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Introduction

Present methods of estimating magnitudes and rates of settlement
employ the conventional one-dimensional Terzaghi (1923) and pseudo
three-dimensional Rendulic (1936) theories of consolidation. Biot (1941)
proposed a comprehensive three-dimensional theory of primary consolida-
tioa based on poro-elastic approach. However, not many problems of
foundation engineering interest have been solved based on Biot’s theory.

Foundations may be subjected to horizontal (shear) loads due to friction
between footing and the supporting soil or by way of horizontal component
of applied inclined loads on footings. The problem of a circular footing
subjected to tangential loads was solved by Schiffman and Fungaroli (1965).
The problem of planestrain consolidation of a semi-infinite medium
subjected to surface tangential Joads uniformly distributed over a strip is
solved by Babu Shanker et. al. (1973) using Biot’s theory. The solutions
for the problem of line shear load are obtained in this paper as particular
cases of the corresponding solutions of the sirip shear problem mentioned
above. A detailed discussion on the type of settlements and special
porepressure effects under line shear loads is presented.

Governing equations and methed of solution

The governing equations of Biot’s theory for a saturated soil for plane
strain consolidation are :
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where ux, u; are the displacements in x and z directions, u is the excess pore
water pressure, ey is the volumetric (compressive) strain, ¢, is the coefficient
of consolidation, ¢ is the time, G’ is the effective shear modulus and

n = —:—:%’T,Where v’ is the effective Poisson’s ratio of the soil (i.e.,
skeleton), and V2 = a—z 4+ 6—2
£ — ox? T 9zt

McNamee and Gibson (1960) defined two displacement functions E and
S which are related to the original variables by :
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Thus governing Equations (1) get transformed to
of ¢E
oveE=vi(%)

7S =0 ..(3)

The total stresses (which act at the boundarics) may be related to £ and S
by
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The solution of Equations (3) in non-dimensional form making use of
Laplace Transforms and Fourier Sine Transforms is obtained by Babu
Shanker, et. al. (1973) for the problem of plane strain shear where a
uniformly distributed unidirectional surface shear load of intensity ¢ acts
on a strip of width 2b. Solutions for line shear load problem (with a surface
intensity of ¢,) can be obtained as particular cases of the above solutions
(after dimensionalising) on using

q, = Limit (2b
== oy q) )
Settlements and porepressures so obtained are given below for both the

surface drainage boundary conditions, The boundary value probl
. - - . .« " . o m
discussion is illustrated in Figure 1, " o
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Solutions for pervious drainage boundary
(a) Settlements

Sptt]ement or the surface vertical displacement s (i.e., u, at z = 0) is
obtained as

-]
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< Immediate settlement s, is obtained by letting ¢ — 0 in Equation (6) which
reduces to zero. Thus immediate settlements are absent under shear loads
and hence time-dependent consolidation settlements (sc = s—s,) are identical
to total settlemnents. Ultimate settlement s, is obtained by letting £ — oo In
Equation (6) which then reduces to :

e q1 oo q(14v") (1=2v)
5y = G =) = 5E forx >0

=0 forx =0 wss(T)

Presence of sine term in Equation (6) suggests that settlement is zero
directly under the shear load (x = 0) and that the soil mass in the direction
of shear load (¥ > 0) settles whereas soil mass on the other side (x < 0)

__ heaves up.

For n' == 1 (or v/ = 0.0) Equation (6) reduces to
®©
26's = & J L orf (xV ot d ...(8)
0
X
where, erf(x) = 2,, J e~* dx is the Error function.
V=

4 -
For n" > « (v' - 0.5), the settlements are zero. The time-settlement

relations obtained for point A (of Figure 1) are shown in Figure 2. It is
seen from Figure 2 that larger the n’ value (or lesser the v’ value), lesser is
the settlement. This is an expected trend since n'-value (or Poisson’s ratio)
reflects the incompressibility of the material. Progress of settlement (at a
given surface point) cap best be judged by the degree of consolidation
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FIGURE 1. Boundary value problem under study
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FIGURE 2. Time-settlement relations

settlement (Us) defined as
s« __ consolidation settlement at any time

Usz'—-“

Seu __ ultimate consolidation settlement
s
. Su
2 [si
sin ax .,
B w[ a o @V o) da . (9)
0
for n‘ = 1

The rates of settlement as indicated by Us (for point 4 of Figure 1) are
shown in Figure 3. Larger the n’ value, faster is the progress of settlement.
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FIGURE 3. Degree of settlement

This is explained by the fact that magnitude of ultimate settlement depends
upon the compressibility of the material and hence on the amount of water
to be drained. The less the amount of water to be drained, the shorter is
the time taken for drainage and hence settlement.

(b) Porepressures

The porepressure is given by

co
’ 2
U = q;{"]‘ sin o(x‘e'—'azcvt [14——:2— -‘flTIg -—'e'ﬂaz 16] da .--(10)
0
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The initial porepressure u, is given by letting # — 0 in the above equation
which then reduces to

(1)

Uo =

5[

oo
1] sin ax e~ do = - e s
T x24z% .
& 0
Ultimate porepressure is obviously zero at the end of consolidation as
t > oo. Porepressure directly under the centre of the load (at x = 0) is
zero and it increases beyond that point sinusoidally. Positive porepressures
generate in the direction of load application (x > 0) and negative pressures
in the other direction (x < 0). This porepressure distributional pattern is
consistent with the settlement pattern discussed earlier.
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For n’ = 1, Equation (10) reduces to
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where erfc(x) = 1—erf (x) = complimentary error function. Equations (12)
and (13) can further be reduced in terms of Dawson’s Integrals etc. (Babu
Shanker, 1974). Figure 4 shows the time-porepressure relations for point B
(of Figure 1). The most striking result of Figure 4, is the fact that for
n’ = 1, the porepressure increases with time beyond its initial value (uo)
before it decreases or dissipates. This peculiar porepressure effect is known
as “Mandel-Cryer effect” (Mandel, 1950 and Cryer, 1963) and is absent for
n' — oo. It has been shown that for n’ -» o (v’ = 0.5), the true consolida-
tion theory reduces to pseudo (diffusion) theory (Gibson and Lumb, 1953).
And predictions from pseudo theories for porepressure do not show up
Mandel-Cryer effect. The possible reasons for manifestation of this pore-
pressure effect are investigated in the following paragraphs.

(¢) Mandel-Cryer Effect

Schiffman et. al. (1969) investigated the reasons for Mandel-Cryer effect

under normal loads. One of the reasons given by them is the fact that if at

. . . + o6yt 02 p
a given (isolated) point, the total volumetric stress (ow = G—Xf—%"—‘i———z »>-

24
24

0:20; ‘

————
e ~~
-

L

s,
016 ==~k i
\ \\ \\
~ My
5 A\
N O\

012 N N
\
LINE SHEAR LOAD \ \
0-08 XxXez=im Y, \ \‘\
—— PERVIOUS M 900 -
---- IMPERVIOUS v’=0'5 0 00 \\\

0-04
»'=0'5

PORE PRESSURE waq, tin 1/m)

0-00
0-001 0-01 01 10
cyt lm2)

FIGURE 4. Time-porepressure relations
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inc’reases with time with no change in effective volumetric stress
(clrv = oy—u) then porepressure should increase locally at such a point. For
n’ = 1, the total volumetric stress (qy) is obtained as :

R (- —az| 95_ o e
oy 31:[ sin ax e 2-3 erf c(ay/ )42 erfc(u\/c,t S )] do
0
...(14)

Figure 5 shows the variations of oy, oo’ and u with time. Itis observed that
during initial period the effective volumetric stress o, essentially remains
constant, whereas the corresponding total stress ov increases during the
period and this results in temporary porepressure build up. Tt is seen that
the peak points of o, and u curves in Figure 5, correspond to almost the

same time.
For n’ = 1, the volumetric strain is given by

. g { : —az|l 9__ e
ey = 27rG'(!. sin ?cx e [2 erfc(a\/cvt ot )] dx ..(15)

At time t = 0, e, = O (which in fact is the initial condition used in the
solution of basic governing equations). The mobilisation of e, with time ¢
for point B (of Figure 1) is shown in Figure 6. It is seen that not only at
¢t — 0 but also for a long time even after the application of the load, there
is no volumetric strain at the point under study. This fact can be attributed
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FIGURE 5. Time-Volumetric stress relations
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FIGURE 6. Time-Volumetric stress relations

to large lateral strains mobilised during this period, which while allowing
vertical strains do not result in volumetric strains. These large lateral strains
are in fact responsible for Mandel-Cryer effect. It is seen that e, curve of
Figure 6 is similar to that of o," curve of Figure 5, as it should be.

Consolidation can be looked upon as a process where the elastic proper-
ties of soil change. For example, the initial (undrained) value of Poisson’s
ratio is 0.5 and it decreases to its effective (drained) value v“at the end of
consolidation. Assuming v’ = 0.0 for a soil, the Poisson’s ratio with
respective to total stresses (v) can be obtained as (Schiffman, et. al., 1969) :

u
i e | ...(16)
Thus from known variations of # and o, with time from Figure 5, one can
obtain time variation of v (see Figure 7). The value of v in this case varies
from an initial value of 0.5 to a final value of zero. It is interesting to note
that the time corresponding to a change in the initial slope of the curves v,
e, and ¢’ in Figures 7, 6 and 5 respectively is the same.

In one-dimensional and pseudo three-dimensional theories it is tacitly
assumed that the rate of settlement is same as the average rate of pore-
pressure dissipation. However, these two rates need not be the same for a
three-dimensional or plane strain situation (Davis and Poulos, 1972). This
fact is investigated below. ;

Unlike surface settlement (which represents i
vertical strains throughout the(consolidaft)ing layerghepo?;;if;ﬁxg'e fsfr zcltOCO{
variable (and so is volumetric strain). For a gi\;en X, let an =
porepressure u, be defined as : ’ Sverage

v

3
Ugy = j u dz _._(17)
0
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Substitution of « from Equation (12) into above equation leads to
C .
e ﬂ] SIN&X j—ate t g .(18)
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0
Degree of porepressure dissipation is defined as
(ua\’)t = ()""(Uav){
Upew — —— = ...(19)
’ (ua")t =0
which from Equation (18) reduces to
2 s
U, = hJ‘ sin ax(l_e_aacm,) B
T o
0
= erf e(x/2v/ ovt) ...(20)
Similarly the average volumetric strain e, is defined as
o0
ey = J. e dz
0
and Degree of volume change U, is defined as
U = (eav):/ (), - < 21)
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which from Equation (15) results in
L

I, = _Z_J' sin ocx.[(l—e'—“zcv t)—}-erj:(oc\/a:t)] s
7r0 o 2

Upt U
e (22)

Thus the three degrees ‘Us’ defined above are different for n’ = 1 whereas
they are assumed to be identical in one-dimensional consolidation and hence
are known by one name “the degree of consolidation”. From Equation (22)
it is seen that the degree of volume change is average of the degrees of
settlement and porepressure dissipation. These degrees for point B (of
Figure 1) are shown in Figure 8 for comparison. It is interesting to note
that degree of settlement is always more than the degree of porepressure
dissipation i.e., Us > U, > U,. This incidentally explains the Mandel-
Cryer effect, since the time lag between rate of progress of settlement and
average rate of porepressure dissipation must result in the manifestation of
increase in porepressure at some local points.

Solutions for impervious boundary

The different variables of interest for this case are summarised below :

o0
_ @ [sinax 1 . _ag
S—ZG’ﬂI o« [2n’—l e ’
0

2’1\/8 e—(1—38) eyt P
‘(n’+1)2—(2—n'6)2] &

0
’ 9
n . —nde 1 & 11 —oz
u = ‘L’—j sin ax e~ % | [[—— € S2 1
T a” dz

2507yt {e—»az‘/s‘_ \/_S e——a:}] T
' +1):—(2—n's)?

0 o~
- i\\N
S 20 -
2 N WY
z
g Ns
8¢ ‘
g LINE SHEAR LOAD \
S 60 PERVIOUS CASE \\\\
w x=1m, V=00
o
]
§ 8
g \}
1
003'001 0:01 041 10 10-0
cut (m2)

FIGURE 8. Various degrees of consolidation
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is seen from these expressions that immediate settlement (so), ultimate
:ctatlt?esnient (s«) and initial porepressure (#,) are all independent of surface
drainage condition. Settlement and porepressure distributional patterns are
also similar to those of pervious drainage boundary case. Mandel-Cryer
effect is seen in porepressure (for n’ = 1.0) but the intensity of this effect is
not felt as severely as in the other case. Time-settlement and time-pore-
pressure relations for this case are shown aloag with the other case also in

Figures 2, 3 and 4. ,

Conclusions

Some of the conclusions drawn from the present analysis are as follows :
(1) Immediate settlements are absent under shear loads.

(2) Settlements directly under the centre of the unidirectional shear
loads are absent. Positive (downward) settlements occur in the
direction of load while negative settlemeats (heaving) occur in the
opposite direction. Settlements are totally absent for a medium

with v/ = 0.5.
(3) Pattern of porepressure distribution is consistent with the settlement
pattern.

(4) Biot’s theoretical predictions show up Mandel-Cryer effect (for
v' < 0.5). Increasing total stresses under constant effective stresses
is one of the reasons for this effect. The degree of settlement is
always more than the degree of porepressure dissipation and degree
of volume change is the average of the above two degrees. These
differential rates are primarily responsible for Mandel-Cryer effect
in soils. :
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Notation

The following symbols are used in this paper :
= half width of strip
¢, = coefficient of consolidation
E = displacement function
E’' = effective value of Young’s modulus
e, = volumetric strain
es = average volumetric strain
erf(x) = error function
erfc(x) = complementary error function
G’ = effective shear modulus
n’ = auxiliary elastic constant
I, I, I,, I; = Integral expressions
q = intensity of load per unit area
g, = intensity of load per unit length

S = displacement function
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s = total (surface) settlement
Se, Ser == consolidation settlement
sew = ultimate consolidation settlement
s, = immediate settlement
s« = ultimate (total) settlement
t = time
U, = degree of porepressure dissipation
Us = degree of settlement
U, = degree of volumetric strain mobilisation
u = excess porepressure
Uay = Average excess porepressure
ux = displacement in x-direction (horizontal)
u, = displacement in z-direction (vertical)
x = space coordinate (horizontal)
z = space coordinate (vertical)

“% = Parameters of integration (variables)
2 2

vi=Z4d

§ = a function of »n’

v = total (stress) Poisson’s ratio

v’ = effective (stress) Poisson’s ratio

o, = total volumetric stress = § (0xx+0yy+022)

oz2

oy = effective volumetric stress
= shear stress
Gxx, Gyy, 0zz = normal stresses
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