Stability of Slopes Under Foundation Load

by

A. Siva Reddy*
G. Mogaliah**

Introduction

Foundations are sometimes built on sloping sites or adjacent to the top edge of a slope or a cutting. In such situations the analysis should include the solution of the stability of slopes including the foundation load so as to evaluate the bearing capacity of foundations as the minimum of the bearing capacities obtained from ultimate bearing capacity point of view and stability of slopes. Gibson and Morgenstern (1962), Lo (1965), Livneh (1967) and Hunter and Schuster (1968) analysed the stability of slopes in soils whose undrained shear strength is anisotropic and nonhomogeneous. These studies do not include the effect of surcharge acting over a given width on the top of the slope. Meyerhof (1957) replaced load over the whole foundation area by a surcharge on the whole horizontal top surface of the slope and extended the solution of the slope stability obtained on the basis of dimensionless parameters by Janbu (1954). In the present investigation the analysis is made for the case of slope failure (through toe or base) under a foundation load using the friction circle method (Taylor 1937) for $c-\phi$ soils possessing anisotropy and nonhomogeneity in cohesion.

Analysis

(a) Soils with ϕ greater than zero

Figure 1 shows the schematic diagram for the case of slope failure under a foundation load Q_{o} acting over a width B_{f}. The edge of the load is at a distance b from the edge of the top of the slope. The slope inclined to the horizontal at an angle β_{s} is of height H_{s}. The slip circle which passes through A, makes an angle $2 a$ at the centre O of the circle. The position of the centre O is described by two variable angles α and λ as shown in Figure 1. The cohesion of the soil is anisotropic and the cohesion on a plane corresponding to any value of ψ is :

$$
\begin{equation*}
c=c_{\mathrm{H}}\left[1+(k-1) \sin ^{2} \psi\right] \tag{i}
\end{equation*}
$$

where $\psi=$ inclination of major principal stress with horizontal, $c_{\mathrm{H}}=$ cohesion value for which $\psi=0^{\circ}, k=c_{\mathrm{V}} / c_{\mathrm{H}}$, degree of anisotropy and $c_{\mathrm{V}}=$ cohesion value for which $\psi=90^{\circ}$. The cohesion in a given direction also increases linearly with depth (Figure 1) and c_{H} at depth ' h ' from top of the

[^0]

FIGURE 1. Failure surface showing various parameters for slope stability failure slope is given by

$$
\begin{equation*}
c_{\mathrm{H}}=c_{\mathrm{H} s}+\beta_{1} h \tag{2}
\end{equation*}
$$

where $c_{\mathrm{H} s}=$ cohesion corresponding to horizontal direction at the surface, $\beta_{1}=\frac{\alpha_{c}}{k}$ and $\alpha_{\mathrm{C}}=$ rate of variation of c_{V} with depth.

Since the major principal stress direction varies along the slip surface, the value of ψ for the portions GB and GA of the failure surface from

FIGURE 2. Force en soil mass above failure surface

Figure 1 is given by

$$
\begin{equation*}
\psi=\theta \pm \mu \tag{3}
\end{equation*}
$$

where $\theta=$ angle made by the radius rector $O P$ with $O G$ and $\mu=$ the angle between the major principal stress and the failure plane.

The forces acting on the soil mass above the failure surface are shown in Figure 2. These are the force W due to weight of the soil, the total load Q_{o} applied to the foundation on top of the slope, the resultant cohesion C_{d} required for equilibrium and P, the resultant normal force across the failure surface $A B$.

FIGURE 3. Force Polygon
Figure 3 shows the force polygon. The intersection of $\left(W+Q_{o}\right)$ and C_{d} is O^{\prime} (Figure 2). Since the three forces $\left(W+Q_{o}\right), C_{d}$ and P must be concurrent, P must also pass through this intersection. With $\left(W+Q_{o}\right)$ known in magnitude and direction, and direction of C_{d} also known, the force polygon may be constructed if a second point is obtained on P to determine its direction. This is accomplished by the basic assumption of the ϕ-circle method. The assumption introduced is that P is tangent to the ϕ-circle.
From Figure 4,

$$
\begin{equation*}
\mathrm{OO}^{\prime}=\bar{d} \operatorname{cosec} \epsilon=\bar{a} \sec (\triangle-\epsilon)=R \sin \phi \operatorname{cosec}(\epsilon-V) \tag{4}
\end{equation*}
$$

From Figure 3 it is seen that

$$
\begin{equation*}
\frac{W+Q_{o}}{C}=\frac{\cos (\triangle-V)}{\sin V}=\cos \triangle \cot V+\sin \triangle \tag{5}
\end{equation*}
$$

By substituting the expressions for $\mathrm{W}, \mathrm{Q}_{o}$ and C_{d} in the above equation and after simplification, the expression for factor of safety F_{s} is obtained as

$$
\begin{equation*}
F_{s}=\frac{c_{\mathrm{V} s}}{\gamma H_{s}} N_{s} \tag{6}
\end{equation*}
$$

where $\gamma=$ unit weight of soil and N_{s} is called stability number, given by
in which

$$
\begin{equation*}
N_{s}=\frac{(\cos \triangle \cot V+\sin \triangle) T_{2}}{T_{1}} \tag{7}
\end{equation*}
$$

$$
\begin{aligned}
\Delta & =\tan ^{-1} \frac{F_{c \mathrm{~V}}}{\bar{F}_{c \mathrm{H}}} \\
-\quad T_{2} & =\left[\frac{F^{2}{ }_{\mathrm{cV}}+F_{\mathrm{cH}}^{2}}{\left(H_{s} c_{\mathrm{V} s / 2}\right)^{2}}\right]^{\frac{1}{2}}
\end{aligned}
$$

FIGURE 4. Relationship between γ, ϵ and \triangle

$$
\begin{gathered}
T_{1}=\frac{1}{2} \operatorname{cosec}^{2} \lambda\left(\alpha \operatorname{cosec}^{2} \alpha-\cot \alpha\right)+\cot \lambda \\
-\cot \beta_{s}-2 n+\frac{2_{q o} B_{f}}{\gamma H_{s}^{2}} \\
\sin (\epsilon-V)=\frac{H_{s}}{2 \bar{d}} \sin \epsilon \operatorname{cosec} \alpha \operatorname{cosec} \lambda \sin \phi \\
\cot \epsilon=\frac{\bar{a}}{\bar{d}} \sec \Delta-\tan \Delta \\
F_{c \mathrm{H}}=\frac{H_{s}}{2} \operatorname{cosec} \alpha \operatorname{cosec} \lambda\left[c_{\mathrm{H} s} I_{c \mathrm{H}}+\frac{\beta_{1} H_{s}}{2} \operatorname{cosec} \alpha \operatorname{cosec} \lambda J_{c \mathrm{H}}\right] \\
F_{c \mathrm{~V}}=\frac{H_{s}}{2} \operatorname{cosec} \alpha \operatorname{cosec} \lambda\left[c_{\mathrm{H} s} I_{c \mathrm{~V}}+\frac{\beta_{1} H_{s}}{2} \operatorname{cosec} \alpha \operatorname{cosec} \lambda J_{c \mathrm{~V}}\right] \\
\bar{a}=\frac{M_{\mathrm{R}}}{\left(F^{2} \mathrm{c}_{\mathrm{V}}+\mathrm{F}^{2} \mathrm{CH}^{1 / 2}\right.} \\
M_{r}=\left(\frac{H_{s}}{2} \operatorname{cosec} \alpha \operatorname{cosec} \lambda\right)^{2}\left[c_{\mathrm{H} s}\{(k+1) \alpha\right. \\
\left.\left.-\frac{(k-1)}{2} \sin 2 \alpha \cos 2(\lambda+\mu)\right\}\right] \\
+\left(\frac{H_{s}}{2} \operatorname{cosec} \alpha \operatorname{cosec} \lambda\right)^{3} \beta_{1}[(k+1) \sin \alpha \cos \lambda \\
-\alpha(k+1) \cos (\alpha+\lambda)+\frac{(k-1)}{2}\{-\sin \alpha \cos (\lambda+2 \mu) \\
\left.\left.-\frac{1}{3} \sin 3 \alpha \cos (3 \lambda+2 \mu)+\sin 2 \alpha \cos (\alpha+\lambda) \cos 2(\lambda+\mu)\right\}\right]
\end{gathered}
$$

$$
\begin{aligned}
& \bar{d}=\left[\frac{\gamma H^{3} s}{12}(Y-Z)+\frac{q_{o} H_{s} B_{f} T}{2}\right] \div \\
& \frac{\gamma H^{2} s}{4}\left[\alpha \operatorname{cosec}^{2} \alpha \operatorname{cosec}^{2} \lambda-\cot \alpha \operatorname{cosec}^{2} \lambda\right. \\
& \left.+2\left(\cot \lambda-\cot \beta_{s}-2 n\right)+\frac{4 q_{o} B_{f}}{\gamma H_{s}^{2}}\right] \\
& Y=1-2 \cot ^{2} \beta_{s}+3 \cot \alpha \cot \lambda+3 \cot \beta_{s} \cot \lambda-3 \cot \beta_{s} \cot \alpha \\
& Z=6 n\left(n+\cot \beta_{s}-\cot \lambda+\cot \alpha\right) \\
& T=2 \cot \beta_{s}-\cot \lambda+\cot \alpha+2 n+\frac{2 b}{H_{s}}+\frac{B_{f}}{H_{s}} \\
& I_{c \mathrm{H}}=(k+1) \sin \alpha \cos \lambda-\frac{(k-1)}{2}[\sin \alpha \cos (\lambda+2 \mu) \\
& \left.+\frac{1}{3} \sin 3 \alpha \cos (3 \lambda+2 \mu)\right] \\
& I_{c \mathrm{~V}}=(k+1) \sin \alpha \sin \lambda+\frac{(k-1)}{2}[\sin \alpha \sin (\lambda+2 \mu) \\
& \left.-\frac{1}{3} \sin 3 \alpha \sin (3 \lambda+2 \mu)\right] \\
& J_{\mathrm{CH}}=\frac{(k+1) \alpha}{2}-\frac{1}{2} \sin 2 \lambda \cos 2 \alpha-\sin (\alpha-\lambda) \cos (\alpha+\lambda) \\
& +\frac{(k-1)}{2}\left[\frac{1}{2} \sin 2 \alpha \cos 2 \lambda\right. \\
& -\frac{\cos ^{2}(\alpha+\lambda) \sin 2(\alpha+\lambda+\mu)}{4} \\
& -\frac{\cos ^{2}(\alpha-\lambda) \sin 2(\alpha-\lambda-\mu)}{4} \\
& -2 \alpha \cos 2 \mu-\frac{\sin 2 \alpha \cos 2(\lambda+\mu)}{4} \\
& -\cos (\alpha+\lambda)\{2 \sin \alpha \sin \lambda-\sin \alpha \cos (\lambda+2 \mu) \\
& \left.\left.-\frac{1}{3} \sin 3 \alpha \cos (3 \lambda+2 \mu)\right\}\right] \\
& J_{c \vee}=\frac{(k+1)}{4} \sin 2 \alpha \sin 2 \lambda+\cos ^{2}(\alpha+\lambda) \\
& -\cos (\alpha-\lambda) \cos (\alpha+\lambda)+\frac{(k-1)}{2}\left[\frac{\alpha \sin 2 \mu}{2}\right. \\
& -\frac{\sin 4 \alpha \sin (4 \lambda+2 \mu)}{8}-\cos (\alpha+\lambda) \\
& \{2 \sin \alpha \sin \lambda+\sin \alpha \sin (\lambda+2 \mu) \\
& \left.\left.-\frac{1}{3} \sin 3 \alpha \sin (3 \lambda+2 \mu)\right\}\right]
\end{aligned}
$$

For minimum factor of safety, from Equation (6) it is seen that N_{s} should be minimum. Therefore, the minimum N_{s} is obtained by minimizing the
right hand side expression [Equation (7)] with respect to a and λ such that

$$
\left.\begin{array}{l}
\frac{\partial N_{s}}{\partial \alpha}=0 \tag{8}\\
\frac{\partial N_{s}}{\partial \lambda}=0
\end{array}\right\}
$$

(b) Soils with $\phi=0$

For the case of slopes in soils with $\phi=0$, the following expression for N_{s} is obtained after substituting $\phi=0$ in the above analysis and simplifying :

$$
\begin{align*}
N_{s}= & \frac{3}{k \sin ^{2} \alpha \sin ^{2} \lambda\left(Y-Z+\frac{6 q_{o} B_{f} T}{\gamma H_{s}^{2}}\right)}[(k+1) \alpha \\
& -\frac{(k-1)}{2} \sin 2 \alpha \cos 2(\lambda+\mu) \\
& +\frac{\beta_{1} H_{s}}{2 c_{\mathrm{H} s}} \operatorname{cosec} \alpha \operatorname{cosec} \lambda\{(k+1) \sin \alpha \cos \lambda \\
& -\alpha(k+1) \cos (\alpha+\lambda)\}+\frac{\beta_{1} H_{s}(k-1) \operatorname{cosec} \alpha \operatorname{cosec} \lambda}{4 c_{\mathrm{H} s}} \\
& \left\{-\sin \alpha \cos (\lambda+2 \mu)-\frac{1}{3} \sin 3 \alpha \cos (3 \lambda+2 \mu)\right. \\
& +\sin 2 \alpha \cos (\alpha+\lambda) \cos (\lambda+\mu)\}] \tag{9}
\end{align*}
$$

When $\beta_{1}=0$ and $Q_{o}=0$, the above equation reduces to

$$
N_{s}=\frac{3\left[(k+1) \alpha-\frac{(k-1)}{2} \sin 2 \alpha \cos (\lambda+2 \mu)\right]}{k(Y-Z) \sin ^{2} \alpha \sin ^{2} \lambda}
$$

This expression is the same as given by Lo (1965) when $k=\frac{1}{k}$ and $\mu=\frac{\pi}{2}-f$, the right hand side terms being those defined by Lo.

Results and Discussion

The values of N_{s} are obtained for different values of

$$
\beta_{s}, k, \frac{\beta_{1} H_{s}}{2 c_{H} s}, \frac{\beta_{f}}{H_{s}}, \frac{b}{H_{s}} \text { and } \frac{q_{o}}{\gamma H_{s}} .
$$

The values of β_{s} and k are varied from 15° to 75° and 0.8 to 2 , respectively. $\frac{\beta_{1} H_{s}}{2 c H_{s}}$ is varied from 0 to 0.4 and $\frac{q_{o}}{\gamma H_{s}}$ from 0 to 1.0 . Since the bearing capacity of foundations on top of clay slopes is frequently governed by overall slope failure (Meyerhof 1957), the numerical results are presented for $\phi=0^{\circ}$ and 10° in Tables 1 to 4 . As the computer time involved in obtaining the numerical results is very much and also the number of parameters are more, in this paper the numerical results are presented for the

TABLE 1

Values of N_{s} for $\phi=0^{\circ}$ and $q_{o} / \boldsymbol{\gamma} H_{s}=\mathbf{0}$

$\beta_{s}, \text { in }$degrees	$\frac{\beta_{1} H_{s}}{2 c_{\mathrm{H} s}}$	Values of N_{s}				
		$k=0.8$	$k=1.0$	$k=1.3$	$k=1.6$	$k=2.0$
(1)	(2)	(3)	(4)	(5)	(6)	(7)
15	0	6.2141	5.5316	4.9015	4.5077	4.1663
	0.2	11.4862	10.4546	9.2846	8.5396	7.8815
	0.4	15.8906	13.6378	12.1829	11.2764	10.7109 .
30	0	6.2038	5.5246	4.8934	4.5054	4.1626
	0.2	9.4985	8.7972	8.0736	7.5316	7.0576
	0.4	11.9531	11.0810	10.2489	9.7125	9.2353
45	0	6.1942	5.5243	4.8902	4.5035	4.1583
	0.2	8.0222	7.6114	7.2015	6.9267	6.6741
	0.4	9.8030	9.3138	8.8268	8.5009	8.2022
60	0	5.4221	5.2474	4.8524	4.4923	4.1541
	0.2	6.8030	6.5993	6.3854	6.2349	6.0911
	0.4	816132	7.9108	7.6872	7.5166	7.3542
75	0	4.6348	4.5645	4.4854	4.4264	4.1502
	0.2	5.8150	5.6340	5.4413	5.4301	5.4254
	0.4	6.7555	6.6797	6.5902	6.5255	6.4676

TABLE 2
Values of N_{s} for $\phi=\mathbf{1 0}$ and $q_{o} / \boldsymbol{\gamma} H_{s}=\mathbf{0}$

β_{s}, in degrees	$\frac{\beta_{1} H_{s}}{2 c_{\mathrm{H} s}}$	Values of N_{s}		
		$k=0.8$	$k=1.0$	$k=2.0$
(1)	(2)	(3)	(4)	(5)
15	0	45.175	41.132	33.014
	0.2	61.782	56.027	44.467
	0.4	78.146	70.706	55.763
30	0	13.850	12.870	10.835
	0.2	15.286	16.957	14.200
	0.4	22.659	20.986	17.516
45	0	9.558	9088	8.048
	0.2	12.211	11.604	10.271
	0.4	14.835	14.093	12.469
60	0	7.393	7.180	6.669
	0.2	9.231	8.969	8.351
	0.4	11.054	10.743	10.016
75	0	5.856	5.779	5.575
	0.2	7.193	7.103	6.875
	0.4	8.522	8.417	8.162

TABLE 3
Values of N_{s} for $\phi=6^{\circ}$ and $b / H_{s}=0$

$\begin{array}{r} \beta_{s}, \text { in } \\ \text { degrees } \end{array}$	$\frac{B_{f}}{H_{s}}$	$\frac{\beta_{1} H_{s}}{2 c_{\mathrm{H}} s}$	$\frac{q_{o}}{\gamma H_{s}}$	Values of N_{s}		
				$k=0.8$	$k=1.0$	$k=2.0$
(1)	(2)	(3)	(4)	(5)	(6)	(7)
15	0.23	0	0.1	6.2131	5.5307	4.1657
			0.2	6.2119	5.5297	4.1649
			0.3	6.2109	5.5288	4.1643
			0.4	6.2098	5.5278	4.1635
			0.5	6.2086	5.5268	4.1628
			0.6	6.2075	5.5258	4.1621
			0.7	6.2063	5.5248	4.1613
			0.8	6.2051	5.5238	4.1605
			0.9	6.2039	5.5226	4.1598
			1.0	6.2027	5.5216	4.1589
		0.2	0.1	11.382	10.251	7.856
			0.2	11.241	10.126	7.779
		.	0.3	11.096	9.996	7.678
			0.4	10.946	9.863	7.574
			0.5	10.79 ?	9.725	7.467
			0.6	10.632	9.583	7.356
			0.7	10.467	9.437	7.242
			0.8	10.297	9.285	7.123
			0.9	10.122	9.129	7.004
			1.0	9.947	8.973	6886
		0.4	0.1	15.659	13.517	10.678
			0.2	15.446	13.310	10.527
			0.3	15.227	13.097	10.370
			0.4	15.001	12.878	10.209
			0.5	14.769	12.653	10.044
			0.6	14.529	12.421	9.873
			0.7	14.284	12.189	9.697
			0.8	14.031	11.958	9.521
			0.9	13.772	11.728	9.344
			1.0	13.513	11.497	9.168

TABLE 3 (Continued)

TABLE 3 (Continued)

$\begin{gathered} \begin{array}{c} \beta_{s}, \text { in } \\ \text { degrees } \end{array} \end{gathered}$	$\frac{B_{f}}{H_{s}}$	$\frac{\beta_{1} H_{s}}{2 c_{\mathrm{H} s}}$	$\frac{q_{o}}{\gamma H_{s}}$	Values of N_{s}		
				$k=0.8$	$k=1.0$	$k=2.0$
(1)	(2)	(3)	(4)	(5)	(6)	(7)
30	0.25	0	0.1	6.2023	5.5248	4.1650
			0.2	6.2001	5.5230	4.1645
			0.3	6.1958	5.5222	4.1639
			0.4	6.1783	5.5214	4.1634
			0.5	5.9376	5.5206	4.1628
		0.2	0.1	9.2267	8.5550	6.9721
			0.2	8.9348	8.2935	6.8816
			0.3	8.6217	8.0113	6.6956
			0.4	8.2858	7.7067	6.4496
			0.5	7.9259	7.3778	6.1781
		0.4	0.1	11.587	10.754	8.9837
			0.2	11.198	10.404	8.7105
			0.3	10.782	10.029	8.4132
			0.4	10.339	9.6276	8.0890
			0.5	9.8678	9.1965	-
45	0.25	0	0.1	6.0051	5.5012	4.1580
			0.2	5.7907	5.4981	4.1562
			0.3	5.5597	5.2851	4.1551
			0.4	5.3121	5.0532	4.1543
		0.2	0.1	7.7384	7.3553	6.4713
			0.2	7.4358	7.0792	6.2446
			0.3	7.1144	6.7819	5.9908
			0.4	6.7741	6.4626	5.7055
			0.5	6.4152	6.1203	-
		0.4	0.1	9.4381	8.9839	7.9402
			0.2	9.052 I	8.6309	7.6508
			0.3	8.6446	8.2539	7.3302
			0.4	8.2156	7.8514	6.9732
			0.5	7.7650	7.4221	-

TABLE 3 (Continued)

$\underset{\substack{\beta_{s}, \text { in } \\ \text { degrees }}}{\text { and }}$	$\frac{B_{f}}{H_{s}}$	$\frac{\beta_{1} H_{s}}{2 c_{\mathrm{H} s}}$	$\frac{q_{o}}{\gamma H_{s}}$	Values of N_{s}		
				$k=0.8$	$k=1.0$	$k=2.0$
(1)	(2)	(3)	(4)	(5)	(6)	(7)
60	0.25	0	0.1	5.2259	5.0672	4.1360
			0.2	5.0204	4.8752	4.0831
			0.3	4.8071	4.6724	4.00020
			0.4	4.5876	4.4598	3.99718
			0.5	4.3636	4.2387	-
		0.2	0.1	6.5360	6.3541	5.8904
			0.2	6.2625	6.0977	5.6674
			0.3	5.9816	5.8302	5.4221
			0.4	5.6952	5.5528	5.1523
			0.5	5.4051	5.2666	-
		0.4	0.1	7.8293	7.6238	7.1026
			0.2	7.4903	7.3056	6.8267
			0.3	7.1442	6.9759	6.5265
			0.4	6.7929	6.6357	6.1993
			0.5	6.438 .4	6.2864	-
75	0.25	0	0.1	4.4548	4.3936	4.1255
			0.2	4.2730	4.2184	4.0522
			0.3	4.0913	4.0407	3.8782
			0.4	3.9113	3.8624	3.6945
			0.5	3.7345	3.6851	3.5019
			0.6	3.5621	3.5102	3.3016
		0.2	0.1	5.4658	5.4027	5.2220
			0.2	5.2327	5.1774	5.0125
			0.3	5.0015	4.9511	4.7926
			0.4	4.7743	4.7259	4.5632
			0.5	4.5524	4.5023	4.3252
		0.4	0.1	6.4679	6.4024	6.2164
			0.2	6.1847	6.1283	5.9620
			0.3	5.9054	5.8546	5.6973
			0.4	5.6319	5.5835	5.4235
			0.5	5.3659	5.3166	5.1412
			0.6	5.1086	5.0556	4.8509

TABLE 4
Values of N_{s} for $\phi=10^{\circ}$ and $b / H_{s}=0$

β_{s}, in degrees	$\frac{B_{f}}{H_{s}}$	$\frac{\beta_{1} H_{s}}{2 c_{\mathrm{H} s}}$	$\frac{q_{o}}{\gamma H_{s}}$	Values of N_{s}		
				$k=0.8$	$k=1.0$	$k=2.0$
(1)	(2)	(3)	(4)	(5)	(6)	(7)
60	0.25	0	0.1	6.9550	6.7607	6.2837
			0.2	6.51917	6.3389	5.8827
			0.3	6.0887	5.9173	5.4655
			0.4	5.6662	5.4978	5.0312
		0.2	0.1	8.6712	8.4355	7.8672
			0.2	8.1166	7.9011	7.3675
			0.3	7.5706	7.3685	6.8504
			0.4	7.0358	6.8399	-
		0.4	0.1	10.3743	10.0966	9.4354
			0.2	9.7030	9.4516	8.8387
			0.3	9.0433	8.8101	8.2235
			0.4	8.3979	8.1743	-
75	0.25	0	0.1	5.5414	5.4728	5.284 J
			0.2	5.2347	5.1712	4.9874
			0.3	4.9382	4.8673	4.6867
			0.4	4.6534	4.5901	4.3829
			0.5	4.3814	4.31 .39	-
		0.2	0.1	6.7969	6.7177	6.5126
			0.2	6.4127	6.3405	6.1461
			0.3	6.0427	5.9735	5.7774
			0.4	5.6886	5.6186	5.4073
			0.5	5.3513	5.2771	5.0359
		0.4	0.1	8.0454	7.9539	7.7286
			0.2	7.5847	7.5023	7.2933
			0.3	7.1423	7.0643	6.8576
			0.4	6.7196	6.6417	6.4221
			0.5	6.3178	6.2359	5.9868

case $\frac{b}{H_{s}}=0$ only. These values of N_{s} represent the minimum values obtained from toe circle failure, base circle failure and slope failure cases. All these values are obtained for $\mu=45^{\circ}-\frac{\phi}{2}$, in order to compare the value of the bearing capacity obtained from this analysis with that obtained from the analysis of bearing capacity failure. It is seen from these tables that, as the value of $\frac{q_{o}}{\gamma H_{s}}$ increases, the value of N_{s} decreases for given values of β_{s}, k and $\frac{\beta_{1} H_{s}}{2 c_{\mathrm{H} s}}$ due to the fact that the surcharge contributes more to the disturbing moment. As $\frac{\beta_{1} H_{s}}{2 c_{\mathrm{H} s}}$ (i.e. cohesion increasing with depth) increases, N_{s} increases and when k changes from 0.8 to 2 it decreases. It is also observed from these tables that as β_{s} increases N_{s} decreases. To show graphically the influence of $\frac{q_{o}}{r H_{s}}, k$ and $\frac{\beta_{1} H_{s}}{2 c_{\mathrm{H} s}}$ the values of N_{s} are presented in Figures 5 to 8 for extreme values of k and $\frac{\beta_{1} H_{s}}{2 c_{\mathrm{H} s}}$ and $\beta_{s}=15^{\circ}$, 30° and 75°. Figures 5 and 6 are for surcharge for finite value of B_{f} whereas Figures 7 and 8 are for infinite values of B_{f}. From Figures 5 and 6 it is seen that as $\frac{q_{o}}{\gamma H_{s}}$ changes from 0 to 1.0 , when $\frac{\beta_{1} H_{s}}{2 c_{\mathrm{H} s}}=0$, the decrease in N_{s} is negligible for $\phi=0^{\circ}, \beta_{s}=15^{\circ}$ and $\frac{B_{f}}{H_{s}}=0.25$. Whereas when $\frac{\beta_{1} H_{s}}{2 c_{\mathrm{H} s}}=0.4$ the corresponding decreases in N_{s} are about 15 and 14.5 per cent for $k=0.8$ and 2.0, respectively. For $\beta_{s}=75^{\circ}$, as $\frac{q_{0}}{\gamma H_{s}}$ increases from 0 to 0.6 , when $\frac{\beta_{1} H_{s}}{2 c_{\mathbf{H}_{s}}}=0.0, N_{s}$ decreases by about 23 and 20 per cent for $k=0.8$ and 2.0 , respectively. The corresponding values for $\frac{\beta_{1} H_{s}}{2 c_{\mathrm{H} s}}=0.4$ are 24 and 25 per cent. For $\frac{q_{o}}{\gamma H_{s}}=0.6, \beta_{s}=15^{\circ}, \phi=0^{\circ}$ and $\frac{B_{f}}{H_{s}}=0.25$, as $\frac{\beta_{1} H_{s}}{2 c_{\mathrm{H} s}}$ increases from 0 to $0.4, N_{s}$ increases by about 135 and 137 per cent for $k=0.8$ and 2.0 , respectively. The corresponding values when $\beta_{s}=75^{\circ}$ are about 43 and 47 per cent. When k changes from 0.8 to 2.0 , the decreases in N_{s} for $\frac{q_{o}}{\gamma H_{s}}=0.6, \beta_{s}=15^{\circ}, \phi=0^{\circ}$ and $\frac{B_{f}}{H_{s}}$ $=0.25$, are about 33 and 32 per cent for $\frac{\beta_{1} H_{s}}{2 c_{\mathrm{H} s}}=0$ and 0.4 , respectively. For $\beta_{s}=75^{\circ}$, the corresponding values are about 7 and 5 per cent. It is seen from Figures 7 and 8 that the same trend is noticeable for the case of surcharge on whole top of slope.

The values of N_{s} corresponding to $k=1, \frac{\beta_{1} H_{s}}{2 c_{\mathrm{H} s}}=0$ and $\phi=0^{\circ}$, obtained by the present analysis, are compared with those of Janbu (1954) in Table 5. It is seen from this table that the present N_{s} values are in good agreement with the values given by Janbu for unloaded surfaces of slope,

FIGURE 5. N_{s} vs $\frac{q_{o}}{\gamma H_{s}}$ for $\phi=0^{\circ}, \frac{B_{f}}{H_{s}}=0.25$ and $\beta_{s}=15^{\circ}$

FIGURE 6. N_{s} vs $\frac{q_{o}}{\gamma H_{s}}$ for $\phi=0^{\circ}, \frac{B_{f}}{H_{z}}=0.25$ and $\beta_{s}=75^{\circ}$

FIGURE 7. \mathbf{N}_{s} vs $\frac{q_{0}}{\gamma H_{s}}$ for $\phi=0^{\circ}$ and $\beta_{s}=30^{\circ}$ (surcharge on whole top of slope)
TABLE 5
Comparison of N_{s} values for $\phi=0^{\circ}$ with those of Janbu (1954)

$\begin{array}{r} \beta_{S} \text {, in } \\ \text { degrees } \end{array}$	$\frac{B_{f}}{\overline{H_{s}}}$	$\frac{q_{o}}{\gamma H_{s}}$	Values of N_{s}	
			$\begin{gathered} \hline \text { Present Analysis } \\ (k=1, \\ \beta_{1} H_{s} / 2 c_{\mathrm{H} s}=0 \text { and } \\ \left.b / H_{s}=0\right) \end{gathered}$	Janbu (1954)
(1)	(2)	(3)	(4)	(5)
15	-	0	5.531	5.53
45	-	0	5.524	5.53
75	-	0	4.564	4.56
60	Surcharge on whole top of slope	0.2	3.968	3.97
60	,,	0.4	3.175	3.18
75	"	0.2	3.39 I	3.39
75	"	0.4	2.687	2.69
45	0.25	0.2	5.498	4.28
45	0.25	0.4	5.053	3.48
75	0.25	0.2	4.218	3.39
75	0.25	0.4	3.862	2.69

FIGURE 8. \mathbf{N}_{c} vs $\frac{q_{o}}{\gamma H_{s}}$ for $\phi=\mathbf{0}$ ard $\beta_{s}=75^{\circ}$ (surcharge on whale top of slope)
TABLE 6
Comparison of N_{c} values obtained from Slope Stability Analysis for $\phi=0^{\circ}$

		Present Analysis $\left(k=1, \beta_{1} H_{s} / 2 c_{\text {H }}=\right.$ $\left.b / H_{s}=0\right)$	Meyerhof (1.957) (Surcharge on	
β_{s}, in degrees	N_{s}	N_{f} / H_{s}	N_{c}	B_{c} whole top of slope)
15	5	0.25	0.53	$\mathrm{~N}_{c}$
60	5	0.25	0.67	0.52
60	4.5	0.25	1.52	0.10
75	4.5	0.25	0.18	0.50
75	4.0	0.25	1.28	0.0
75	3.5	0.25	2.10	0.50

i.e. for $\frac{q_{0}}{r H_{s}}=0$.

The bearing capacity $q_{o}{ }^{\prime}$ for given values of the parameters used in the present investigation of slope stability analysis may be estimated as

$$
\begin{equation*}
q_{o}^{\prime}=N_{s} \frac{q_{o}}{\gamma H_{s}} \tag{10}
\end{equation*}
$$

From the above expression, for given value of $N_{s}, q_{o}{ }^{\prime}$ may be evaluated using the values of $\frac{q_{o}}{\gamma H_{s}}$ corresponding to the given value of N_{s}.

In order to compare the values of $q_{o}{ }^{\prime}$ calculated from slope stability analysis with those of Meyerhof (1957), the values of N_{s} for $\phi=0^{\circ}, \frac{b}{H_{s}}=0$ $\frac{\beta_{1} H_{s}}{2 c_{\mathrm{H} s}}=0$ and $k=1$ are plotted against $\frac{q_{o}}{\gamma H_{s}}$ in Figure 9. From this figure, the values of $q_{o}{ }^{\prime}$ for $\phi=0^{\circ}$ (i.e. N_{c}) are calculated for different values of N_{s} and are compared with those given by Meyerhof (1957) in Table 6. It

FIGURE 9. N_{s} vs $\frac{q_{o}}{\gamma H_{s}}$ for $\phi=0, k=\mathbf{1}$ and $\frac{B_{f}}{H_{s}}=\mathbf{0 . 2 5}$
is observed from this table that the values of N_{c} obtained from the present investigation are higher than those of Meyerhof, since Meyerhof's values correspond to a foundation of infinite width. Note that in the present analysis the width of foundation is finite.

As an example, a few values of $q_{o}{ }^{\prime}$ for $\phi=0^{\circ}$ obtained from the analysis of bearing capacity failure (Mogaliah, 1974) and slope stability failure are given in Table 7.

TABLE 7

Comparison of $q^{\prime}{ }_{o}$ values for $\dot{\phi}=0^{\circ} b / H_{s}=0$ and $\beta_{1} H_{s} / 2 c_{\mathrm{H} s}=0$

$\boldsymbol{\beta}_{s}$, in degrees	k	Bearing Capacity failure $\left(N_{s}=0\right)$		Slope Stability failure	
		D / \boldsymbol{B}_{f}	$q_{o}{ }^{\prime}$	N_{s}	$q_{o}{ }^{\prime}$
30	0.8	0.251	5.13	6.0	2.8
60	0.8	1.333	6.29	4.5	2.0
60	1.0	1.335	5.76	4.5	1.5
60	2.0	1.352	4.72	4.0	1.20
75	0.8	3.525	8.90	4.0	1.40
75	1.0	3.530	8.32	4.0	1.28
75	2.0	3.535	7.14	4.0	0.60

Conclusions

On the basis of the numerical results presented, the following general conclusions are drawn.

For a foundation width less than slope height, the values of N_{s} are higher than those for foundation width greater than slope height. The effect of anisotropy and increase in cohesion with depth have considerable influence on N_{s}. As β_{s} increases N_{s} decreases for given values of k, $\frac{\beta_{1} H_{s}}{2 c_{\mathrm{H} s}}$ and ϕ.

References

GIBSON, R.E. and MORGENSTERN, N. (1962), "A Note on the Stability of Cuttings in Normally Consolidated Clays". Geotechnique, The institution of Civil Engineers, London, Vol. 12, pp. 212-216.
HUNTER, J.M. and SCHUSTER, R.L. (1968), "Stability of Simple Cuttings in Normally Consolidated Clays". Geotechnique, The Institution of Civil Engineers London, Vol. 18, pp. 372-378.
JANBU, N. (1954), "Stability Analysis of Slopes with Dimensionless Parameters" Harvard Soil Mech. Series, No. 46, Harvard Univ. Combridge, Mass.
LIVNEH, M. (1967), "Analysis of Slope Stability in an Anisotropic Cohesional Medium under $\phi u=0$ Conditions". Israel Journal of Teclinology, Vol. 5, No. 4, pp. 274-282.
LO, K.Y. (1965), 'Stability of Slopes in Anisotropic Soils'. Journal of the Soil Mech. and Found. Division, ASCE, Vol. 91, No. SM4, pp. 345-353.

MEYERHOF, G.G. (1957), "The Ultimate Bearing Capacity of Foundations on Slopes". Proc. 4th Int. Conf. Soil Mech. and Found. Engg., London, England, Vol. 1, pp. 384-386.
MOGALIAH, G. (1974), "Ultimate Bearing Capacity and Stability Prcblens in Soils Considering Partial Saturation and Anisotropy and Nonhomogeneity in Cohesion". Thesis presented to the Indian Institute of Science, Bangalore, India for the requirements for the degree of Doctor of Philosophy.
TAYLOR, D.W. (1937), "Stability of Earth Slopes". Journal of the Boston Society of Civil Engineers, Reprinted in Contributions to Soil Mech. 1925-1940, Boston Society of Civil Engineers, 1940, pp. 337-386.

Notation

$\bar{a}=$ perpendicular distance from line of action of resultant force due to cohesion, C_{d}, to the centre of slip circle (Figure 4),
$B_{f}=$ width of surcharge (foundation) on top of the slope,
$b=$ distance from the edge of slope to the surcharge (foundation),
$C_{d}=$ resultant force due to cohesion developed along slip surface,
$c=$ cohesion on a plane corresponding to any value of ψ
$c_{\mathrm{H}}=$ cohesion corresponding to horizontal direction (cohesion value for which $\psi=0^{\circ}$),
$c_{\mathrm{H} s}=$ cohesion corresponding to horizontal direction at top of the slope,
$c_{\mathrm{V}}=$ cohesion corresponding to vertical direction (cohesion value for which $\psi=90^{\circ}$),
$c_{\mathrm{V} s}=$ cohesion corresponding to vertical direction at top of the slope,
$\bar{d}=$ perpendicular distance between the line of action of $\left(W+Q_{o}\right)$ and centre of failure surface (Figure 4),
$F_{s}=\frac{c_{\mathrm{v} s}}{\gamma H_{s}} N_{s}=$ factor of safety,
$H_{s}=$ height of slope,
$k=\frac{c_{\mathrm{V}}}{c_{\mathrm{H}}}=$ coefficient of anisotropy,
$N_{s}=\frac{\gamma H_{s}}{c_{v s}} F_{s}=$ stabliity number,
$n=$ ratio of distance from toe of slope to the end of base circle to height of slope (Figures 1 and 2).
$P=$ resultant intergranular force acting along slip surface (Figure 2),
$Q_{o}=q_{o} B_{f}=$ total surcharge load (Figures 1 and 2),
$q_{o}=$ surcharge acting over width B_{f} on the top of slope (Figures 1 and 2),
$\mathscr{q}_{o^{\prime}}=N_{s} \frac{q_{o}}{\gamma_{H_{s}}}$,
$R=$ radius of slip circle (Figure 1),
$v=$ angle between the resultant intergranular force, P, and the line of action of $\left(W+Q_{o}\right)$ (Figure 3),
$W=$ weight of soil mass above slip circle,
$\alpha=$ half the angle subtended by a circular failure are at its centre (Figures 1 and 2),
$a_{c}=$ rate of variation of c_{v} with depth,
$\beta_{1}=\frac{a_{c}}{k}$,
$\beta_{s}=$ inclination of slope with horizontal,
$\gamma=$ unit weight of soil,
$\Delta=$ angle between the line of resultant cohesion developed and the horizontal (Figure 2),
$\epsilon=$ angle between the line passing through centre of slip surface and the point of intersection of forces and the vertical (Figure 4),
$\theta=$ angle made with vertical by a line joining the centre of slip circle to any point on slip circle (Figure 1),
$\lambda=$ angle between the chord of a slip circle and the horizontal (Figure 1),
$\mu=\frac{\pi}{4}-\frac{\phi}{2}=$ angle between major principal stress and failure plane (Figure 1),
$\phi=$ angle of internal friction of soil, and
$\psi=$ inclination of major principal stress with horizontal.

[^0]: *Professor of Civil Engineering, Indian Institute of Science, Bangalore-12.
 ** Lecturer, University Visvesvaraya College of Engineering, Bangalore University, Bangalore-56.
 The paper is open for discussion till the end of August 1976

