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Infinite Porous Media

b y
Satish Chandra"1

HC. Misra**
Introduction

for Axisymmetric Flow through porous media, the Laplace equationin cylindrical coordinates is given by :

+4 £
where <f> is potential function, r the distance of the point considered in X Yplane and z is the distance along z-axis or the point,

The solution of Equation (1) was obtained by Weber (1919) forthe potential due to an electrified circular disc. The corresponding hydro-dynamic problem for the potential due to a circular disc source has beenreported by Sneddon (1951) and Lamb (1945).
This solution has also been obtained by Sunde (1946) for the poten-tial due to an elementary flat circular disc of negligible thickness on thesurface of the ground at a point on the ground surface.
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The problem of seepage in the half space can be formulated as below(Figure 1).
Assuming z to be positive vertically downwordsA
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and -ar =° a<y<—a —a<y<a

— oo <x<oo and —l<x<l
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FIGURE 1 : Half space problem.
As is evident it is a mixed boundary value problem involving infinite

dimensions. As such, the usual analytical methods, e.g., separation of
variables, integral transforms, relaxation, etc., were not found suitable for
the solution. A numerical method involving the superposition of the
known solutions for the potential due to circular discs on the surface of
the half plane has been developed. The method has been extended to in-
clude the case in which the seepage region is bounded by an underlying
horizontal impervious stratum.
Analysis

-v

The problem described above has been solved by considering the up-
stream and downstream equipotential regions to consist of a finite number
of circular discs placed adjacent to each other, each disc having a constant
potential on its face. These potentials have been so adjusted that when
the total effect of all the discs is considered, the potential distribution on
the upstream and dowstream regions from where and to which the see-
page takes place, is constant. Due to the symmetry of the problem, it was
found convenient to keep these potentials as +50 percent and — 50 per-
cent respectively. The superposition of the solutions due to elementary
disc is permissiable because of the linearity of the Laplace’s equation. Al-
though the upstream and downstream equipotential surfaces are theoreti-
cally of infinite extent, it is clearly not possible in any numerical or ex-
perimental method to consider them as such. These surfaces have, there
fore, been kept finite. However, the dimensions were determined by-
solving the two dimensional problem with finite upstream and downstream
equipotential surfaces and determining the size so that the potentials would
be reasonably representative of the infinite case. If the canal on either
side of the floor is considered lo be 1.5 times the length of the floor, the
potential distribution will be close to those obtained by considering the
equipotential regions extending to infinity (Satish Chandra, 1968).

(a) Infinite Depth of the Porous Media
To evaluate the potential due to the upstream and downstream cons-tant potential regions from where and to which the seepage takes place,

the method of superposition of potentials due to discs has been used as-
suming these regions to be finite. These two regions B & C of size 2a X 2b
are symmetrically located on either side of the Y axis extending from *=/

A
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FIGURE 2 : Disc arrangement.

to x=+(l+2b) and x=—l to x*= —(/+26) and about the x-axis from y=a to y= — a (Figure 2). Each of these regions is assumedto contain (2m+1)discs along the Y axis and (« + 1) discs along x axis.
In this analysis the two constant potential regions B & C have beenassumed to have the length equal 2np and width 4 mp. These two regionshave been assumed to be separated by a distance 2l— 2gp. For the twodimensional seepage by assuming the constant potential regions to befinite and equal to 3/ (2/ being length of the floor) the potentials obtainedat different points along the floor are within 0.2 percent of those obtainedwhen the constant potential regions extend to infinity on either side.

Thus, by assuming 2 np — 3gp. the finite regions of constant potential have
been considered to represent the regions extending to infinity.

From the requirements of the problem the resultant potential, after
interference, due to all the discs everywhere on the regions B & C has to
be constant and of the same positive and negative strenghts respectively.

For this purpose the strength distribution of the discs on the region
B & C was determined so that the resulting potentials on B & C regions
were constant as required.

Having determined the potential strength of the individual discs,
the resulting potential at any point (aP, $p) can be obtained. The
potential distribution in the region between the two constant potential
regions on z =0 plane have been computed.

( ,b) Finite Depth of Porous Media
For evaluting the potentials due to seepage through the porous media

of finite depth the method of images has been employed. For seepage
through a media of depth T, an infinite number of similar regions of discs
as for the infinite medium problem discussed earlier, placed vertically
above and below these regions at distances equal to 2T, 4T, 6T and so on
have been considered which will make the plane z=T an impervious
boundary, and the plane z —0 also an impervious boundary surface, exceptfor the regions of constant potential. (Figure 3).
Potential Distribution with Confined Seepage Below Floor Level

The method developed, has been used to determine the potential dis-tribution on the area between the constant potential regions for infiniteand finite depths of the pervious medium of infinite areal extent. Theproblems have been solved on digital computer.

- 2b *2np
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FIGURE 3: Image system for confined setpage.

In case of infinite depth of the previous medium, the p° tentials have
been determined for the following seven combinations of the g, m and n
values :

nSI. No. m8

9161
9262
9363
9964

A182125
183126

6 187 12

The first four combinations of g, m and n correspond to a coarse
mesh of discs forming the regions from where and to which the seepage
takes place representing the length width ratio of the floor of 3, 3/2, 1,
and 1/3 respectively. To ascertain the effect of using a finer mesh of discs
the order three combinations have been used to give length-width ratios of
3, 2 and 1 respectively. Due to the limitation on the size of the com-puter it was not possible to try a still finer mesh. The length-width ratio
of 1/3 was used to ascertain how close the potentials obtained by this
method correspond to the theoretical two dimensional seepage potentials
already known. The strength of the discs forming the regions from whereand to which the seepage takes place and the resulting potentials under
the floor region for all the cases have been determined.

In case of finite depth of the medium, the strengths of the discs, for-ming the region from where the seepage takes place, have been determined
for only one condition, i.e., for g.m. n and T values of 6, 2, 9 and 6 res-
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pectively to establish this method and to determine the potential distribu-tion under the floor for finite depth of porous medium.

To compare these results with those obtained by electrical analogytechnique, experiments were conducted for length-width ratio of 1, 2 and3 in an electrical analogy tank, and the potentials obtained.
Infinite Depth of Medium

(a) Strength Distribution
On examining the strength distribution it is observed that thestrength of the discs increase from the middle to the edges of the plate.On moving along the X direction (Figure 2) away from the floor, thestrengths first reduce and then increase towards the ends. Among the In-direction the strengths are minimum on the X axis and increase towardsthe edges.
Increase in the width of the plates (increase in m values) reduces thestrength magnitude of all the discs, but the strength distribution pat-tern, remains the same. The strength distribution of the discs on Xaxis and at x=g along Y axis have been presented in Figure 4. These
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FIGURE 4 : Strength distribution of discs (L/B=l)
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strength distributions pertain to coarse and fine set of discs L/ B= l of the
floor, i.e., g, m, n values of 6, 3, 9 & 12, 6, 18 respectively. It is observed
that by making the mesh finer (i.e., by increasing the number of discs on
the constant potential regions), the strength distribution of the discs on
the region is the same as with coarser mesh but the magnitude of strengths
for all the discs is slightly reduced.
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( b) Potentials along Centre line
The potentials along the centre line of the floor, for the length-widthratio ( L/ B) of 1/3, 1, 3/2 and 3 with coarse and 1, 2, 3 with fine mesh ofdisc forming the constant potential regions respectively have been plottedin Figure 5. The potential distribution under the floor for two dimensionalseepage have also been presented for comparison. It is observed that thepotentials on the upstream half of the floor decrease by increasing the lengthwidth ratio, whereas on the downstream half of the floor the potentials in-crease by increasing the length-width ratio. The same trend has been ob-served for the coarse and fine mesh of discs. The results abtained experi-mentally by electrical analogy method also indicate the same trend.Theoretically, by decreasing the length-width ratio the potential distri-bution should approach that for two dimensional seepage. Also the poten-tials on the upstream half for all the length-width ratio should be lower

than those for two-dimensional seepage while on the downstream half these
should be higher. It has been observed that for the coarse mesh these
potentials are always more on the upstream side and less on the down-stream side than those two dimensional seepage. In accordance with the
theoretical expectation, for all the length-width ratios of the floor consider-
ed, with fine mesh, the potentials on the downstream side are more than
those for two dimensional seepage except for L/ B=1 close to the down-
stream end. It may be concluded that if the computer size would per-
mit a still finer mesh than that considered here, this would give the desired
potential distribution on the floor with greater accuracy.

The effect of change in the LIB ratio on the magnitude of poten-
tials has been observed to be maximum at the quarter points, the floor
being 2 percent for change of L/ B ratio from 1 to 2 and 1.5 percent for
change of LIB ratio from 2 to 3. The magnitude of the change reduces to
zero on moving towards the centre and ends of the floor. On comparing
these results with the experimental results, it is found that on the down-
stream half of the floor the potentials obtained experimentlly are higher
than those obtained by the method of discs (Figures 6, 7, and 8). This
difference is expected to be eliminated if a finer mesh of discs is used to
represent the constant potential regions. The results obtained by electrical
analogy experiments at U.S. Waterways Experimental Station (1963)
have also been presented in these figures. These results comare well with
the results obtained in the present investigation. The minor differences
are due to the use of different tank and model dimensions in the two in-vestigations.

(c) Potential Distribution Across the Floor

Referring to Figures 6, 7 and 8, it is observed that on the down-stream half of the floor the potentials along the edge are higher than thoseon the central line for all length-width ratios. The same trend has beenobserved with the computed and experimental results. The maximumdifference in the end line and central line potentials is about 3 percentin computed and 4 percent in experimental resuls for all the length-width ratios. This maximum difference is at about one tenth of thelength from the ends of the floor reducing towards the centre and endswhere there is no difference in potentials at the sides and at the centralline.
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Distance along floor (from center)
FIGURE 6: Potential distribution under the floor (L/B—l)
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The potential distribution at the level of the floor computed in the
Figure 9 °“ t0 the constant Potential plates has been presented in

Finite Depth of the Medium
The potentials below the floor for seepage through a pervious

medium of finite depth equal to half the length of the floor with length-

OHL q/s5!d03L O^TT

FIGURE 8 :
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FIGURE 9 : Potential distribution at floor level (L/B=2, fine mesh of discs)

width ratio of 2 have been plotted in Figure 10. For comparison the
potentials obtained vrith the same length-width ratio and infinite depth of
pervious medium and same number of discs representing the constant
potential regions, have also been plotted, for the downstream half of the
floor. The central and edge line potentials for finite depth of the medium

found to be lower than those for infinite depth of the medium. The
maximum difference in potentials has been observed at distances of 0.2 L
from the ends reducing to zero towards the centre and ends of the floor.

In two dimensional seepage for the finite depth of the medium equal
to ( L/2), the difference in potentials is within 1 percent of those for the in-
finite medium (Leliavsky, 1965). The larger difference in three dimen-
sional seepage is due to the larger concentration of stream lines towards
the sides.
Conclusions.

Using this method it has been found that the potential due to three
dimensional seepage in half space with infinite depth of the medium are
higher than those for two dimensional seepage under the downstream half
of the floor, and under the upstream half of the floor lower than those for
two dimensional case

By increasing length-width ratio, these potentials increase for the
downstream half of the floor and decrease for the upstream half. This has
been confirmed experimentally also.

The reduction in depth of the pervious stratum has been found to
reduce the potentials on the downstream half of the floor and increase
the upstream half of the floor. This is similar to that for the two-dimen-sional seepage.
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FIGURE 10: Potential distribution under the floor (L/B=2, finite depth medium)

Notations

= Width of the impervious floor

= Coordinates of a point along x-axisP
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Bv = Coordinates of a joint along y-axis
Finite length of the seepage region of constant potential

permeability of the medium.

1 =2njJ
K
2« ^L y =
25„ J

length of the impervious floor

4> potential function
radius of the elementary disc
radial distance
Finite depth of the pervious region
distance along x-axis
distance along y-axis
distance along z-axis

P
r
T
X
Y
Z
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