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present methods of estimating magnitudes and rates of settlement 
employ the conventional one-dimensional Terzaghi (1923) and pseudo 

three-dimensional Rendulic ( 1936) theories of consolidation. Biot (1941) 
proposed a comprehensive three-dimensional theory of pri~ary consolida­
tioa based on poro-elastic approach. However, not many problems of 
foundation engineering interest have been solved based on Biot's theory. 

Foundations may be subjected to horizontal (shear) loads due to friction 
between footing and the supporting soil or by way of horizontal component 
of applied inclined loads on footings. The 'problem of a circular footing 
subjected to tangential loads was solved by Schiffman and Fungaroli ( 1965). 
The problem of planestrain consolidation of a semi-infinite medium 
subjected to surface tangential loads uniformly distributed over a strip is 
solved by Babu Shanker et. al. (1973) using Biot's theory. The solutions 
for the problem of line shear load are obtained in this paper as particular 
cases of the corresponding solutions of the s:rip shear problem mentioned 
above. A detailed discussion on the type of se ttlements and special 
porepressure effects under line shear loads is presented. 

Governing equations and method of solution 

The governing equations of Biot's theory for a saturated soil for plane 
s trai1~ consolidation are : 

'lj2 U~- (2n'-1) (J e,._ -1 aU = 0 
ax G' ex 
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where ux, Uz are the displacements in x and z directions, u is the excess pore 
water pressure, ev is the volumetric (compressive) strain, c. is the coefficient 
of consolidation, t is the time, Gl is the effective shear modulus and 
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McNamee and Gibson (1960) defined two displacement functions E and 
S which are related to the original variables by : · 

a£ as 
Ux= - - +z -ax ax 

aE as 
Uz = - - -S+z -az oZ 
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Thus governing Equations (I) get transformed to 

cv \}4 E = \} 2Ca~) 
\} 2 s = 0 

... (2) 

.. . (3) 

The total stresses (which act at the boundaries) may be related to E and S 
by 

a xz a2E o2S 
- - = -- -z --
201 axaz axaz 

... (4) 

The solution of Equations (3) in non-dimensional form making use of 
Laplace Transforms and Fourier Sine Transforms is obtained by Babu 
Shanker, et. aL ( 1973) for the problem of plane strain. shea~ where a 
uniformly distributed unidirectional surface shear load of Intenstty q acts 
on a strip of width 2b. Solutions for line shear load problem (with a surface 
intensity of q1) can be obtained as particular cases of the above solutions 
(after dimensionalising) on using 

q1 = Limit (2bq) 
b~O 

... (5) 

Settlements_ and pcirepressures so obtained are given below for both the 
s~face. dra.m~ge bound~ry conditions. The boundary value problem under 
dt~~~~~t?n 1~ 1~1 ~~trat~q m Figure 1, · · · · · 
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Solutions for pervious drainage boundary 

(a) Settlements 

Settlement or the surface vertical displacements (i.e., u. at z = 0) is 
obtained as 

... (6) 

where, 

00 

l - 2 f e-a.'cvl ~· ~2 d~ 
6 - 7rn'2 0 <~2 + 1){~2+C,;, 1 r f . 

-,, Immediate settlement so is obtained by letting t - 0 in Equation (6) which 
reduces to zero. Thus immediate settlements are absent under shear loads 
and hence time-dependent consolidation settlements (sc ~ s-so) are identical 
to total settle1nents. Ultimate settlement Su is obtained by letting t- oo in 
Equation (6) which then reduces to 

ql ql(l+v') (l-2v') forx > 0 
s, = 4G'(2n' -1) = 2£' 

= 0 for x = 0 ... (7) 

Presence of sine term in Equation (6) suggests that settlement is zero 
directly under the shear load (x = 0) and that the soil mass in the direction 
of shear load (x > 0) settles whereas soil mass on the other side (x < 0) 

J heaves up. · 

For n' =-.: 1 (or v' = 0.0) Equation (6) red •JCes to 

00 

q 

J 
sin rJ.X _ 1-

2G's = ; - cot - erf(rJ.v Cvt) dx ... (8) 

0 

X 

where, e1j(x) = V~- J e- "' dx is the Error function. 
0 . 

For n' - oo (v' -+ 0.5), the settlements are zero. The time-settlement 
felations obtained for point A (of Figure I) are shown in Figure 2. It is 
:Seen from Figure 2 that larger then' value (or lesser the v' value), lesser is 
the settlement. This is an expected trend since n'-value (or Poisson'~ ratio) 
.r~flects the incompressibility of the material. Progress of settlement (at a 
_glVen surf a~~ point) ~~!J best b~ jud~eq by the degree of cons<;>\iQ\\tion 
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FIGURE 1. Boundary value problem under study 
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FIGURE 2. Time-settlement relations 

settlement (Us) defined as 
s,, consolidation settlement at any time 

Us = s- = ultimate consolidation settlement cu 

s = --
Su 

2 Joo sin cx x • 1 -= n- - ex- erf (ex v c,.r) dcx ... (9) ),. 
0 

for n' = 1 

The rates of settlement as indicated by Us (for point A of Figure 1) are 
shown in Figure 3. Larger the n' value, faster is the progress of settlement. 
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FIGURE 3. Deeree of settlement 

This is explained by the fact that magnitude of ultimate settlement depends 
upon the compressibility of the material and hence on ~he amount of wat~r 
to be drained. The Jess the amount of water to be dramed, the shorter IS 

the time taken for drainage and hence settlement. 

(b) Porepressures 

The porepressure is given by 

... (10) 

where, 

00 . 

1 _ ~2-J -o:•c,t ~· ~2 cosf31Zz+ {n'(f3 2 +I)-l}f3sinf3az d~ 
4- nn' 2 o e (~2 +I)2i~2+(n';l Y} 

The initial porepressure u0 is given by letting t -+ 0 in the above equation 
which then reduces to 

... (11) 

Ultimate porepressure is obviously zero at the end of consolidation as 
t -+ oo • Porepressure directty under the centre of the load (at x = ·o) is 
zero and it increases beyond that point sinusoidally. Positive porepressures 
generate in the direction of load application (x > 0) and negative pressures 
in the other direction (x < 0) . This porepressure distributional pattern is 
consistent with the settlement pattern discussed earlier. 
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For n' = 1, Equation (10) reduces to 
00 

u , - q1 J s· -:xz[ f ( . ;- z ) • r J n ~ 1 - - In oc x e er c ocv Cvt- ---- - erfc(a.v Cvt) doc 
7r o 2y c,t 

.. . {12) 
similarly for n' ~ oo , u reduces to 

Un' -+ oo = !!2_ r Sin I)( X. [e- a.z erfc(a. VCvf-~) 
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0 
2v c.t 

--taz erf c( a: v C.:t+ 
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z _ J dx .. . (13) 
\ \ 1 c,.t 

where etf c(x) = 1-erf(x ) = complimentary error function. Equations (12) 
and (13) can further be reduced in terms of Dawson's Integrals etc. (Babu 
Shanker, I 974). Figure 4 shows the time-porepressure relations for point B ,._ 
(of Figure 1). The most striking result of Figure 4, is the fact that for 
n' = I, the porepressure increases with time beyond its initial value (uo) 
before it decreases or dissipates. This peculiar porepressure effect is known 
as •·Mandel-Cryer effect" (Mandel, 1950 and Cryer, 1963) and i ~ absent for 
n'- oo. It has been shown that for n' ~ oo (v' = 0.5), the true consolida-
tion theory reduces to pseudo (diffusion) theory (Gibson and Lumb, 1953). 
And predictions from pseudo theories for porepressure do not show up 
Mandel-Cryer effect. The possible reasons for manifestation of this pore­
pressure effect are im·estigated in the following paragraphs. 

(c) Mandel-Cryer Effect 

Schiffman et. al. ( 1969) investigated the reasons for Mandel-Cryer effect 
under normal loads. One of the reasons given by them is the fact that if at 
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in~reases with time with no chang~ in effective volumetric stress 
( ~· = a. - u) then porepre_ssure should mcrease locally a t such a point. For 
n = I , the total volumetnc stress (a,-) is obtained as : 

co 

t1 v = Jq; J sin lXX e-az[2-3 erfc(rx·y/c,.t)+2 erfc(rxv c,.t--==--)J drx 
~ . 2vu 

0 ... (14) 

Figure 5 shows the variations of a,, a.' and u with time. It is observed that 
during initial period the effective volumetric stress a..' essentially remains 
constant, whereas the corresponding total stress av. increases _during the 
period and this results in temporary porepressure bmld up. It IS seen that 
the peak points of a, and u curves in Figure 5, correspond to almost the 
same time. · 

For n' = I, the volumetric strain is given by 

co 

. e,. = 
2 
q~' J sin lXX e- ·az[2 ~erfc( IX v C:t-2~)] dx 

7r . v c,.t 
... (15) 

0 . .. 
At time t = 0, ev = 0 (which in fact is the initial condition used in the 
solution of basic governing equations). The mobilisation of e, with time t 
for point B (of Figure 1) is shown in Figure 6. It is seen that not only at 
t = 0 but also for a long time even after the application of the load, there 
is no volumetric strain at the point under study. This fact can be attributed 
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cvt (in m2) 
FIGURE 5. Time-Volumetric stress relations 
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to large lateral strains mobilised during thi s period, which while al lowing 
vertical strains do not result in volumetric strains. These large latera l strains 
are in fact responsible for Mandel-Cryer effect. It is seen that e. curve of 
Figure 6 is similar to that of r;v' curve of Figure 5, as it should be. 

Consolidation can be looked upon as a process where the elastic proper­
ties of soil change. For example, the initial (undrained) value of Poisson's 
ratio is 0.5 and it decreases to its effective (drained) value v'· at the end of 
consolidation. Assuming v' = 0.0 for a so il , the Poisson 's ratio with 
respective to total stresses (v) can be obtained as (Schi ffman , et. al., 1969): 

u 
V = 3rJv-U •.. (1 6) 

Thus from known variations of u and rJv with time from Figure 5, one can 
obtain time variation of v (see Figure 7). The value of v in this case varies 
from an initial value of 0.5 to a fin al value o f zero. It is interes ting to no te 
that the time corresponding to a change in the initia l slope of the curves v, 
e. and uv' in Figures 7, 6 and 5 respectively is the same. 

In one-dimensional and pseudo three-dimensional theories it is tacitly 
assumed that the rate of settl ement is same as the average rate of pore­
pressure dissipation. However, these two rates need not be the same for a 
three-dimensional or plane strain situation (Davis and Poulos, 1972). This 
fact is investiga ted below. 

!Jnlike ~urface settlement (which represen ts the averaoin a effect f 
ver~ICal ~rams t~roughout t~e con~olidating layer), porepre~su~e is a Joc~l 
vanable (and so JS volumetnc stram). For a given x let an a 
porepressure U av be defined as : ' verage 

00 

Ua v = J U dz 

0 
... (17) 
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Substitution of u from Equation (12) into above equation leads to 

00 

q1 J sin cxx -o.•c t .J 
Uav = - -- e • uct 

7r rJ. 
0 

Degree of porepressure dissipation is defined as 

which from Equation (18) reduces to 

00 

U 2 J sin ct\'(l -or.•c 1) .J P = - -- -e v uct 
7r ex 

0 

= erf c(xj2v'c.t) 

Similarly the average volumetric strain eav is defined as 

00 

eav = J ev dz 

0 

aud Degree of volume change Uv is defined as 

... (18) 

... (19) 

... (20) 

... (21) 
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which from Equation (15) results in 
()() 

U _ 2 J sin ax [(1-e~a;•c, 1)+ erf(a v C::t)J 
1 • - 7r -a-· 2 c;o: 

0 

Up+ Us 
= - 2- ... (22) 

Thus the three degrees 'Us' defined above are different for n' = 1 whereas 
they are assumed to be identical in one-dimensional consolidation and hence 
are known by one name "the degree of consolidation". From Equation (22) 
it is seen that the degree of volume change is average of the degrees of 

. settlement and porepressure dissipation. These degrees for point B (of 
Figure 1) are shown in Figure 8 for comparison . It is interesting to note 
that degree of settlement is always more than the degree of porepressure 
dissipation i.e., Us > u. > Up . This incidentally explains the Mandel­
Cryer effect, since the time lag between rate of progress of sett lement and 
average rate of porepressure dissipation must result in the manifestation of »­
increase in porepressure at some local points. 

Solutions for impervious boundary 

The different variables of interest for this case are summarised below : 

ql foo Sin aX[ 1 , - a;•cv{f. 
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where, 

d~ 

and 

It is seen from these expressions that immediate settlement (so), ultimate 
settlement (su) and initial porepressure (uo) are all _ind.epe~dent of surface 
drainage condition. Settlement and porepressure distnbutwnal patterns are 
also similar to those of pervious drainage boundary case: Mandel-Cryer 
effect is seen in porepressure (for n' = 1.0) but the intensity of this effect is 
not felt as severely as in the other case. Time-settlement and time-pore­
pressure relations for this case are shown along with the other case also in 
Figures 2, 3 and 4. 

Conclusions 

Some of the conclusions drawn from the present analysis are as follows: 
(I) Immediate settlements are absent under shear loads. · 

(2) Settlements directly under the c~ntre of the unidirectional shear 
loads are ab3ent. Positive (downward) settlements o:::cur in the 
direction of load while negative settlements (heaving) occur in the 
opposite direction. Settlements are totally absent for a medium 
with v' = 0.5. 

-(3) Pattern of porepressure distribution is consistent with the settlement 
pattern. 

( 4) B}ot's theoretical I?redictions show up Mandel-Cryer effect (for 
v < 0.5). Increasmg total stresses under constant effective stresses 
is one of the reasons for this effect. The degree of settlement is 
always more than the degree of porepressure dissipation and degree 
o~ volu~e change is the average of the above two degrees. These 
?llfer.ent•al rates are primarily responsible for Mandel-Cryer effect 
Ill SOilS. 
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Notation 

The following symbols are used in this paper 

b = half width of strip 

c, = coefficient of consolidation 

E = displacement function 

E' = effective value of Young's modulus 

ev = volumetric strain 

eav = average volumetric strain 

erf(x) = error function 

erfc(x) = complementary error function 

G' = effective shear modulus 

n' = auxiliary elastic constant 

11 , 13, 14, 16 = Integral expressions 

q = intensity of load per unit area 

q1 = intensity of load per unit length 

S = displacement function 

\ ---
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) 

s = total (surface) settlement 

Sc, Set = consolidation settlement 

Scu = ultimate consolidation settlement 

S 0 = immediate settlement 

Su = ultimate (total) settlement 

t = time 

Up = degree of porepressure dissipation 

Us = degree of settlement 

Uv = degree of volumetric strain mobilisation 

u = excess porepressure 

U11 v = average excess porepre~sure 

Ux = displacement in x-direction (horizontal) 

uz = displacement in z-direction (vertical) 

x = space coordinate (horizontal) 

z = space coordinate (vertical) 

; f = Parameters of integration (variables) 

02 02 
\7 2 = oX2+ (Jz2 

S = a function of n' 

v = total (stress) Poisson's ratio 

v' = effective (stress) Poisson's ratio 

av = total volumetric stress = t (u.u+ uyy+ l1zz) 

av' = effective volumetric stress 

axz = shear stress 

11xx, ayy , O"zz = normal stresses 




