; = YofH, R* = R/H 

F, the factor of safety is expressed as a function of the design vector 

F =f(D) 

Design Restrictions 

... (4) 

In the absence of any underlying hard stratum the only constraint, is 
that at least a portion of the slip circle must pass through the slope. 1 his 
condition will be satisfied if the radius of the slip circle is greater than the l 
perpendicular distance of the centre of the slip circle from the sloping 
surface and the bottom intersection point must lie to the left of y axis 
(Figure I). These conditions are expressed in mathematical form as 
follows; 

gi(D)= [(H/xn) x: + y~ - l J/[(H/xnY +1 r5

- R* <0 

g2 (D) = - Xjb<O 

... (6a) 

... (6b) 

xfb is the x co-ordinate of the lower intesection point of the slip surface 
with the slope and is a function of the design variables. Xn is the x co­
ordinate of the toe. 

Mathematical Programming Problem 

Finding the minimum value of the factor of safety (Equations I and 
2) subject to the constraints as expressed by Equation 6, is formulated as 
a mathematical programming problem which is stated as follows : 

Find the design Dm such that, 

F = f (Dm) is minimum, -

subject to gi (D,,,) <0 ..... j = I, 2 ... (7) 

In the present analysis the strict inequality constraints are satisfied 
indirectiy and un_c~nstrained minimization of the objective function is 
carried out. The in1tia) starting point is chosen to be in the feasible zone. 
Due to the Jong step nature of some of the algorithms, the path of 
optimization could become diverted into region where the constraints are 
violated and the function is undefined. Such an eventuality is guarded by 
assigning a very la_rge value for F if the step is beyond the admissible zone, 
and the minimization algorithm is left to correct the situation on its own. 
In general, it is more efficient to provide direct logic to accommodate this 
situation than penalty formulation using tolerance for the constraints so 
that the strict jnequaJities are satisfied. 

The Unconstrained Minimization Techniques 

The unconstrained minimization techniques that are used alongwith 

j 
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quadratic fit for linear minimization are as follows : 

l. Powell' s method : Conjugate direction. 

2. Fletcher and Reeve's method : Conjugate gradients. 
3. Davidon-Fletcher-Powell method : Variable metric. 

2l5 

These methods are described in all standard text books on mathematical 
optimization (Fox 1971). 

In the gradient methods, the gradients are evalua ted by finite difference 
method using central difference scheme. Theoretically all the three methods 
have quadratic convergence. 

Convergence Criterion 

When the changes in the function values and the design variables in 
between two cycles are less than 0.001 the minimization is stopped. 

Results and Discussion 

IBM 7044 computer is used for the computational work. 
The stability numbers as expressed by Equation 3, are obtained for 

slopes in homogeneous and isotropic purely cohesive soil. Instead of 
preassigning the total numbers of slices into which the area ABCD (Figure 
1) is divided, it is advantageous to assign a reasonable slice width which is 
arrived at by dividing the distance OB by a number N2 • The total number 
of slices is then automatically fixed depending on the design vector (D) as 
can be seen from Table l. It has been found that for fht slopes, N2, 
strongly effects the value of stability number (Table la). For steep slopes 
this trend was not observed (Table lb). For 10° slope (Table la) values of 

TABLE 1 

InOuence of N2 on the stablility number obtained by using Powell's 
method of minimization 

(a) 

Slope angle = 10°, Initial x~ = 2.13, y; = 2.50 and R* = 4.32, <p = o. 

Final design vector D
111 Total number 

N2 of 
slices 

x* 0 
y; R* 

10 2.74 J.39 4.45 IG 

15 2.76 J.70 4.33 22 

20 2.80 8.56 20.63 135 

25 2.84 7.94 19.10 156 

30 2.83 7.51 18.02 176 

40 2.84 1.83 6.60 58 

**Values do not converge to the reported minimum, 

N 

G.30** 

6.50** 

5.56 

5.57 

5.57 

ti.Go+ 
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(b) 

Slope angle = 70°, Initia l x~ = 0.615, y~ = 1.54 andR* = 1.54, if, = 0. 

N2 

5 

10 

15 

20 

Final design vector D 
m 

x* 
0 y~ R* 

0.514 1.54 1.54 

0.512 1.54 1.54 
0.512 1-54 1.56 

0.510 1.54 1.54 

Total number 
of 

slices 

18 

36 

54 

72 

N 

4.81 

4.83 

4.83 

4.83 

N2 greater or equal to 20 lead to a stability number which is nearly the 
same as the reported value (Lo 1965). When N2 was increased to 40. the 
obtained minimum stability number, 6.6, is much higher than Taylor's 
(1927) value, 5.53. It could be due to the fact that the direction of 
minimization is such that the function value decreases very slowly and, as 
such, premature termination has occurred. 

To investigate this aspect, the starting point was altered keeping N2 
same as 40. It now led to a stability number comparable to. the exact 
value. Similar trend is observed for other values of N2 (Table 2). The 

TABLE 2 

Influence of starting point on stability number obtained by using Pewell 's method 
of minimization, Slope angle = 10°, tp = 0 

starting point Do 

• • R* * XO Yo XO 

20 ].26 3.oa 5.37 2.72 

2.13 2.50 4.33 2.80 

2.83 9.00 21.00 2.83 

40 2.13 2.50 4.32 2.83 
2.84 7.94 20.64 2.84 

u Values do not converge to the reported minimum. 

final point D m 

* R* Yo 

4.54 6.83 

8.56 20.64 

9.54 22.90 

1.83 4.33 

8.57 20.64 

N · 

6.32** 

5.56 

5.55 

6.60** 

5.56 

above behaviour brings out also the importance of starting point in an 
optimization_ schell_le. However, only very flat slopes in homogeneous 
purely cohesive so il exhibit this dependence on the initial starting point. 
For reasons of space and brevity only the detailed results obtained by 
µsin~ P9.yeJl's algorithm are reported herein. 

J 
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As an initial guess, the position of the centre of the most dangerous 
rupture surface through the toe of the slope is found out using the direction 
angles, compiled by Jumikis (1965) from Fellenius data. This as a 
guideline was found to be inadequate for flat slopes ((3 < 50°) in homo­
geneous soils but for steep slopes it gives a good starting point. From 
experience, for flat slopes the initial starting point Du is assumed as follows 
to get a quick and good results: 

D0 = (x* J 2,9.0, 21.00). 
n 

A comparison of the different algorithms (Table 3) showed that the 
Davidon-Fletcher-Powell method is the most efficient when applied to 
this problem. ft can be observed that though different algorithms led to 
different final design point, Dm (Table 3), the minimum stability number 
is either identical or very close to the exact value. This may be due to 
the fact that the objective function is almost flat in that zone and, as such, 
insensitive to the variation of the design vector (D). 

As a typical example of the application of the optimization technique 
for a slope stability analysis in a c-- ¢ soil, the following problem has 
been solved and is compared with Jumikis's (1965) graphical solution. 
Example: A slope (l: 2), the height of which is H = 13. 7!6 metres is to be 
made in a c-<f, soil the unit weight of which is = 1762.031 kg/m3, the 
angle of internal friction, if, = 7°, and the cohesive strength is found to be 
c = 5858.4 kg/ m2 • Compute the factor of safety against rupture of slope. 

Slope angle corresponding to 1 : 2 slope is taken as 26.6°. The initial 
starting point is chosen as follows : 

T 
D

0 
= (x; Y; R• ) = (34.8950 69.4337 88.6664) 

The starting point function value F, = 2.05947. After optimization the 
final design vector is obtained as: 

T 
Dm = (49.9013 67.6726 92.7463) 

and the optimized factor of safety F, is l.9501. The minimum factor of 
safety obtained by Jumikis is 2.06. The two values are close enough to 
show the suitability of the mathematical programming techniques for 
automated slope stability analysis. 

If at any stage of optimization the step length is such that the cons­
traints are violated, th_e function Ne is assigned an arbitrary high value of 
103 and the minimizat10n algorithm is left to correct itself on its own. In 
the present study it w~s observed that during the process of optimizat_ion 
such possible oscillat10ns of the design between feasible and i_nf~as1!'le 
zones occur occasionally and, as such, its influence on the opt1m1zat1on 
scheme might be presumed to be insignificant. Hence the study of the 
probable influence of the Value of the multiplier (103/ N) on the convergence 
of the optimization scheme were not undertaken. 

The present approach has also been successfully applied to slope 
stability analysis in nonb cmogeneous and ani~otropic $Oils (Basudhar 
1976) which are notreported here in. 



TABLE 3 

Comparison of different unconstrained minimization techniques applied to slope stability analysis, rf, = O 

Slope angle N2 Unconstrained Starting point Do Final point Pm 
in degrees minimization 

method 
* R* • • R* • Yo X Yo XO 

0 

10 20 POWELL 2.83 9.00 21.00 2.83 9.53 22.90 

FLRV 2.84 8·66 21.40 

DFP 2.~3 9.00 21.00 

30 7 POWELL 0.86 9.00 21.00 0.88 9.00 21.00 

FLRV 0.86 8-99 21-68 

DFP 0-86 8.99 21.00 

POWELL- Powell's method 
FLRV - Fletcher-Reeves method 

DFP - Davidon-Fletcher-Powell's method 

...,. \i.. ....J.. 

Time 
in 
seconds 

63 

29 

14 

69 

13 

9 

N 

5.52 

5.56 

5.56 

5.52 

5.52 

5.52 
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Conclusion 

~- The study brings out clearly that a blind application of sophisticated 
algorithms may not produce the desired accuracy especially for :flat slopes 
wherein the results are strongly dependent on the proper ch_oice of_ the 
width of the slice and on the initial starting point. Howev_e~, wit~ a l_1ttle 
care all the three algorithms can be applied to find the cnhcal shp ~ircle 
and obtain the corresponding minimum factor of safety. Dav1den­
Fletcher-Powell method gives the solution in the shortest time. 
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