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Introduction

Stability analysis of slopes has attracted considerable attention of sqll

engineers during the past six decades due to its teckno-economic
importance in the construction of earth dams, road and railway embank-
ments, levees and in the investigation of land slides. The earliest work on
stability analysis of slopes was carried out by Coulomb (1773), Francis
(1820), and Collin (1846), but, significant contributions in this field were
largely due to the classical methods developed by Swedish engineers during
the period from 1915 to 1925. Swedish slip-circle method of slices deve-
loped by Fellenius (1927, 1936) has been the most widely used conventional
technique for many practical problems. Among other significant contri-
butions in this field are works of Taylor (1948), Sokolovsky (1950), Janbu
(1954), Bishop (1955), Morgenstern and Price (1965), Chugaev (1966), and
Spencer (1967, 1968, 1969, 1973).

Bishop’s (1955) slip circle analysis formed the basis for further research
in this area. This method was rigorous in its content which satisfied both
force and moment equilibrium conditions and also considered the presence
of inter-slice forces. The expression for factor of safety obtained by this

- method is rather lengthy and involves very tedious numerical computation.
To circumvent this difficulty, Bishop simplified the original expression for
the factor of safety by assuming the inter-slice force to be horizontal and
obtained the solution by successive approximations. The latter method
came to be known in the literature as Bishop’s routine method of analysis.
Bishop’s simplified expression satisfied only moment equilibrium condition
but not force equilibrium condition. The minimum factor of safety
obtained by this method was a very close approximation to the final value
obtained using the rigorous method. Thus, the routine analysis presented
by Bishop being the first stage of a more complete iterative process does
not satisfy statical equilibrium condition and also suggests that for circular
slip surfaces, the factor of safety is relatively insensitive to the distribution
of the _Internal forces. The analysis does not seem to Justify that the
expression obtained for.t'he factor of safety which does not satisfy one of the

& basic conditions of equilibrium yields the solution corresponding to critical
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equilibrium state. Morgenstern and Price (1965) suggested a method of
analysing a stability of general slip surfaces, satisfying both force and
moment. equilibrium conditions, and could consider slope sections with
varying shear strength parameters and pore-pressures. The analysis was
based on the principles of limiting equilibrium and needed « priori assump-
tions of the shape of the potential sliding mass as well as the distribution
of internal forces. This method and the circular-slip analysis suggested
by Blshop gave approximately the same factor of safety which appeared to
be Insensitive for varying distribution of internal forces within the poten:ial
sliding mass. Spencer (1967, 1968, 1969) presented an alternative method
of analysis for circular and logarithmic spiral slip surfaces, based on
Bishop’s earlier work. The analysis was carried out by assuming parallel
inter-slice forces to pass through the centre of the inter-slice base. It also
studied the influence of tension crack on factor of safety. In the recent
paper (Spencer 1973) the shape of the slip surface was assumed to be of
some general form and the inter-slice forces were not necessarily to be
parallel. However, it was observed that a reasonably reliable value for the
minimum factor of safety can be obtained by assuming the inter-slice

forces to be parallel.

A detail study of earlier works on the stability analysis brings out some
of the shortcomings that one encounters during the analysis of slope.
None of the analyses mentioned above seem to illustrate the exact factor of
safety or the critical failure surface. This may be due to, the problem
being statically inderminate. The indeterminancy arises from the lack of
knowledge of the stresses present in the soil mass. In order to render the
problem statically determinate, assumptions have to be made regarding the
internal stress distribution within the potential sliding mass for which
consideration of soil properties and the forces acting over the potential
sliding mass becomes imperative. The necessity of considering body
forces, pore-pressures, and a wide variety of soil types in the stability
analysis invalidates the application of methods in the mechanics of
continua; as a result of this, limit equilibrium methods are commonly
employed. These methods require an assumption to be made regarding
the potential slip surface. More commonly a circular potential slip surface
is assumed. The main advantage  of assuming a circular slip surface is
that the direction of normal force acting on the slip surface is directed
towards the centre of the circle. As a result of this, the moments of these
forces with respect to the centre of the slip circle do not exist. However,
assumption of circular slip surface, although justified on the grounds that
the analysis is made simpler, lacks physical validity. In the field observa-
tions, more non-circular slip surfaces have been observed than the circular
surfaces (Cooling and Golder 1942, Hutchinson 1961, Skempton 1961,

Legget 1962).

The circular slip surface analyses are generally acceptable for practical
problems as an approximate solution in stability analysis. The analysis
does not seem to justify that the surface obtained by this method leads to
2353?3?5"&3?33?3 su[r\fgaclie or the minimum factor of safety obtained is

_ : ) ysis with ill-conditioned assumptions lead to
misleading results.

Review of existing analyses based on rupture considerations suggest
tl}at 4 more rigorous method of analysis is necessary so that it would
circumvent the shortcomings attendant in the existing methods. By posing
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the problem more appropriately a better mathematical technique can be
developed for a rigorous slope stability analysis. The rigorous method
developed must be able to consider the requirements necessary to encompass
more general problems, if it isto have other than restricted usage. ‘The

method should also be able to consider a wide variety of soil properties
varying over a ]qrg&; range; it must also make an allowance for complex
pore-pressure distributions; in other words, the analysis must be in terms

of effective stresses.

An attempt is made in this paper to provide a technique for stability
analysis of slop taking into consideration the requirements of a rigorous
analysis.

The problem of analysing the stability of slope is posed as a minimiza-
tion problem in the calculus of variations (Goldstein 1969), wherein, the
stress distribution function has to be determined so as to minimize the

factor of safety satisfying all equilibrium and boundary conditions, and
also that for a slope section to be stable, the basic Coulomb-Mohr failure
criterion must not be violated anywhere along the slip surface. Thus, the
variational method of analysis not only offers a sound technique for
solving a minimization problem of this type, but also provides physical

insight into the problem itself.

The Equations of Equilibrium

General

Figure 1 (a) shows a section through an embankment with a general slip
surface. The problem is to investigate equilibrium of the potential sliding

b

L

2= seco. dx.
¥(x) = yo(x) - y(x)

FIGURE 1(a). Potential sliding mass
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mass of this slope section. In this figure, the equations of the general slip
surface, surface of the slope, and the line of action of the thrust line are
given by y=y(x), y=y.(x) and y=y (x) respectively and y=y.’ (x) repre-
sents the equation of the effective thrust line. The forces acting on an
'mﬁmteSJmal slice of mass are shown in Figure. 1 (b) and the force polygon
is shown in Figure I(c).

Shear strength

The factor of safety with respect to shear strength has been adopted in
this analysis. The factor of safety is defined as that value by which the
shear strength parameters must be reduced in order to bring the potential
sliding mass into a state of limiting equilibrium. Based on Coulomb-
Mohr failure criterion the shear strength mobilized along the base of the
slice in terms of effective stresses is expressed as :

dSm: d—S= I—‘ [C’ Sec o dx—l—dp' tan 4’1} ---(l)
Fs K

While estimating the shear strength mobilized and shear strength causing
slide (in terms of effective stresses) along the base of the slice it should be
borne in mind that this force contains a hydrostatic component which acts
with equal intensity in all directions, and hence only the effective stress
(Yy—u) should be resolved in a direction normal and tangential to the
failure surface; otherwise the equation yields unreasonable results (Turnbull
and Hvorslev 1967). This aspect can be better explained with the help of
the specified example in consideration. Neglecting the terms involving the
inter-slice force (however, inter-slice force terms are considered in the
analysis), the total normal stress acting on the base of slice is given by

On = (Y§y—u) cos? a+-u v (2
which yields the effective stress
0'n = (Y§—u) cos®a ... (2a)
The mean pore-pressure on the base of the slice can be written :
u=r.Yy S )]

Wherer, is a pore-pressure co-efficient, as defined by Bishop and
Morgenstern (1960).

The weight of infinitesimal slice of width dx is given by
aw = dex - (3(1)

Now considering the presence of inter-slice force and usi i
} Ce - using Equation (2
and (3) the expression for mobilised shear strength can be wrigttercll as : e

s 1 _,
dSm = E=TF [¢" sec w dx+{yy (1—ri) cos a dx—dE' sin «

+ dX’ cos «} tan ¢’] )

Similarly the effective tangential i
o e W g component, dWr, of the weight dW can

AWy = Yy (1—r.) sin « dx+(dE'+dX'y’) cos « . (4a)
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Inter-slice forces

In general, the problem is statically indeterminate involving the unknown
functions E’, X" and y,. To render the problem statically determinate, an
assumption is made regarding the relation between the £’ and X’ forces.
According to Morgenstern and Price (1965) by isolating an element at the
interface of the slice, for a specific geometry and slip surface, the internal
forces are determined by,

2

E = Ic,:r (») dy v 15
Yo
and,
y
X' [ro ) ay e (6)
Yo
we may therefore assume that,
X' =tan§ E’ e (D
where,
tan § = f(x) tang o (Ta)

By specifying the function f (x) the problem is rendered statically deter-
minate. Satisfying Coulomb-Mohr failure criterion along the vertical inter-
slice boundary and resolving the forces shown in Figure. 2 normal and
parallel to the vertical plane, an expression for the horizontal effective
thrust, £’, is obtained in terms of soil parameters and the average factor of

safety, F,, as :

E' = (b,)y+b.7%)B, e (8)
where, by=i¢’ ... (8a)

by = —% r.Y tang’ . (8b)
and, B,= (F f(x) tang—tang’)? v (8€)
Using Equations (7) and (8) it can be written that :

X' = tang f (x) (b.y+b,5%)8, e (9)
Similarly differentiating Equatiohs (8) and (9) it can be shown that :

dE' = [(byY +bsFH)B's + (1Y +2b,55")B:Jdx - (10)
and, dX' = [tang {B; (b:5+b,5)+Bs (b1¥' +2b,57)}] dx e (1)
where, By = (B +B"1 f(x) - (la)
and, Bs = B, /(x) .. (11b)

Expression for over all factor of safety F;

Using Equations (10) and (11), and resolving the forces shown in
Figure 1(b) normal and parallel to the base of the slice, an expression for
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FIGURE 2. Forces acting on an inter-slice boundary AB

the overall factor of safety, Fy, in terms of effective stress is obtained:
b
[ ayy+ors0—ra—y @ratas)
a

F’:b

I [Y(l—r)3y"+ B/ M+Birz+y" tan 6
a

+-tang (B:A1+Bs)0)} tand’ldx (12)
(BahitBaro)ldx

where, \; = b,y+b,¥?

Ay = by +2b,3Y
Transposing Equation (12), an expression for, E’, can be obtained in the
form :

b
e ¢ (1 'Jf_ylz)'{'y (l_ru) tan¢'5’ ~ FsY (l—l'u)yyl
o I( (’'—f (x) tang) tang +F; (1+/ (x) tang y’) ) dx e (12a)

a
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Force equilibrium condition

. Now if the external forces on the potential sliding mass are in equilib-
rium, the vectorial sum of the inter-slice forces must be zero, in other words,
the sum of the horizontal and vertical components of the inter-slice forces
must also be zero, i.e.

b
[dE' =B e (13)
a

and,
b
IdX' = <. (13a)
a

or,
b
I{)\131’+)\zﬁ1} dx =0 ... (1)
a

and,
b
Itano (Bad1+Bary) dx = 0 ... (l4a)
a

Moment equilibrium condition

The moment equilibrium condition remains to be satisfied. The moment
equilibrium condition of the potential sliding mass is satisfied by taking
moments of the inter-slice forces about the centre of the base of the slice
and is equated to zero. After simplifying and proceeding to the limit as
dx—0 it can be shown that :

d ; d
tang £ (NP — § 5 Oubu 3=y ¢ (uB)f = 0 . (15)

By integrating the Equation (15) we have :
) X
M; = (y/—y)E' = f)\ﬁl [f(x) tang—p'] dx .. (16)
a
and the equation for no rotation requires that :
b
My = 0= [(r8, () tang—y')} d o~ [
a

After satisfying Equation (17), values of i’ can be found from Equation
(16) thereby satisfying the moment equilibrium condition at each point
along the potential sliding surface.
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Average factors of safety and slope of inter-slice forces

The values_ of overall factor of safety, F;, average factor of safety, F,,
along the vertical plane, and the slope tang of the inter-slice forces are
determined by satisfying force and moment equilibrium conditions together
with the boundary conditions.

The factor of safety, F;, given by Equation (12) need not necessarily
refer to absolute minimum. To determine the minimum factor of safety and
the corresponding critical slip surface conditions for minimality have to be
satisfied. These conditions are obtained by using variational techniques
and the method of obtaining these conditions are explained in the following

section.
Conditions for Minimality

Functional J [y(x)]

The analysis carried out in the preceding section shows that the problem
of stability analysis of slope is essentially a problem of finding the slip
surface y(x) which minimizes the functional

_ [ (Y)Y (—r)—y @Ay +2eB)

B JPH01 = [ (1—ru) 9" +B1' A +Bira +y" tang
+tan0 (ﬁz)\-l + BSA&)} tan¢ll .. (1 8)
(B2A1+Bsra)] dx
subject to the boundary conditions y (@) = Yz and y (b) = Ys. The fun-
ctional J [y (x)] can be more succintly written as :
b

j & (x,y,y")dx
J ) =j . (19)
f & (x,,)") dx

where g; and g, are the known functions of their arguments.

Methods of minimization

_ Two methods viz., direct and indirect methods have been employed to
minimize the function.

Indirect method :  The functional (Equation 19) is a specific form of
more general functionals of the nature,

b
TN = [L (59,07, ka (x39) . 0)

a

b
where, kq (x;y) = I g (x,2,9,y") dz e (2D)
a
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It is observed that minimization problem of the functional defined by
(Equation 20) and (Equation, 21) cannot be tackled using the usual methods
of classical calculus of variations, since the Lagrangian function contains
integrals as well as derivatives as arguments. Functionals where Lagrangian
function includes integrals as well as derivatives as arguments are known as
the nonlocal functionals. Solution of these functionals leads to the nonlo-
cal calculus of variations (Edelen 1967) with Euler equations as integro-
differential equations, this is in contrast to the classical calculus of varia-
tions, where Euler equations are just differential equations. The necessary
and sufficient conditions for extremality of such functionals have been given
by Bhatkar (1972). Using these results, the Euler equation for Equation (20)
and Equation (21) becomes a second order integrodifferential equation of
the form :

b q
L Izél: ’ g_agu*_i COf P 2
oy dx By>+ oka (2) oy dx v’y T ay =)
a a=1
where,

g* = 8 [z, X,y (x), ¥ (x)] e (22a)

For the specific case under consideration, namely the minimization
problem of the functional defined by Equation (18), the Euler-Lagrange
Equation (22) becomes a separable system of integral and differential

equations as,
b .
I (Py14+Da Y+ V24P +D53Y +Pe¥™Y +P2v ™+ Py} dx

o= ‘; ...(23)

I{Ps +p1oy PPy +P1yy +Py?y’ + P15y 2+ Preyydx
a

(Gut-Gsy +qsy*+ sV +453Y +a6Y *+42y" + 43"
—Fi@y+ oy + 0+ a1y +quyy + ey + 41" + 916)¥ )=20

where,

as ok —r ¢ b o tang tang’ +(by+2b4yo)
py = Y (L—royg tang’ +(by+b4y0)Bers {;ayo, tlag() tand

= =Y (1—r) tand’ — (b, +2b,y,)B, tand tand’ —2b,Bsy,’ tang tand’

ps = b4B, tang tand’

& B 3 —Buyo’ (by+2b,y,) tand’—p
Pe = —B/Vo (bityoby) tang’— By’ (by+2bay0) (by+2byyu) tang tan’

ps = (by+2b,y0)B, tand’ +(by+2b,y¢ )P tang’ +2b,8, tang tang’
—b,B,’ tang’

P2 = ¢'+f; (b1+2b,y,) tang’

ps = —2b,B, tang’

Po = Bi'yo (by+byye)+B1yo’ (by+2b,y,)

Pro = —(by42b,y,)B, —2b,8, ¢’

.. (24)

S
I
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Piz = Bl’ bl
P12 = (1=r4) Yyo—B1 (by+2b,y0) + (b +Yoba)yoBa tang +(by+2b,v,)
Bayo’ tang
Pz = —(1—ru) Y4-2b,B,—B; (b1 +2b,y,) tang—2b,y’,B; tang
Pia = Baby tang4-2b,8; tang
Pis = —(b1+2b4yo)B, tang
Pis = 2b,B, tang

G = Pa—Dd
42 = 2p3—ps’
45 = —Ps

G = —2p,
qs = —2ps

4s = —Ps

G = —2p;

g5 = —2ps

gs = —Pr—Pe
G0 = 21711_-]7'13
qu= —"Pu
Gio = —2p's5
qiz = —2P"ss
e = —Pis

Gis = —2p15
G16 = —2P16

If now an assumption is made regarding the existence of unique critical
slip surface, the Euler equation is both a necessary and sufficient, condition
for the absolute minimum of the factor of safety given by Equation (18).
Such an assumption is always justified from the physical point of view.
Thus the minimization problem is reduced to the problem of finding the
solution of the two point boundary-value problem (TPBVP) defined by
Equation (23), Equation (24) and the boundary conditions Yo =Ya and
y» = Y. The TPBVP can be solved using any one of the numerical methods
available in the literature (Sage 1968). Here Warner’s method (Fox 1962)
has been used for carrying out the numerical computation.

Direct method : Alternatively, the minimization of the functional J [y(x)]
defined by Equation (18) can be carried out, using the direct methods such
as the Raleigh-Ritz technique (Courant and Hilbert 1966) or the method of
local variations (Chernovs’ko 1965). In this paper only Raleigh-Ritz
technique has been employed to the analysis. In this technique, a trial
solution for y(x) is assumed whose functional dependence on x is chosen,
but which includes undetermined constants. The later are found using the
standard minimisation technique in the form of partial differentiation. For
the problem under consideration, a trial function for the slip surface can be
assumed of the form

N
y(x) = 2"* xk e (25)
k=0
which satisfies the specified boundary condition, exactly. The substitution
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of Equation (25) in Equation (18), after carrying out the integration,
yields

Ty ()] = fu (day-++5) | . (26)
where fa is a known function of its parameters. The minimization of fu
can now be carried out using the method of partial differentiation. This
yields (N+1) nonliner algebraic equation

o0fa _ o
g = 0,k = 0,.., N NN ¢))

which can be solved using any one of the standard numerical methods of
solution. In the present case, a polynomial of the fourth degree was
assumed as a trial solution. For the slip surface Warner’s method (Fox
1962) was employed for solving Equation (27).

Results and Discussion

General

The stabilily analysis by the variational technique described in this
paper has been illustrated by analysing the stability of slope section shown
in Figure. 3. This section has also been analysed by Spencer (1967) using

(6:9m)
/ ‘ITH = 0-02
36 e
¢ = 40°
fu = 0‘5

(33-4m) 109-2

(30-5m) 100

1

A

| 200"
- (61m)

FIGURE 3. Slope section of the illustrzted example
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the slip-circle analysis, the numerical results obtained by the variational
method are compared with those obtained by Spencer.

The soil properties of the slope section considered here are same as
those considered by Spencer. The slope section is homogeneous and has
a constant pore-pressure coefficient. It is assumed by Spencer as well as
in the present analysis that the tension crack does not develop at the top
of slope section. The values of the soil properties, viz., the effective
angle of shearing resistance, ¢', stability ratio, ¢’/vH, the pore-pressure co-
efficient, r,, and the slop section have been indicated in Figure. 3. The
specific function f (x) relating the inter-slice forces E” and X ’, in terms of
effective stresses, is shown in Figure. 4. The analysis has been carried

out by direct and indirect methods in calculus of variations in terms of
effective stresses.
METRES
; 2O 12 b 36 48 60 72
—_—
08 s
f(x)
04 BN
0

40 80 120 160 200 240
POINTS ON SLIP SURFACE;  FEET

FIGURE 4. Function f1x) showing the relation between £/ and X forces

Slip surface

Figure 5 show the critical slip surfaces obtained by slip-circle analysis,
and also by direct and indirect variational methods of analysis for pore-
pressure coefficient, r,=0.5. Curve 1 is the critical slip-circle and curves
2, 3 are the critical slip surfaces obtained by indirect and direct methods
respectively. The critical slip surfaces obtained by indirect and direct
variational methods lie very close to each other, but, significantly, deviates
from the critical slip-circle. The shape of the slip surface obtained by
variational method could be very closely compared to the shape of a
catenary with the boundaries as the end points, having its apex near the
lower end and flat curvature towards the upper end. It is interesting to
note that the shape of the critical slip surface obtained by the variational
method closely resembles the actual slip surface as observed in the field for
a homogeneous embankment (Wolfskill and Lambe 1967). '
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Effective thrust line

Curve 4 of Figure. 5 shows the effective thrust line obtained by the
variational method. The curve is fairly smooth throughout the section
and lies well within the middle third of the section. The ratio L']y
obtained along the inter-slice boundaries is given in Table 2. There is a
marginal fluctuation in this ratio right upto the end of the section. A
maximum ratio of 0.5 is observed at the lower end; the ratio gradually
decreases towards the lower third portion of the section, where a minimum
ratio of 0.382 is recorded. Thereafter, the ratio increases slightly towards
the middle of the section to a value of 0.42 and finally shows a decreasing
trend till the upper end of the slip surface. At the top extreme boundary
the ratio slightly lies beneath the middle third point of the inter-slice
boundary with a minimum ratio of 0.31. The fluctuation in the ratio is
due to the variation of the inter-slice forces E” and X" along the inter-slice
boundary and also due to the varying intensity of pore-pressure dexielopmg
at different points along the sliding mass. Low values of L,’[ y at the
extreme upper end due to the rapid decrease in the magnitude of inter-slice
forces and also that at the extreme top end of the slip surface tension
cracks are likely to develop as shear progresses.

TABLE 1.
|
SI No. Method F, F [ ] | f(x) |Percentage
i , d fference
! ‘ in F*
l I L
1 Slip-circle analysis | 1.0700 | — | 22.50 S
by Spencer (1967) ’
2 Variatio- | Direct 1.1261 1.4536 ‘ 23.41 Varying 5.25
nal as in
method = Pig4
Indirect 1.1235 1.4511 23.72 5.00
{ | i

*Percentage difference in factor of safety — Absolute

[Fac:or of safety by Spencer—Factor of safety variational method v 100
Factor of safety Spencer ] i ’

Influence of pore-pressure co-efficient

In order to illustrate the influence of pore-pressure co-efficient on
stability analysis, numerical results are obtained by examining the stability
of the specific slope section by assuming two different pore-pressure co-
efficients, viz., r,=0.3 and 0.5, and the results are presented in Table 2 and
Figure 6. The results presented in Table 2 show that the pore-pressure
coefficient plays an important role in the stability analysis of slope. The
factors of safety, Fs, F,, have considerably increased for r»=0.3, and also
that the slope of the inter-slice forces, tang is different from that obtained

taking r,=0.5. It is interesting to note that the ratio,é,L for r,=0.3 has

also consi.derably inqreased‘ and that nowhere the ratio lies beneath the
middle third of the inter-slice boundary, which implies that the section



TABLE 2
IS Tu . Ey 0 L,'|y along inter-slice boundaries
Horizonal distance along the slip surface from the Jower end in feet (metres)
0 170 190 210
50 70 S0 110 130 15 ) ;
(3.})05) (1(3)(.)1) (15.25) (21.35) (27.45) (33.55) (39.65) (45.75) (51.85) (57.95) (64.05)
2 0.32
. 0.5 | 11235 | 1.4511 | 23.72 0.5 0.39 0.391 0.382 041 0372  0.382 0351 0348  0.342 132
.36
2 0.3 | 1.4102 | 2.0162 26.45 0.52 0.42 0.41 0.41 0.42 0.42 0.45 0412  0.382 0.37 0
4 .) ¥
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witg, r,.:0.53 presents a more stable state of equilibrium than the section
with r,=0.5.

Figure 6 shows the critical slip surfaces obtained by the variational
method for r,=0.3 and 0.5, and also shows the positions of the effective
horizontal thrust lines. The results obtained for the minimum factor of
safety, associated with the critical slip surface for cases with pore-pressure
co-efficient, r,—0.3 and 0.5 are significantly different; hence for a rigorous
stability analysis it is necessary to consider the actual intensity of pore-
pressure developing in the section.

. The above results emphasises, that the stability analysis carried out
interms of the total stress analysis may lead to misleading results and
hence it is important to consider the effective stresses for carrying out
rigorous stability analysis of slope.

Factors of sdafety, Fs and F,

The results obtained by Spencer and by the variational technique are
given in Table 1. Table 2 presents the results obtained by variational
method for pore-pressure co-efficients, r,=0.3 and 0.5, and also gives the

ratio EL along inter-slice boundaries of the potential sliding surface. By

rounding of to two decimal places, the values of overall factor of safety,
Fs, and the average factor of safety, F,, along the vertical boundaries
obtained by direct and indirect variational methods (Table 1) are observed
to be same. But, the overall factor of safety, Fs, obtained by Spencer
using slip-circle analysis shows a significant variation over those obtained
by variational methods. The percentage difference in overall factor of
safety, F;, obtained by the variational method over that obtained by slip-
circle analysis is of the order of 59 for the specific example considered

here.

Figure. 7 (a) and (b) show the variation of factors of safety, Fs and F,
along the critical slip surface obtained by the variational method for pore-
pressure co-efficients 7,=0.3 and 0.5. The factors of safety remains fairly
constant in the middle region of the slip surface, but rapidly increases
towards the boundaries and at the boundaries the variation shows an
asymptotic nature. The values of factor safety, Fs and F, obtained for
pore-pressure co-efficient. r,=0.3 are significantly higher than for r,=0.5.

The factor of safety, Is, for pore-pressure co-efficient r,=0.5, has a
minimum value which lies in the middle third region of the slip surface. A
close observation of the factor of safety along the slip surface shows that
there are regions at which the value of factor of safety, Fs, is very close to
one and a minimum value of 0.97 is observed at about two-thirds of the
distance from the lower-end. This point emphasises, that the slope
section is just at the point of progressive failure with local shear failures
developing mostly in the middle region. For the section with pore-pressure
co-efficient, 7.=0.3, the factors of safety, F; and F, have significantly
increased over those obtained with r,=0.5, and it has also been observed
that nowhere, along the slip surface the factor of safety, F;, is less than one.
As a whole, the slope section considered with pore-pressure co-efficient,
r«=0.3, leads to a more stable section, ensuring that the state of stable
equilibrium is maintained throughout. When the stability of the mass is
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disturbed, progressive shearing develops accompanied by gradual and non-
uniform local decrease in soil strength at different regions of the mass and
at different rates (Bjerrum 1968, Bishop 1971). Asa result, some regions
of the soil mass will have local limiting condition (i. e. 1s' =0’ tanp’+c¢’)
and on other regions a pre-limiting condition (.i e. 7' < @, tang¢’-+¢’), but,
as a whole the soil mass will be stable. However, the soil mass fails, if
over the entire sliding mass. the failure criterion is satisfied. Hence such
situations must be critically examined for a complete safety of the slope.
For a complete safety of the section the judgement must not only be on the
basis of overall factor of safety but also on the stability at various locations
along the potential sliding mass. A critical analysis of this type necessitates
understanding of the shear strength parameters, load distribution on the
slope, variation in slope section and variation of pore-pressure.

Normal effective stress distribution

The distribution of normal effective stress, o’», along the slip surface
obtained by variational method for cases with r,=0.3 and 0.5 are shown
in Figure. 8(a). The distribution of the stress shows a varying intensity
along the slip surface. The normal effective stress, is observed to be
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FIGURE 8 (2). No.mal effective stress, ', along the critical slip surface

¢ wards the lower end and the maximum effective normal stress, he§
Ltragre:hl: lower third end of the section. Towards the upper end, the o
shows a gradual decrease in the intensity with zero value at the upper
boundary, whereas, it decreases rapidly towards the lower end aqd reduces
to zero at the lower boundary. It has been observed that the distribution
of normal effective stress for a specified section depends on several factors,
viz., distribution of pore-pressure along the section, the shape of the slip
surface and also on the inter-slice forces, hence it is necessary to treat the
normal stress distribution as a dependent function, instead of an indepen-
dent function.

Effective inter-slice force

The effective inter-sh’cp force, E’, developing along the vertical inter-slice
boundarles for cases with pore-pressure co-efficient, r,=0.3 and 0.5 are
shown in Figure 8§(b). At the boundaries the magnitude of E’ force
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reduces to zero, implying, that the condition for force equilibrium is
satisfied. Larger values of E’ have been observed to be concentrated in
the region between middle and one third from the lower end of the section.
The values rapidly decrease initially but become gradual near the ends.
The maximum values of E’ were observed to lie almost at the same point
for the cases with 5, =0.3 and 05. The E’ forces, for cases with r,=0.3
and 0.5 show a similar pattern of distribution along the slip surface but
are different in their magnitude. The magnitude of E’ force depends on
the actual shear resistance developing along the inter-slice boundary. In
this analysis the values of E’ forces are obtained by employing Coulomb-
Mohr failure criterion along the vertical inter-slice boundary to evaluate
the extent of shearing taking place along the inter-slice boundaries. Any
local shear failure developing along the vertical inter-slice boundaries could
be examined by studying the magnitude of factor of safety, F,. In the
present example, nowhere, the values of F,, have been found to be less
than one, implying that the local shear failure did not occur anywhere

along the vertical boundary.

The above discussion of the results obtained by variational methods
suggests that variational technique can be successfully employed for a
rigorous analysis of slope satisfying all equilibrium and boundary conditions
together with conditions for minimum factor of safety and critical slip
surface. The analysis also examines for the failure criterion along the
sliding surface and hence checks for any local shear failure developing
along the slip surface.

Conclusions

A rigorous analytical technique for stability analysis of slope has been
develo_ped based solely upon the principles of limiting equilibrium and the
analysis satisfies all equilibrium and boundary conditions. The analysis
considers the presence of inter-slice forces and assumes that no tension is
being developed at the top of the potential slip surface. The technique is
developed by framing the stability problem as a minimization problem in
the nonlocal calculus of variations. The results obtained by the variational
method showed significant variation over those obtained by Spencer (1967)
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using slip circle analysis. The critical slip surface associated with minimum
factor of safety obtained by variation method considerably deviates from
the critical slip-circle. Any assumption regarding the internal stress
distribution within the potential sliding mass may lead to ill-conditioned
functions resulting in misinterpretation of numerical results. The variational
method suggests that the assumed function for internal stress distribution
must satisfy all equilibrium and boundary conditions and also
conditions for minimum factor of safety and critical slip surface.
The normal stress distribution along the potential sliding surface is related
to the critical slip surface. Though the existing methods of analysis yield
results which are meaningful by assuming some normal stress distribution,
the results themselves do not necessarily refer to the absolute minimum.
The factor of safety, slip surface, normal stress distribution, internal stress
distribution and position of horizontal effective thrust line are largely
influenced by the pore-pressure developed in the potential sliding mass and
hence the slope sections must be analysed in terms of effective stresses. The
main advantage of the variation method is that it provides a sound rigor-
ous mathematical technique for analysing slope sections with any con-
figuration and can be extended for slope sections with varying shear
strength, pore-pressure distribution and also for sections with non-homo-
geneous boundary and loading conditions. For such problems the existing
methods become cumberome, both analytically as well as computationally.
The variational method thus provides a powerful tool for analysing the
stability of soil structures.
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Calculus of variations. Englewood

Notation
H Height of slope section
d, b Slip surface boundary on slope section
dx Elemental width of slice
a Slope of base of slice
B P Specified co-ordinate system
¢’ Angle of shearing resistance 7 . .
& Cohesion intercept ] in terms of effective stresses
R Radius of the critical slip-circle
b4 Bulk density



90

INDIAN GEOTECHNICAL JOURNAL

Fu Pore-pressure co-efficient

F; Overall factor of safety

F, Average factor of safety along vertical inter-slice boundary

b) Slope of inter-slice force with respect to horizontal

) Angle of slope of inter-slice forces with respect to horizontal
E Horizontal thrust on the side of slice in terms of effective stress
X

Vertical shear force on the side of the slice in terms of effective
stress

aw Weight of the slice
dWwy  Tangential component of the weight of slice

u Pore-pressure

dUu Force due to pore-pressure on the base of slice

dP Total normal pressure on the elemental base of the slice
dpP’ Effective normal pressure on the base of the elemental slice
On Total normal stress

on' Effective normal stress

T’ Shear strength in terms of effective Stress

Txy Shear stress

ds Total shear force available along the base of the slice

dSm Total shear force mobilised along the base of the slice
Z Total inter-slice force

dz Resultant of pair of inter-slice forces

W Resultant force due to water pressure acting on the side of slice
L, Height of inter-slice force for total stress

L’ Height of inter-slice force for effective stress

f(x) Functions of x and prime over

BiBs

pi-Pis | these quantities represent the ordinary derivatives with respect
i1 to x, and number of prime represent the order of derivative

’ "

Y,y





