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Introduction

In_ the design of power plants one may encounter situations wherein the

simple method of stress analysis will not be adequate due either to comp-
lexity of loading and/or to irregular geometry. Finiie element method
provides solutions for these type of situations. In the present paper
application of this method to two specific problems encountered in the
construction of a power plant is discussed. These examples serve to
illustrate the versatality and usefulness of the method in solving complex

problems.
The two problems in which the finite element method is used for
analysis are as follows :

Normally in the design of the lining in a power tunnel the reinforce-
ments required are calculated using the simple theory of elasticity solutions.
In the present context the analysis becomes complex due to the presence
of a band of weak material at certain cross-sections of the rock through
which the tunnel passes. Because of this weak band of material, it becomes
essential to analyse these cross-sections so that the correct amount of rein-
forcements can be used in the lining of the pressure tunnel at these cross-

sections.

It has been observed that the foundation of a power house consists of
large number of alternate layers of clay stone and sand rock. It becomes
necessary to ascertain whether there will be any differential settlement
between the centre line of the penstock anchor after the completion of
the first stage of concreting the foundation and, the centre line of the inlet
to the turbine after the completion of the second stage build up of the
power house. During the second stage, the super structure load, turbine
load, load due to water hammer, pressure, crane load etc., have to be
considered. Thus the problem involves the analysis of deformation of a

medium which is nonhomogeneous.

General Description of the Method

In short, the basis of the finite element method is the re i
5 f presentation of
of a body or a structure by an assemblage of subdivisions called finite
elements. These elements are considered to be interconnected at joints
which are called nodes or nodal points. Simple functions are chosen to
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approximate the distribution or variation of the actual displacements over
each.hmte element. Such assumed functions are called displacement
functions or displacement models. The unknown magnitudes or ampli-
tuQc: of the displacement functions are the displacements at the nodal
points.

A variational principle of mechanics, such as the principle of minimum
potential energy, is usually employed to obtain the set of equilibrium
equations for each element. This principle states that of all possible dis-
placement configurations a body can assume which satisfy compatibility
and the constraints or kinematic boundary conditions, the configuration
satisfying equilibrium makes the P.E. assume a minimum value.

The equilibrium equations for the entire continuum are then obtained
by combining the equations for the individual elements in such a way that
continuity of displacements is preserved at the inter-connecting nodes.
These equations are modified for the given displacement boundary condi-
tions and then solved to obtain the unknown displacements. In many
types of problems, the desired solution is in terms of the strains or stresses
and so additional calculations may be necessary.

Iso-Pdarametric Elements

It has been frequently demonstrated in the past that for a given total
number of degrees of freedom in the structure, accuracy is increased for
larger elements with a greater number of degrees of freedom. The process
of idealisation could be extended without limit but for the fact that the
larger elements can no longer follow the boundary (when curved boundary
exists) in the problem to the same extent as the smaller ones. To overcome
the geometric difficulties presented by large elements, curved sides are
essential. If complex elements with sides capable of taking on the boundary
curvatures are possible then indeed progress can be made. Such a step
forward has been achieved by the introduction of various isoparametric
element families.

The isoparametric concept, that is, to use the same interpolation
functions for both the coordinates and the unknowns facilitates the formu-
lation of curved elements. The important step as in the case of all finite
elements, is to choose a shape function prescribing the variation of displace-
ments (or coordinates) in terms of appropriate nodal values. Shape
functions should also be (1) continuous within the element and across
interelement boundaries and (2) reproduce conditions of constant strain
exactly. In most cases these are derived from a suitable polynomial.
The polynomial is chosen so that the dispalcements along the edges are
linear, parabolic, cubic and so on, giving a unique variation of displacc-
ments in terms of the nodal values on that edge. The number of terms
in the polynomial usually equals the number of nodes in element.

Let ¢ be the quantity to be interpolated, this may be a coordinate
%, y, a displacement u, v, the temperature or any other quantity prescribed
over the element, in terms of its nodal values. The quantity to be inter-
polated can be written down as :

@=N; Py Ny Pot-ereneen sl

where Ni=N; (x, ) is the interpolation shape function taking a value of
unity at the node / and zero at all other nodes. N
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Using precisely the same polynomial terms but now with the local
natural non-dimensional £ and 7 coordinates, with a range of 41 and
— lwith-in such elements, instead of the x and y, the general shape elements
as in Figure 1b can be formulated. The basic shape of the sides of these
elements are straight and since the more general shaped elements are derived
from this, these are called ‘parent’ elements. The parent element with the
cartesian system oxy as its reference is shown in Figure 1(a).

y

FIGURE 1(a). Rectangular P.rent element

The position within the new element is determined by the curvilinear
coordinates ¢ and 7 (Figure 1b). This by itself does not define the map-
ping relationship needed. This will be provided by the basic ‘isopara-
metric’ definition. We can thus write for a deformed element,

u= N, uy+ Ny tlpg~4eenvn...
v= Ny v;+Ns vo-tereenee. wi(2)

FIGURE 1(b). Curvilinear Quadrilateral element

together with
T N, BT Bodeas s

Y= Ny Y1+ N, Yot..o...... sk
with, in two-dimensional cases
Ni= Ni (&M . (4)

If the shape functions are based on the parent element definition then
not only will the compatibility of displacements be satisfied on element
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interfaces but an original fit of these surfaces will b :
et. al. (1968). 1 e ensured Eragatoudis

Silnilar}y.it can be shown that if constant strain conditions were obeyed
bly ’Lhet original parent functions this will be preserved in the distorted
elements.

The formulation of displacement model element characteristics such
as stiffness etc., are easily available (Zienkiewicz, 1971). The stiffness
matrix of an elemenl is defined, for instance, as

[KJUZ'[ B™DB dv .(5)

vV
in which the [B] matrix relates the strains {€} to the element nodal dis-

placements. g . §:[ B] { . ; ..(6)

and [D] is the elasticity matrix giving stress-strain relationship. All integra-
tion of the element, Legendra-Gauss points which facilitates the speedy
formulation and programming of a complicated element like the curved
sided elements, for which closed form integration is complicated, in a

relatively short time.

In the present context, the elements need to be curved sided, from the
point of view of easy generation of data. Further in both the problems,
the continuum is made up of more than one material and hence the stress
distribution need not be uniform. The continuum considered for analysis
in both the problems is quite large. To represent this small number of
higher order elements will always be best. Thus from these considerations,
quadratic iso-parametric eclements have been chosen in idealising the
problem. A 3 x 3 Gauss integration rule has been chosen for the integra-

tion.

Solution Method

The next step in the finite element method is the assembly of all stiffness
equations. The stiffness matrix [K] of the complete assemblage relates the
nodal loads {F} acting on the structure to the corresponding nodal displace-

ments {§} by
[K] - {8} = {F} il T
The stiffness matrix, may be characterized in general as :

. - .
lateg.) symmetric, (2) banded, (3) positive definite, and (4) sparsely popu-

 Algorithms which utilize cither iterative methods or direct methods
for the solution of equations with these properties are well known. Earlier
applications of the finite element procedure were based predi)minatel

on iterative methods in which property 4 was utilised so that the solutiox)ll
could be obtained while working entirely in the high speed core memor

In the more recent years, however, direct solutions based on Gaussia);
climination have become the preferred solution procedure due to thei
overall economy and ease of applicability. "
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With the development of iso-parametric elements, which have nodes
along sides, the size of stiffness matrix of each element becomes large and
hence cannot be fully assembled and stored in core. Further the assem-
bled matrix will be sparsely populated. Front solution technique is used
to solve such type of equations. In this method, due to sparsness of the
coefficient matrix, only a small amount of the matrix has to be calculated
before forward elimination of a variable corresponding to a row in
Equation 7. This method is geared to elimination based upon elements.
A variable becomes active on its first appearance and is eliminated
immediately after its last. After the elimination process, data pertaining
to the variable is stored on a file and the row is freed. Consequently
the total core required for the method is very small compared to the
conventional methods.

Figure 2 shows a typical case, where each node is coupled to seven others
in a rectangular element. When the element stiffness matrix of element [ is
assembled, the equations pertaining to the nodal variabies at nodes I, 2 and
8 are stored on the magnetic tape since they have appeared for the last time.
At the same time these variables are eliminated from rest of the equations.
Now while assembling the stiffness of element 2, the spaces occupied in the
core by variables at nodes 1, 2 and 8 are also used. Further after the
assembly of element 2, equations pertaining to nodes‘ 12, 13, 1 9, 23, 2_4
are stored on to the tape and corresponding area in the assembly’ matrix

% 25 26 27 28
FIGURE 2. Front Solution Method

is freed. The equations pertaining to nodal variable at 3, 9, 14, 20, 25 are
also modified at the same time. Thus as element by element is taken into
consideration the front advances from 3, 9, 14, 13, 12to 3,9, 14, 20, 25 etc.
Finally when stiffness of element 6 is assembled, the equations correspon-
ding to nodal variables are stored one by one until by back substitution,
one of the variables can be calculated. Now the stored equations are
called back into memory from the tape unit in the reversed order in which
it has been stored and the unknown variables determined.
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Practical Aspect of the Computer Algorithms

The program for the front solution method given by Irons (1970) was
not used but a program based on a description contained in Irons (1966)
was programmed and developed independently (Natarajan, 1975)

Suitably partitioning the Equation 7 as

( 1 I 1
My | My J SKN IL ILFUN ‘
— |1y % e (8)
MyT | Muyn [ su~n | | Fxn |

L L

where §xn and Sun are known (prescribed) and unknown nodal variables.
The corresponding unknown and known gencralised forces are Fyn and Fkn-

Expansion of Equation 8 gives

Mx Skn + Mu Suxn=Fun
and  MyT skn+ Mun Sun=Fkn s (9)
Re-ordering Myn Sun=Fkn—MuT §kn ...(10a)
and Fyn=Muy Sux+Mxx 8kn ...(10b)

From Equation 10a the unknown nodal variables can be c;ilcula}ed by an
extension of Gaussian elimination process with the m.odxﬁed right hand
side vactor Fyn—MuyT 8kn. In the backward elimination stage, as the
elements of §ux are explicitly known, the unknown reactions Fyn can also

be found.
Example 1

This example shows an interesting large scale application of the isopara-
metric elements. The idealisation of curved boundarl_es, treatment of
materials of different property, the simple method by which the continuum
under analysis can be extended with minimum extra nput data, are brought
out in this example.

The problem dealt with here, is the stress analysis for the design of the
lining of the power tunnel in a region where the tunnel crosses a fault zone
existing in the rock as shown in Figure 3. Since the continuum is made
up of three different materials : concrete, rock, and the fault zone ma}erlals,
closed form solutions are not possible. Finite element method offers an
easy and accurate solution to this problem.

The continuum considered for the analysis is limited up to one and half
times the diameter of the tunnel from the centre of the tunnel. This limit
imposed on the extent of the continuum analysed has been arrived at from
the study of the stresses near the external boundary where the effect of
tunnel is negligible. This is divided into a number of quadratic isopara-
metric elements as shown in Figure 4. While dividing the continuum into
number of elements, care is taken to effect a smooth change in displacement
when two elements of different materials are connected together. The nodes
on the extreme outer boundary are assumed fixed.

The stiffness of the elements are computed and the solution of the
equations is done using the front solution method. The load on the tunnel
is due to the unit internal pressure. The displacements are computed at all
nodes in the continuum under these conditions. Using this, the stress ox,



118 INDIAN GEOTECHNICAL JOURNAL

rock

FIGURE 3. Tunnel in a fault zone

oy and txy are computed at the integrating points and plotted and a repre-
sentative distribution of the stresses is as shown in Figure 4.

From the stress plot it is concluded that the maximum tensile stress
occurring in the concrete lining is near the place where the fault crosses it
and is 40 per cent more than the one which occurs when the materials
surrounding the tunnel is a homogeneous one., The maximum tensile-
stress in the concrete lining making 90° with the fault zone is only about
10 per cent more than the homogeneous case. A further study is conducted
by radially extending the continuum analysed by 10 metres. Due to the
front solution method, the data for the new elements alone have to be
prepared and the core required for the solution is increased only marginally.
The results show that the maximum tensile stress in the concrete lining near
the fault zone is 60 per cent more than the one which occurs when no fault
exists. In this study the maximum stress at the extreme boundary elements
is found to be about 18 per cent of the internal pressure in the tunnel. The
corresponding maximum stress in the first analysis is 33 per cent. Since
the stresses at the extreme boundary elements are to be zero, by interpol-
ation the maximum tensile stress values in the lining can be obtained.

The number of elements used is 261. The core required i i
tely 25 K word length and the compute'r time taken i i b ! biowt 45 Tais
in TBM 360144 oo 1s about 1 hour 43 mts
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(1kg/cm?= 14-7 PSI)
----- gy PSI
- - K= o-x PS'

FIGURE. 4. Finite Element idealisation and stress distribution

Example 2

This deals with the differential settlement between a power house and
penstock anchors due to the foundation characteristics. Over the completed
first stage of concrete, the loads due to second stage of concreting, dead
weight of turbines and generators, fully loaded crane weight, load due to
water pressure etc. will be acting. Since the foundation is made up of
layers of clay stone, sand stone, sand rock and silt stone, it is expected that
there will be a differential settlement between the power house block and
the penstock anchors.

This study has been done using two dimensional isoparametric elements.
The distance between two power units of the generator has been given as
18.3 metres, and this represented the thickness of the elements idealising the
foundation. Thickness of elements representing the superstructure has
been taken equal to the thickness of the concrete at the corresponding
point. A smooth change in the thickness of the elements has been adopted
to avoid discontinuity in the geometry. A depth of about 45 metres below
the first stage concrete has been considered in the analysis so that the loads
acting on the foundation would have dispersed evenly within this depth.
The various loads considered were: dead weight of the structure, crane
loads at different positions of the crane, load due to water in penstock and
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turbine, load due to maximum tail water level. A representative sketch of
the finite element distribution is shown in Figure 5.

The analysis of the structure with the foundation has been conducted
with two types of loading which represents the extreme conditions of load-
ing on the super-structure. In the first case, the dead weight of the structure
and machine loads have only been considered with the main crane load
acting at its extreme right position. Thiscreates a clockwise moment on
the super structure. In the second study in addition to the above loads,
the load due to water in the penstock and turbine have been considered.
Further the load due to maximum tail water level and the load of main
crane occupying its extreme left position have been considered. Thus
these loads create an anticlockwise moment on the main structure.,

ﬁturbine
penstock ] ' ) second
stage
concrete
\ first stage concrete
clay stone X
sand rock \\

FIGURE 5. Representative diagram

From the study of the displacements from these two analyses the
differential settlement between the main structure and the anchor block is
estimated and found to be negligibly small. In the present study 321
clements are used. The core requirement is of the order of 28 K word
length and the time taken is 1 hr 50 mts in IBM 360/44.

Advantages in the Front Solution Method with Reference to the two
Problems

If the original mesh pattern is too coarse in some region, a soft rubber
or ablack pen is sufficient to alter the drawing. For example in the
problem of the pressure tunnel analysis, when larger area was included in
the analysis of the continuum data was prepared only for the additional
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elemeqts included in the analysis. But in the case of banded algorithm
extensive re-numbering may be necessary to preserve a small band width,
A cylindrical network as in the first problem requires some manipulation
in numbering the nodes for an optimum bandwidth, while using a banded
solution techique. The frontal solution in its nature takes care of this
situation. In frontal technique the elements are presented in a certain
order, which is critical, just as the node numbering is critical in a band
algorithm. In fact the ordering of the variable is irrelevent to the frontal
technique. If the same structure is to be analysed for different loading
conditions for example in problem 2, the analysis of the structure was
conducted for (i) extreme positions of the crane loading, (ii) with and
without water loads—the completed equations of all the variables in the
structure are available in a tape unit. It is only necessary to update the
right hand sides of the equations, and solve for the unknowns by back

substitution.

Conclusions

The two problems analysed are quite difficult to handle using conven-
tional strength of material approach. It isseen that the finite element
method—using isoparametric elements with front solution method—offers
a powerful tool for the solution of such type of complex problems. The
operations encountered in the method are systematic and well defined thus

amenable to easy computer programming.

Using this method for the first example, it has been shown that the
reinforcements in the tunnel linings near the fault zone have to be more
than normally required. From the study of the second problem, it has
been shown how to obtain the differential settlement in a huge structure
like a power house using a relatively simple technique.
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