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Introduction

nts in which soil—cement or similar material is used are

e detrimental effect of cracking in their early life, before
The reflection of these

the problem (Dunlop

H ighway paveme

susceptible to th
they attain full strength and are opened to traffic.
cracks in the upper layers further aggravates

et al).
vements caused by superimposed

The stresses and deformations in pa . ]
loads and ambient temperature have been studied extensively (Bradbury
1938, Haar and Leonards 1959, Kelley 1939, Teller and Sutherland 1935,

Thomlinson 1940, Westergaard 1926, 1927).

The stresses caused by the changes in moisture content or drying
shrinkage which is essentially differential in nature are still being investi-
gated. Theoretical expressions for elastic deformations and accompanying
shrinkage stresses that occur in concrete beams and slabs during course
of drying have been derived by Pickett (1946). Sanan and George (1972)
have analysed slabs for shrinkage stresses assuming them as thin plates
supported on Winkler foundation giving elaborate expressions.

In the present study, shrinkage stresses have been worked out using the
Westergaard’s approach because of its simplicity, replacing the temperature
strains by the analogus shrinkage strains. Thomlinson’s visualization of
temperature stresses has also been modified using the same approach.
Soil-cement layers dry from one face (top surface) only, consequently the
top surface dries more than the bottom surface. The resulting shrinkage
is thus not only nonuniform but also nonlinear through the depth of the
layer. The expressions have been derived using various assumed shrinkage
variations through the depth.

Partial subgrade restraint has been taken into account (using a constant
restraining force) and a linear relationship has been concluded between the
stretssqs tmduc:ed by no base restraint and those induced by complete base
restraint,
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Shrinkage Stresses (Elastic Analysis)
Westergaard’s approach

Westergaard’s approach which has been extended further by Thomli
n=-
son, has been adopted here because of its simplicity and 3zgts a ﬁ::st
approximation.

The shrinkage stresses attain their maximum value at the centre of the
pannelg (Saman and George 1972), the analysis is thus restricted to the
determination of shrinkage stresses in the middle part of the slabs.

Infinite slab (uniform shrinkage variation)

The shrinkage stresses in the central area of a large slabe are given by
the expression.

Gx=0y = IS_E” ()

where ox 0, are normal tensile stresses at all points through the depth of
the slab, E-—-modulus of elasticity and s—shrinkage strain (assumed

uniform).

Infinite slab (linear variation through depth)
The shrinkage stresses are given by

SE
0o = —QA7:  ~ “es 2
2(1—p) ()

where 6, = stress at the top (same in all horizontal
directions)

s = shrinkage strain (difference of shrinkage
strains between top and bottom)

Long slab of relatively narrow width
For slabs of this nature the deflction is given by the expression
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Z=deflection (downwards)

_ Upws [0+ EH
L=~ =5k

B=slab width
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! :\/ m_lﬁﬁ:ﬁf)f_ = radius of relative stiffness of the slab.
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k=modulus of subgrade reaction

H=slab depth

C_orres;)ponding principal stress (maximum stress) at the top of the slab is
given by

B 2cos A cosha N . ¥

Oy =0, [l ~ in Zr-rsinh ZA\ (tan A-ttanh A) cos I cosh e
- (tamd - tanhd) sin -2 sinh 2_)]

=+ (tanA~tanhA) sin Ivs sinh %) 4

Gx=GQ+H(Gy—GQ) ...(S)

and o - B
1)

Finite slab

In slabs of finite dimensions, the deflection is obtained by superimposing
the deflections in x and y directions /. e.

Z=Z;(y)+Z,(x)
where Z, —deflection as in Equation 3
Z,—deflection obtained by replacing y by x and }\-——‘,—\-/%

B—width of the slab.

Principal stress at the top are given by

cx=ago (14 pu—Fe—p Fy) . (6)
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Generalized shrinkage stress and strains (Elastic) -

Thomlinson’s modification

Thomlinson (1940) taking a temperature gradient through the depth of
the slabs, has arrived at what he calls internal stresses

H

12{ ——2Z
Exb ( )

fe,x—fe,y=_l +H(1 -—IEaﬂdz+ B

IEch( o )d. (8)

The first term on the right hand side gives the stress due to the distributed
end force, whilst the second and third terms give the stress due to the
concentrated end force, and «, 6 are thermal expansion coefficient and
temperature variation respectively. Shrinkage stress are evaluated by
replacing the temperature strains by the analogous shrinkage strains.

Shrinkage stresses and strains (no base restraint)

Equation 8 for infinite slab can be modified for shrinkage stresses as or
directly from theory of elasticiiy, Figure la. Strains are taken as positive
in compression,

e T 4
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. . i i
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Shrinkage stresses and strains ( full base restraint)

As full base restraint is assumed €x = €, = 0 (at bottom). In order to
neutralize €. or €, some force must be applied through the subgrade.
Let that force be R (a constant force)—which actually has to be a central
force R and a moment RH/2 (Figure 15).

The stress thus will be 4 R/H and .'. strain = HE — ) and this strain
4 —
(IMF;)R = gi,p ZF} negative sign for opposing nature, equated to
equation 3.

E 3
or R = 2—[{:;)(—134 M) This force will produce stress at any Z,

which wiil bc 4 H (Z-«- ek
2 H3

substituting the value of R = R( — + 62)

- ., 3M z
Stress introduced = ————( —F + 2V ( =143 £ i i
ss introduced H(l_p)( P+ T )( 143 i )aad is tensile

in nature
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R GG E ) R

Ffr.2Z
and €x = Gy S I—{(SH-—S )+ —-AH-% ( 3—'%) ...(15)

The stresses and strains obtained under the conditions of no base restraint
and full base-restraint can be tabulated for comparison (Table 1).

Shrinkage variation through the depth of the slab

Westergaard (1927) assumed that the temperature gradient in a slab is
constant throughout its thickness. This however, is occasionally true and
depends on the material and the environment. A functional form can be
chosen to represent the shrinkage variation through depth.

Some usual functional forms are assumed and the appropriate stress
and strain expressions are deduced (Table 2). Any one or more function
forms can be combined to fit the ficld shrinkage condition to evaluate the
shrinkage stresses and strains.

Shrinkage stresses using Thomlinson’s appreach (partial base restraint)

The free stresses as visualized by Thomlinson are given by

__E FleZ _ f_‘!,(_é§

Fr Z M Z
I e F(Gﬁ—ﬁl)-{-}ﬁ(é—lzy)
Introducing base-restraint

Let a force R/unit length act at the bottom on both sides (Figure 1c).

The stresses and strains resulting from this partial sub-grade restrain-
ing force are
R{_ Z
O =0y = ’ﬁ(é‘ﬁ “2)

1—p R Z
and éx/ = G,V’ = _E-—.E,(6}?_2)

Total stresses and strains

The total stresses and strains are obtained by combining the free
stresses and the stresses contributed by the partial sub-grade restraint 7 e.

¥ e B E E g H ZzZ
O iy - {s+ H(éH —4)+HE (6«12—1-{-)}

R Z :
aﬂd : = f z.—— Sy ! 'A._{ z
€, =€, H(6 77 4 4+ (612 )

I-p R Z
+ 2757 -2) (17)
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Full base restraint

The partial base restraining force R can increase to a value Rpax at full
base restraint

When ef,:ef,—_—o at Z =H
These conditions yield

Rmax ==

EH (3M F
00—\ H* H
Partial base restraint

Introducing a factor K., which has a value, zero for no base restraint
and unity for full restraint and it may have intermediate values as well.

Taking R = K- Rmax and substituting in Equations 16 and 17 we get
m m E F —27 _ . }
o il S s-i-?{(ﬁ-—:{Kr)H (4—K»)

@ V l —u
M Z17
+ 5 {(6——-3&)—(12—-9&) 7{—}_ (18)
m m F Z -]
and el = F[(6—3Kr)7;, =l
M ge— .
+15 [(6*3}’(,) — (12-9K) 7 | .(19)
Special cases
2 6M
€« (bottom) for K, =0 = A
€x (bottom) for K, =1 =0
F 3iM
€ (bottom) for K, = 0.75 = 5H 2HE
F 3M
€x (bottom) for K, = 0.30 = T '’
3F 9M
€x (bottom) for Kr = 0.25 = ,_',—'H— W
- 2F 6M
Giving €mux = AT- 41:12_ and €mn = 0
Strain release factor
Let us define a factor F, = G'Lédi ihus: he: stein  seleass Dacior:

On evaluating F, for various values of X; it is found that they are equal,
indicating thereby that the relationship between the stresses and strains
for no base restraint and full base restraint is linear, and that stresses and
strains forcing partial base restraint can be linearly interpolated.

Evaluation of shrinkage stresses
Material properties
For numerical analysis material properties for soil-cement are taken as
recommended by George (1970) pertaining to a similar study:
E = 4650 kgfcm?, p = 0.3 and K = 5.55 kg/cm?®
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Panel dimensions

Standard panel dimensions as give by Bradbury (1938) are taken for
calculation purposes.

length = 10 m breadth = 6 m thickness = 20 c¢m

Shrinkage variation

The variation of shrinkage through the depth of the slab has been taken
from Haroon (1971) and is as per Figure 2 (50 hour shrinkage).

Shrinkage , %

¢ 0t 03 0.4 05
X i v Y300 hrs T
25 hrs 00hrs
—
)
- 2%y 00mws {8
Wohrs
£
= 2 &
8
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I~ i -
25hn S0he 300hrs
[ ] 41 | [ 2
¥ Measured shrinkage &t the top
i Measured shrinkage of ihé bottom

FIGURE 2

Shrinkage stresses

Using the above data shrinkage stresses are computed by Westergaard’s
approache and internal stresses are worked out as visualized by Thomlinson
They are tabulated in Table 3. Sample calculations are presented in

Appendix L
TABLE 1: Stresses and strains

No base restraint Full hase restraint
Stressat any depth 2 E { o ot G ) E [ - £(3 -éws)
ox = 8y it 4" (o= —ul T H H
M Z M 3z
i —12 — B o o e
+ g ¢ H)} +7(-% ]

Strain at any depth Z  F 7 A - z F /3Z M 37
exri:ﬂﬁ: an —7]’-(6 7[ﬁ——4)'l* ﬁg( 6-*]2'"]:"{—') *}? —-}-;,—__3)<JI _ﬁ_z(j___f?_,

Top stress Z = 0 E ( - _4.F‘+ GM) E 3F 3M)

l—p H' H I\ THT®E
Bottomstress £ = H =~ E 3 2F  6M E
1—p H T HT, I—p Q
w 4F | 6M 3F M
Top strain —H +F= ity oH o
2F 6M

Bottom strain + B 0




TABLE 2: StesSes and strains

' Stresses Strains
1
Sﬁ:’ L’;ﬁ%ﬂe No base restraint Full base restraint No base restraint ’ Full base restraint
: I
Factor X Top Bottom Top Bottom Factor x Top \ Bottom \ Top Bottom
Constant Aol 0 _1 1 A -1 +1 —
gy i—m 0 5 + 0 5 0
Linear A EH 1 0 = s
s = AZ =) 0 0 3 +1 AH 1 3 0
AEH? 1 1 1 1 5 1
= = — — —_ - } § H? — —= =1
b Sl = 6 6 g * Az 6 6 3 g
—6X—2D S ‘
= EC 6-+4D+D* +6el _C_'_ 6-+-4D—6eD ~6—2D.1geD 3+ 3D
s=c eD"H [r(i—L) —eD +2DeP —4DeP 343D+ Dt D%D D* +2Del —4Ded  —3eD 0
+ D?%D —3¢D

JI0S NI SESSIULS HOVINIMHS

16



TABLE 3 Coemparison of stress at top surface through various formulae

Westergaard compitied stresses kglem?

Thomlinson internal stresses kglem?

Infinite slab Iufinity slab Long and o -
uniform linear narrow F nge Restraint Constant Linear Parabolic Exponential
shrinkage variation slab sla

No base

14.95 335 2.3706 4.38 restraint 0 0 1.185 0.1012
Full base
restraint 7.48 6.2875 4985 6.2574

TYNINOL TVOINHDALOTD NVIANI
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Conclusions

The Westergaard's approach yields expressions for shrinkage stresses
under various conditions of slab dimsnsions and restraint taking E, p, and

subgrade restraint into account which are simple and reasonable as a first
approximation.

Thomlinson’s modification is realistic as non-linear shrinkage variation
through slab depth is the usual type of variation. The internal stresses
worked out in this study have to be combined with stresses induced due to
restraints against fongitudinal movement and warping to get a complete
picture of the nature of shrinkage stresses. The comparison between the
shrinkage stresses obtained by using Westergaard’s equations and those
obtained by using Thomlinson’s approach becomes difficult as t_he table
given by the the latter (HMSO, 1963) has been compiled showing only
maximum stresses at various depths and thus not at one time.

Self weight of the slab has also not been considered. Their cqnsidera-
tion however, is very important as the increasein panel damer;snons and
self weight of the pavemznt slab prevents hogging, thereby causing stress

reversal.

The actual shrinkage strain through the depth ol drying slab is a
complex phenomenon, but for practical purposes the variation can be
simulated to a combination of polynomial and exponential functions, for
which Table 2 has been prepared.

Subgrade restraint has been taken into account but the restraining force
is assumed to be constant. It is observed from the fact that K2 is not
coming that there is a linear relationship between the stresses and strains
for no base-restraint and full-base restraint and that of any partial base-
restraint, stresses and strains can be interpolated.

This part study is only a preliminary work which is being extended by
introducing base-restraint in the Thomlinson’s approach.
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Appendix I
Sample calculation
1. Westergaard's approach
(@) Infinite slab (uniform shrinkage)

sE 0.225 3 4650
o o o IR et ol 14.946 kg/cm?
6x=0r =L = T100x0.7 el

(b) Infinite slab linear variation
SE 01014650 _ 3 39 yo/cme

%= 30—w  10(1.—3)x2

(¢) Long and narrow slab

T 4650200
_ 4/ __4650x20° 5549
’—’\/ 3 (1=.09)555 — >
600
_ 800 _ 4573
A= 79mys — !

R LG m].—_a.zﬁk em?
6y — 337125 [ I oy (tan A-tanh ) g/

(d) Finite slab

1000 .,
@ = 3:?————-ﬁ.99‘v’8 — 1-.63
A= 17578
o == 3,371

Zeosgeomh e
sin 2¢+sinh 2¢

6.948 x 10-¢
ox = 3.371 [14.3—6.948 x 107%—.3x1.259 % 107%]
= 438! kg/cm?®

[tan ¢ -+tanh ¢]
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H, Thomlinson’s approach

(@) Parabolic variation (no base restraint)

oy = A2 EH
T e(l—p)
_ 2.676 1074650 % 20°
o 6(1—.3)

= 1,185 kg/cma

(b) Constant shrinkage variation (full base restraint)

_ AE
g = (I=p) ( _)
-3
L 225x10

T3
= 7.473 kg/cm®
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